首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Differentiation of body form of Gustavioidea in the light of ontogeny of Dorycranosus curtipilis (Liacaridae), Ceratoppia sphaerica and Ceratoppiaquadridentata (Peloppiidae) was investigated, and morphology of juveniles of these species was described and illustrated for the first time. The juveniles of D. curtipilis differ distinctly from those of Ceratoppia species mainly by stronger chelicerae, more elongated body, and convex gastronotum, oval cross section, small and clavate sensillus, and rather thin, and pliable setae. The protonymphs of all these species lose gastronotal setae of d-series, and these setae are absent in subsequent nymphs and adult. The adult loses further notogastral setae, such that 11 pairs remain in D. curtipilis, but only two pairs in Ceratoppia species. Diagnoses of these species are enriched with morphological characters of juveniles, and the morphology of Ceratoppiabipilis is briefly compared, as are aspects of Gustaviafusifer (Gustaviidae).  相似文献   

2.
Scales of spatial and temporal variation in the settlement of early and late plantigrades of the mussel Perna perna to artificial substrata were measured on the south coast of South Africa. One study examined daily settlement over one month at three sites of similar tidal height and aspect. The sites were separated by 100′s of m with 5 replicated artificial settlement substrata approximately 1 m apart within each site. Early (< 0.5 mm) and large late plantigrades (1 - 3.5 mm) dominated samples with few individuals of 0.5-1 mm. Settler abundance showed clear peaks, synchronised among sites and apparently following spring tides, though the relationship between tide and settlement was not significant. Two-way ANOVA indicated significant spatial variation, which varied with time, at the 100 m-scale among sites. A second study investigated the local effects of substratum aspect. Seaward facing surfaces had consistently lower settlement (but higher adult cover) than horizontal and landward facing surfaces, this effect was significant for large late plantigrades. This suggests that either juveniles migrate after settlement, or that post-settlement mortality differs markedly among aspects. The high degree of temporal variation at the scale of days and weeks was expected, but the results also suggest a degree of pulsing in settlement, with maximum intensities around spring tide. A previous study of nearshore waters indicated a common pool of larvae at scales of 100 s m. Thus, consistent ranking of sites for all size classes of settlers indicates predictably differential hydrodynamic delivery of larvae to sites separated by 100 s m. The effect of aspect on settlement highlights the importance of smaller scale hydrodynamics, suggesting that the stronger turbulence experienced by seaward facing surfaces may affect larval settlement negatively.  相似文献   

3.
Rhythmic animal movements originate in CNS oscillator circuits; however, sensory inputs play an important role in shaping motor output. Our recent studies demonstrated that leeches with severed nerve cords swim with excellent coordination between the two ends, indicating that sensory inputs are sufficient for maintaining intersegmental coordination. In this study, we examined the neuronal substrates that underlie intersegmental coordination via sensory mechanisms. Among the identified sensory neurons in the leech, we found the ventral stretch receptor (VSR) to be the best candidate for our study because of its sensitivity to tension in longitudinal muscle. Our experiments demonstrate that (1) the membrane potential of the VSR is depolarized during swimming and oscillates with an amplitude of 1.5–5.0 mV, (2) rhythmic currents injected into the VSR can entrain ongoing swimming over a large frequency range (0.9–1.8 Hz), and (3) large current pulses injected into the VSR shift the phase of the swimming rhythm. These results suggest that VSRs play an important role in generating and modulating the swim rhythm. We propose that coordinated swimming in leech preparations with severed nerve cords results from mutual entrainment between the two ends of the leech mediated by stretch receptors.  相似文献   

4.
The partial skeleton of Pierolapithecus, which provides the oldest unequivocal evidence of orthogrady, together with the recently described phalanges from Pa?alar most likely attributable to Griphopithecus, provide a unique opportunity for understanding the changes in hand anatomy during the pronogrady/orthogrady transition in hominoid evolution. In this paper, we describe the Pierolapithecus hand phalanges and compare their morphology and proportions with those of other Miocene apes in order to make paleobiological inferences about locomotor evolution. In particular, we investigate the orthograde/pronograde evolutionary transition in order to test whether the acquisition of vertical climbing and suspension were decoupled during evolution. Our results indicate that the manual phalanges of Miocene apes are much more similar to one another than to living apes. In particular, Miocene apes retain primitive features related to powerful-grasping palmigrady on the basal portion, the shaft, and the trochlea of the proximal phalanges. These features suggest that above-branch quadrupedalism, inherited from stem hominoids, constituted a significant component of the locomotor repertories of different hominoid lineages at least until the late Miocene. Nonetheless, despite their striking morphological similarities, several Miocene apes do significantly differ in phalangeal curvature and/or elongation. Hispanopithecus most clearly departs by displaying markedly-curved and elongated phalanges, similar to those in the most suspensory of the extant apes (hylobatids and orangutans). This feature agrees with several others that indicate orang-like suspensory capabilities. The remaining Miocene apes, on the contrary, display low to moderate phalangeal curvature, and short to moderately-elongated phalanges, which are indicative of the lack of suspensory adaptations. As such, the transition from a pronograde towards an orthograde body plan, as far as this particular anatomical region is concerned, is reflected only in somewhat more elongated phalanges, which may be functionally related to enhanced vertical-climbing capabilities. Our results therefore agree with the view that hominoid locomotor evolution largely took place in a mosaic fashion: just as taillessness antedated the acquisition of an orthograde body plan, the emergence of the latter—being apparently related only to vertical climbing—also preceded the acquisition of suspensory adaptations, as well as the loss of primitively-retained, palmigrady-related features.  相似文献   

5.
Recordings were made from the nerve innervating the stretch receptors of the abdominal muscle receptor organs and slow extensor muscles of tethered crayfish, Cherax destructor, during so-called non-giant swimming. The stretch receptors were active during the flexor phase of swimming but the duration and pattern of activity varied from cycle to cycle. Their pattern of firing was modified by the activity of the large accessory neurons which make direct inhibitory synapses upon them. Neither the stretch receptors nor the accessory neurons were active during the extensor phase of the cycle. The timing and extent of tailfan movements during the period of stretch receptor activity were measured from video records before and after the stretch receptor nerves were cut in the second to fifth segments. The promotion of the tailfan during flexion was significantly delayed and the minimum angle to which the uropods were remoted at the end of flexion significantly larger in denervated animals. We propose that afferent information from the stretch receptors coordinates the timing and extent of tailfan movements according to variations in the positioning and movement of the abdominal segments such that the hydrodynamic efficiency of the tailfan is enhanced on a cycle by cycle basis during non-giant swimming.Abbreviations A# abdominal segment number - Acc accessory neuron - LUU large unidentified unit - MRO muscle receptor organ - NGS non-giant swimming - SEMN slow extensor motor neuron - SR stretch receptor neuron  相似文献   

6.
sonic hedgehog (shh) is expressed in anterior endoderm, where it is required to repress pancreas gene expression and to pattern the endoderm, but the pathway controlling endodermal shh expression is unclear. We find that expression of meis3, a TALE class homeodomain gene, coincides with shh expression in the endoderm of zebrafish embryos. Using a dominant negative construct or anti-sense morpholino oligos (MOs) to disrupt meis3 function, we observe ectopic insulin expression in anterior endoderm. This phenotype is also observed when meis3 MOs are targeted to the endoderm, suggesting that meis3 acts within the endoderm to restrict insulin expression. We also find that meis3 is required for endodermal shh expression, indicating that meis3 acts upstream of shh to restrict insulin expression. Loss of pbx4, a TALE gene encoding a Meis cofactor, produces the same phenotype as loss of meis3, consistent with Meis3 acting in a complex with Pbx4 as reported in other systems. Lastly, we observe a progressive anterior displacement of endoderm-derived organs upon disruption of meis3 or pbx4, apparently as a result of underdevelopment of the pharyngeal region. Our data indicate that meis3 and pbx4 regulate shh expression in anterior endoderm, thereby influencing patterning and growth of the foregut.  相似文献   

7.
Although the neurobiology and physiology of sea hares are extensively studied, comparatively little is known about their behaviour or ecology. Several species of sea hares swim, but the function of swimming is unclear. In this paper, we tested the hypotheses that swimming in Aplysia brasiliana serves to find food and mates, and to escape predators. Our data strongly support the hypothesis that swimming in A. brasiliana is related to feeding. Sea hares deprived of food overnight swam 12 times longer than ones that had been fed. When sea hares contacted food while swimming they invariably stopped, while those contacting a plastic algal mimic mostly continued to swim. Our experiments provided no evidence to support the hypothesis that swimming in sea hares is related to social behaviour. Sea hares deprived of copulatory mates for 3 days did not swim longer than ones held in copulating groups. Moreover, swimming sea hares never stopped swimming upon encountering a conspecific. Our experiments also supported the hypothesis that swimming in sea hares is related to predation. Sea hares stimulated with a standardised tail pinch and exposed to ink of conspecifics swam four times longer than control individuals, and tail-pinched sea hares that released ink swam five times longer than ones that did not release ink. However, because predators of adult sea hares are mostly lacking and because sea hares often swim spontaneously without predators being present, we conclude that swimming behaviour in A. brasiliana is primarily related to food-finding.  相似文献   

8.
Relationships of the genera in the Enterobacteriaceae containing plant pathogenic species: Brenneria, Dickeya, Enterobacter, Erwinia, Pantoea, Pectobacterium, and Samsonia, were investigated by comparison of their nucleotide and peptide sequences of atpD, carA, recA, and the concatenated sequences. Erwinia spp. and Pantoea spp., with Pectobacterium cypripedii, formed a group distinct from other pathogenic taxa. Pectobacterium, Brenneria, Dickeya, and Samsonia formed a contiguous clade. Samsonia was usually concurrent with Pectobacterium. Most Brenneria were also close to Pectobacterium, suggesting that these three taxa might be better represented as a single genus. Brenneria quercina was not closely associated with other members of this genus and may represent a separate genus. The sequences representing Dickeya were distinct, further supporting the generic status of the taxon. Plant pathogenic Enterobacter spp. display such sequence variability that few definite conclusions as to their specific placement could be made. These data highlight the difficulty of drawing reliable and robust taxonomic conclusions based on comparative analysis of sequence data without some independent criterion to calibrate a scale for diversity.  相似文献   

9.
The hominin fossil record reveals brain-size expansion, canine reduction, premolar metaconid development, and numerous other craniodental features that become more human-like through time. In general, the postcranial skeleton also gets more human-like through time, but in some respects it does not. This is particularly apparent in the overall morphology of one of the most frequently preserved elements, the distal humerus. Some of the earliest hominins display quite human-like morphologies, whereas later specimens are quite unusual among extant species of Hominoidea: when described metrically and subjected to multivariate discriminant analyses in the context of large samples of extant hominoid humeri, the shapes of the earliest hominin fossils are more human-like than many of the later specimens. The Mahalanobis distances between many of the 1.5-2Ma hominin humeri and Homo sapiens are remarkably large. Many of the less well-represented postcranial specimens do not follow a linear path through time of increasing hominization either. This is particularly noticeable in the fore-to-hind limb joint-size proportions, ulnar morphology, and pelvic architecture. The hominin postcranial fossil record reveals many side-steps: there appears to be no simple march toward our human bodies, but a pattern better explained as adaptations to proximate conditions and constrained by ontogeny and history.  相似文献   

10.
Most butterfly wing patterns are proposed to be derived from a set of conserved pattern elements known as symmetry systems. Symmetry systems are so-named because they are often associated with parallel color stripes mirrored around linear organizing centers that run between the anterior and posterior wing margins. Even though the symmetry systems are the most prominent and diverse wing pattern elements, their study has been confounded by a lack of knowledge regarding the molecular basis of their development, as well as the difficulty of drawing pattern homologies across species with highly derived wing patterns. Here we present the first molecular characterization of symmetry system development by showing that WntA expression is consistently associated with the major basal, discal, central, and external symmetry system patterns of nymphalid butterflies. Pharmacological manipulations of signaling gradients using heparin and dextran sulfate showed that pattern organizing centers correspond precisely with WntA, wingless, Wnt6, and Wnt10 expression patterns, thus suggesting a role for Wnt signaling in color pattern induction. Importantly, this model is supported by recent genetic and population genomic work identifying WntA as the causative locus underlying wing pattern variation within several butterfly species. By comparing the expression of WntA between nymphalid butterflies representing a range of prototypical symmetry systems, slightly deviated symmetry systems, and highly derived wing patterns, we were able to infer symmetry system homologies in several challenging cases. Our work illustrates how highly divergent morphologies can be derived from modifications to a common ground plan across both micro- and macro-evolutionary time scales.  相似文献   

11.
Min Chen  Zheng-Li Cai 《BBA》2007,1767(6):603-609
The chlorophyll d containing cyanobacterium, Acaryochloris marina has provided a model system for the study of chlorophyll replacement in the function of oxygenic photosynthesis. Chlorophyll d replaces most functions of chlorophyll a in Acaryochloris marina. It not only functions as the major light-harvesting pigment, but also acts as an electron transfer cofactor in the primary charge separation reaction in the two photosystems. The Mg-chlorophyll d-peptide coordinating interaction between the amino acid residues and chlorophylls using the latest semi-empirical PM5 method were examined. It is suggested that chlorophyll d possesses similar coordination ligand properties to chlorophyll a, but chlorophyll b possesses different ligand properties. Compared with other studies involving theoretical correlation and our prior experiments, this study suggests that the chlorophyll a-bound proteins will bind chlorophyll d without difficulty when chlorophyll d is available.  相似文献   

12.
Although Wnt signaling plays an important role in body patterning during early vertebrate embryogenesis, the mechanisms by which Wnts control the individual processes of body patterning are largely unknown. In zebrafish, wnt3a and wnt8 are expressed in overlapping domains in the blastoderm margin and later in the tailbud. The combined inhibition of Wnt3a and Wnt8 by antisense morpholino oligonucleotides led to anteriorization of the neuroectoderm, expansion of the dorsal organizer, and loss of the posterior body structure-a more severe phenotype than with inhibition of each Wnt alone-indicating a redundant role for Wnt3a and Wnt8. The ventrally expressed homeobox genes vox, vent, and ved mediated Wnt3a/Wnt8 signaling to restrict the organizer domain. Of posterior body-formation genes, expression of the caudal-related cdx1a and cdx4/kugelig, but not bmps or cyclops, was strongly reduced in the wnt3a/wnt8 morphant embryos. Like the wnt3a/wnt8 morphant embryos, cdx1a/cdx4 morphant embryos displayed complete loss of the tail structure, suggesting that Cdx1a and Cdx4 mediate Wnt-dependent posterior body formation. We also found that cdx1a and cdx4 expression is dependent on Fgf signaling. hoxa9a and hoxb7a expression was down-regulated in the wnt3a/wnt8 and cdx1a/cdx4 morphant embryos, and in embryos with defects in Fgf signaling. Fgf signaling was required for Cdx-mediated hoxa9a expression. Both the wnt3a/wnt8 and cdx1a/cdx4 morphant embryos failed to promote somitogenesis during mid-segmentation. These data indicate that the cdx genes mediate Wnt signaling and play essential roles in the morphogenesis of the posterior body in zebrafish.  相似文献   

13.
Sixty-six tropane alkaloids from crude leaf and root alkaloid mixtures of 12 different species and their varieties and subspecies from tribe Datureae were determined by GC–MS. The alkaloids 3β-hydroxy-6β-acetoxytropane, 3-propionyloxy-6-hyroxytropane, 3β-hydroxy-6β-tigloyloxytropane, 3β-tigloyloxy-6β-acetoxytropane and 3-tigloyloxy-7-isobutyryloxytropane are new reported tropane alkaloids.  相似文献   

14.
The identification of the polysaccharides from tetrasporophytic plants of nine endemic New Zealand species belonging to the Gigartinaceae, ‘Gigartina’ ancistroclada, ‘G.’ grandifida, Gigartina dilatata, G. divaricata, G. macrocarpa, G. marginifera, G. pachymenioides, G. sp. ‘Lindauer 164’ and Sarcothalia livida using infra-red spectroscopy in conjunction with constituent sugar and glycosyl linkage/substitution analysis is reported. All nine species contain galactans with structures consistent with λ-type carrageenans. Differences in the structures of the galactans in these and a further six previously studied species indicate chemotaxonomically distinct groupings that correspond to Sarcothalia, ‘Sarcothalia’ and Gigartina genera plus some outliers. These distinct, chemotaxonomic groupings are aligned to those determined by rbcL sequence analysis reported in the literature.  相似文献   

15.
A molecular phylogenetic analysis of Fusarium poae isolates from South America (Argentina) and Europe (mainly England, Germany, Italy) was performed using 98 F. poae, four Fusarium culmorum, two Fusarium sporotrichioides and one Fusarium langsethiae isolates. Phylogenetic analyses were performed using nuclear (translation elongation factor 1-alpha, EF-1 alpha) and mitochondrial (mitochondrial small subunit rDNA, mtSSU) sequences. Partitioned (each dataset separately) and combined (EF-1 alpha+mtSSU) analyses did not reveal any clear correlations from the inferred branching topology, between the distribution of observed haplotypes and the geographic origin and/or host species. Results from the present study confirmed that isolates from F. poae form a monophyletic group, and the low variability within isolates from a broad geographic range suggests a common lineage history. Among F. poae isolates from Argentina, however, some were found to possess an insert within mtSSU with structural similarities to group IC2 introns. F. poae isolates differing by the presence/absence of a mtSSU insertion were characterized further by analysis of a portion of the Tri5 gene, but this sequence was unable to reveal variability. The presence of this insert only within isolates from Argentina suggests that evolutionary events (insertions/deletions) are probably taking place within the Argentinian F. poae isolates, and that the acquisition of this insert occurred after geographic isolation of the Argentinian and European populations.  相似文献   

16.
Comparative small subunit rDNA sequence analyses, indicate that Ovavesicula popilliae, a microsporidian parasite of the Japanese beetle, Popillia japonica, represents a distant sister group to Paranosema and Antonospora. These three genera represent a second major group (the Nosema/Vairimorpha clade representing the first) of Microsopridia which infect terrestrial insects, suggesting independent origins for both groups. Phylogenetic analyses of Ovavesicula and other Microsporidia having a multi-sporous sporogony reveal that this condition is found in several unrelated taxa implying either that multi-sporous sporogony is the ancestral condition for Microsporidia or that it has multiple origins.  相似文献   

17.
18.
Emodepside, a cyclooctadepsipeptide, is a broad-spectrum anthelmintic previously shown to paralyse body wall muscle and pharyngeal muscle in the model nematode Caenorhabditis elegans. We demonstrate that wild-type C. elegans L4 are less sensitive than adults to emodepside in two independent assays of locomotor behaviour: body bend generation on agar (adult IC(50) 3.7 nM, L4 IC(50) 13.4 nM) and thrashing behaviour in liquid (thrashing behaviour as a % of controls after 1h in 10 microM emodepside: adults 16%, L4 worms 48%). We also show that continuous exposure of wild-type C. elegans to emodepside throughout the life-cycle from egg onwards, slows worm development, an effect that is emodepside concentration-dependent. The rate of worm-hatching from eggs on agar plates containing emodepside was not significantly different from controls, suggesting that it is development post-hatching rather than hatching itself that is affected by the drug. Emodepside also inhibits wild-type C. elegans egg-laying, with acute exposure to the drug at 500 nM resulting in an almost total inhibition within the first hour. However, the rate of egg production was not inhibited and therefore emodepside-treated worms became bloated with eggs, eventually rupturing. This suggests that the effect of emodepside on reproduction is not due to an inhibition of egg production but rather a paralytic effect on the egg-laying muscles. These results, when coupled with previous research, suggest that emodepside interferes with signalling at the neuromuscular junction on the body-wall muscles (Willson et al., 2003), pharynx (Willson et al., 2004) and egg-laying muscles and thus inhibits three important physiological functions: locomotion, feeding and reproduction.  相似文献   

19.
20.
The adoption of a specific gait sequence pattern during symmetrical locomotion has been proposed to have been a key advantage for the exploitation of the fine branch niche in early primates. Diverse aspects of primate locomotion have been extensively studied in technically equipped laboratory settings, but evolutionary conclusions derived from these investigations have rarely been verified in wild primates. Bridging the gap from the lab to the field, we conducted an actual performance determination of symmetrical gaits in two free-ranging tamarin species (Saguinus mystax and Saguinus fuscicollis) of Amazonian Peru by analyzing high-speed video recordings of naturally occurring locomotor bouts. Tamarins arguably represent viable models for aspects of early primate locomotion. We tested three specific hypotheses derived from laboratory studies to test for the influence of support size and orientation and to gain further insight into the functional significance of primate gait sequence patterns: (1) The tamarins utilize symmetrical gaits at a higher rate on small supports than on larger ones. (2) During symmetrical locomotion on small supports, diagonal sequences are utilized at a higher rate than on larger supports. (3) On inclines, diagonal sequences are predominantly used and on declines, lateral sequences are predominantly used. Our results corroborated hypotheses 1 and 3. We found no clear support for hypothesis 2. In conclusion, our results add to the notion that primate gait plasticity, rather than uniform adoption of diagonal sequence gaits, enabled early primates to accommodate different support types and effectively exploit the small branch niche.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号