首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Wang X  Ho WZ 《Life sciences》2011,88(21-22):972-979
Human immunodeficiency virus (HIV) infection and progression of acquired immunodeficiency syndrome (AIDS) can be modulated by a number of cofactors, including drugs of abuse. Opioids, cocaine, cannabinoids, methamphetamine (METH), alcohol, and other substances of abuse have been implicated as risk factors for HIV infection, as they all have the potential to compromise host immunity and facilitate viral replication. Although epidemiologic evidence regarding the impact of drugs of abuse on HIV disease progression is mixed, in vitro studies as well as studies using in vivo animal models have indicated that drugs of abuse have the ability to enhance HIV infection/replication. Drugs of abuse may also be a risk factor for perinatal transmission of HIV. Because high levels of viral load in maternal blood are associated with increased risk of HIV vertical transmission, it is likely that drugs of abuse play an important role in promoting mother-fetus transmission. Furthermore, because the neonatal immune system differs qualitatively from the adult system, it is possible that maternal exposure to drugs of abuse would exacerbate neonatal immunity defects, facilitating HIV infection of neonate immune cells and promoting HIV vertical transmission. The availability and use of antiretroviral therapy for women infected with HIV increase, there is an increasing interest in determining the impact of drug abuse on efficacy of AIDS Clinical Trials Group (ACTG)-standardized treatment regimens for woman infected with HIV in the context of HIV vertical transmission.  相似文献   

3.
An HIV/AIDS and TB coinfection model which considers antiretroviral therapy for the AIDS cases and treatment of all forms of TB, i.e., latent and active forms of TB, is presented. We begin by presenting an HIV/AIDS-TB coinfection model and analyze the TB and HIV/AIDS submodels separately without any intervention strategy. The TB-only model is shown to exhibit backward bifurcation when its corresponding reproduction number is less than unity. On the other hand, the HIV/AIDS-only model has a globally asymptotically stable disease-free equilibrium when its corresponding reproduction number is less than unity. We proceed to analyze the full HIV-TB coinfection model and extend the model to incorporate antiretroviral therapy for the AIDS cases and treatment of active and latent forms of TB. The thresholds and equilibria quantities for the models are determined and stabilities analyzed. From the study we conclude that treatment of AIDS cases results in a significant reductions of numbers of individuals progressing to active TB. Further, treatment of latent and active forms of TB results in delayed onset of the AIDS stage of HIV infection.  相似文献   

4.
Animal models of AIDS   总被引:21,自引:0,他引:21  
M B Gardner  P A Luciw 《FASEB journal》1989,3(14):2593-2606
Animal models of AIDS are essential for understanding the pathogenesis of retrovirus-induced immune deficiency and encephalopathy and for development and testing of new therapies and vaccines. AIDS and related disorders are etiologically linked to members of the lentivirus subfamily of retroviruses; these lymphocytopathic lentiviruses are designated human immuno-deficiency virus type 1 (HIV-1) and human immuno-deficiency virus type 2 (HIV-2). The only animals susceptible to experimental HIV-1 infection are the chimpanzee, gibbon ape, and rabbit but AIDS-like disease has not yet been reported in these species. Macaques can be persistently infected with some strains of HIV-2 but no AIDS-like disease has resulted. It is not yet clear how suitable HIV-infected SCID-hu mice will be as a model for AIDS. Several subfamilies of naturally occurring cytopathic retroviruses cause immune suppression, including fatal immunodeficiency syndromes in chickens, mice, cats, and monkeys. Domestic cats suffer immunosuppression from both an onco-virus, feline leukemia virus, and a member of the lentivirus subfamily, feline immunodeficiency virus (FIV). Asian macaques are susceptible to fatal simian AIDS from a type D retrovirus, indigenous in macaques, and from a lentivirus, simian immunodeficiency virus (SIV), which is indigenous to healthy African monkeys. SIV is the animal lentivirus most closely related to HIV. Of these animal models, the lentivirus infections of cats (FIV) and macaques (SIV) appear to bear the closest similarity in their pathogenesis to HIV infection and AIDS. This review will summarize these various animal model systems for AIDS and illustrate their usefulness for antiviral therapy and vaccinology.  相似文献   

5.
6.
Pathogenic human immunodeficiency virus (HIV)/Simian immunodeficiency virus (SIV) infection is associated with increased T-cell apoptosis. In marked contrast to HIV infection in humans and SIV infection in macaques, the SIV infection of natural host species is typically nonpathogenic despite high levels of viral replication. In these nonpathogenic primate models, no observation of T-cell apoptosis was observed, suggesting that either SIV is less capable of directly inducing apoptosis in natural hosts (likely as a result of coevolution/coadaptation with the host) or, alternatively, that the indirect T-cell apoptosis plays the key role in determining the HIV-associated T-cell depletion and progression to acquired immune deficiency syndrome (AIDS). Understanding the molecular and cellular mechanisms responsible for the disease-free equilibrium in natural hosts for SIV infection, including those determining the absence of high levels of T-cell apoptosis, is likely to provide important clues regarding the mechanisms of AIDS pathogenesis in humans.  相似文献   

7.
Abstract: Research on human immunodeficiency virus (HIV) infection is compromised by the obvious limitation in having for study only virus-infected individuals or those exposed to the virus. Steps involved in transmission or pathogenesis require planned experimentation. The identification of animal models of acquired immunodeficiency syndrome (AIDS) has therefore been helpful for evaluating phases of HIV pathogenesis. Of the seven subgenera of lentiviruses now recognized, two share the characteristics with HIV of a T cell tropism and the associated loss of CD4+ cells in the host associated with disease: the feline immunodeficiency virus (FIV) and the simian immunodeficiency virus (SIV) (Table 1). The other animal lentiviruses grow best in macrophages and their infection generally reflects clinical sequellae of infection of this cell type. This review addresses those features of SIV, HIV, and SHIV infections of non-human primates that illustrate the importance of the animal models of AIDS.  相似文献   

8.
With few exceptions, humans are the only species known to develop acquired immunodeficiency syndrome (AIDS) after human immunodeficiency virus (HIV) infection. We report here that an isolate of HIV type 2, EHO, readily established persistent infection in 100% of Macaca nemestrina in three consecutive transmission studies. Of the eight infected animals, five showed persistently high virus load and six developed AIDS-like diseases or CD4+ cell depletion within 4 years of infection. The pathology and clinical signs closely parallel those of HIV-1 infection of humans, including lymphadenopathy, anemia, CD4+ cell depletion, and opportunistic infections. A cell-free virus stock was established from the lymph nodes of an animal that developed AIDS-like diseases. This virus, HIV-2/287, was highly pathogenic in M. nemestrina, causing CD4+ cell depletion within 2-8 weeks postinfection. While both HIV-2 EHO and HIV-2/287 use predominantly CXCR4, the latter shows greatly enhanced replicative capacity in macaque peripheral blood mononuclear cells (PBMCs). The establishment of a human immunodeficiency virus that causes rapid and reproducible CD4 cell depletion in macaques could facilitate the study of HIV pathogenesis and the development of effective vaccines and therapy against AIDS.  相似文献   

9.
Acquired immunodeficiency syndrome (AIDS) is a disease caused by infection with the human immunodeficiency virus (HIV). Although drug therapy for AIDS is available, problems such as side effects associated with drug therapy and the appearance of resistant HIV strains have arisen. Therefore, therapies based on new principles other than drug treatment are required. In the present study, the effect of electrical stimulation on HIV-1(LAI) chronically infected HeLa (P6 HeLa/HIV-1(LAI)) cells cultured on an electrode surface was examined. The results indicated that sensitivity to electrical stimulation was much higher in P6 HeLa/HIV-1(LAI) cells than in uninfected P6 HeLa cells. When electrical stimulation was applied at 1.0 V (vs. Ag/AgCl) for 20 min, the proportion of damage to cell membrane among P6 HeLa/HIV-1(LAI) cells, as evaluated by Trypan blue staining, was approximately 4 times higher than that for uninfected P6 HeLa cells. Furthermore, in comparison with uninfected P6 HeLa cells, the proliferation of P6 HeLa/HIV-1(LAI) cells was significantly suppressed after electrical stimulation. This technique was proven to selectively kill P6 HeLa/HIV-1(LAI) cells, when compared with uninfected control cells.  相似文献   

10.
Human immunodeficiency virus (HIV) is the infectious agent causing acquired immunodeficiency syndrome (AIDS), a deadliest scourge of human society. Hepatitis C virus (HCV) is a major causative agent of chronic liver disease and infects an estimated 170 million people worldwide, resulting in a serious public health burden. Due to shared routes of transmission, co-infection with HIV and HCV has become common among individuals who had high risks of blood exposures. Among hemophiliacs the co-infection rate accounts for 85%; while among injection drug users (IDU) the rate can be as high as 90%. HIV can accelerate the progression of HCV-related liver disease, particularly when immunodeficiency has developed. Although the effect of HCV on HIV infection is controversial, most studies showed an increase in mortality due to liver disease. HCV may act as a direct cofactor to fasten the progression of AIDS and decrease the tolerance of highly active antiretroviral therapy (HARRT). Conversely, HAART-related hepatotoxicity may enhance the progression of liver fibrosis. Due to above complications, co-infection with HCV and HIV-1 has imposed a critical challenge in the management of these patients. In this review, we focus on the epidemiology and transmission of HIV and HCV, the impact of the two viruses on each other, and their treatment.   相似文献   

11.
12.
Over the last few years, a relative decline of the morbidity and mortality of human immunodeficiency virus (HIV) infection in industrialised countries has been observed due to the use of a potent combined therapy known as high active antiretroviral therapies (HAARTs). It has led to a decrease of viral load and a quantitative and qualitative improvement of immune function in patients, especially CD4+ T-lymphocyte count, having as a consequence a decrease of infectious complications and a global clinical improvement. Besides the positive effects of HAARTs on immune and metabolic alterations during HIV infection, it has been reported that the commonly used drugs AZT, ddI, and ddC are toxic to hepatocytes. Recent reports continue to point to the mitochondria as targets for toxicity. The prevalence of these symptoms is continued during acquired immunodeficiency syndrome (AIDS). The effects of oxidative stress occurring as a consequence of mitochondrial toxicity may amplify some of the pathophysiological and phenotypic events during infection. Mitochondrial stabilisation and antioxidative strategies are possible new therapeutic aims since the antiretroviral treatment is prolonged with increased longevity from AIDS, which has become a more manageable chronic illness. The aim of the present review article is to summarize the current knowledge about mitochondrial dysfunction during HAART and its consequence for patients with chronic treatment. Oxidative stress may serve as one pathway for cellular damage in AIDS and its treatment. One important future goal is to prevent or attenuate the side effects of HAART so that improved disease management can be achieved.  相似文献   

13.
M L Givner 《CMAJ》1990,142(11):1177-1178
Zidovudine (AZT) is the first antiretroviral agent to be licensed for the treatment of human immunodeficiency virus (HIV) infection. Since the initial placebo-controlled trial showing improved survival among patients with acquired immunodeficiency syndrome (AIDS) or symptomatic HIV infection (AIDS-related complex [ARC]) zidovudine has been evaluated in other stages of HIV infection. This review offers physicians who treat patients with HIV infection a comprehensive analysis of the current data on the clinical efficacy of zidovudine in various stages of HIV infection and on zidovudine''s adverse effects. After a search of MEDLINE for pertinent articles published since 1985, controlled studies and studies of long-term zidovudine therapy, of zidovudine therapy for HIV-related conditions and of the incidence and management of adverse reactions were evaluated. In addition, abstracts from international meetings were reviewed. No significant difference in clinical outcome was found between high-dose and low-dose zidovudine therapy, but there were significantly fewer toxic effects in the low-dose group. In two other studies zidovudine was found to delay disease progression in patients with asymptomatic or mildly symptomatic HIV infection who had an absolute CD4 count of less than 0.5 x 10(9)/L; the low incidence of adverse reactions may have been due to either the early stage of the infection or the low dose used. The demonstration of zidovudine-resistant isolates after at least 6 months of therapy has yet to be correlated with clinical deterioration. When to begin zidovudine therapy among asymptomatic patients with a CD4 count of less than 0.5 x 10(9)/L remains unclear. Zidovudine can be used safely to delay progression to AIDS or ARC in certain patients with asymptomatic or mildly symptomatic HIV infection and can prolong survival in those with more severe infection. Further studies are necessary to identify indicators that could better define when to start treatment and how to alleviate toxic effects. Combination therapy with such agents as interferon alpha may become the preferred choice of therapy to prevent toxic effects and zidovudine resistance. Zidovudine prophylaxis has been used after HIV exposure. Although studies with animal models have had encouraging results infection has occurred despite immediate prophylaxis and thus further investigation is required.  相似文献   

14.
Experimental evidence and mathematical models indicate that CD4+ T-cell help is required to generate memory cytotoxicT-lymphocyte precursors (CTLp) that are capable of persisting without ongoing antigenic stimulation, and that such responses are necessary to clear an infection or to control it in the long term. Here we analyse mathematical models of simian immunodeficiency virus (SIV) replication in macaques, assuming that SIV impairs specific CD4+ T-cell responses. According to the models, fast viral replication during the initial stages of primary infection can result in failure to generate sufficient long-lived memory CTLp required to control the infection in the long term. Modelling of drug therapy during the acute phase of the infection indicates that transient treatment can minimize the amount of virus-induced immune impairment, allowing a more effective initial immune sensitization. The result is the development of high levels of memory CTLp that are capable of controlling SIV replication in the long term, in the absence of continuous treament. In the model, the success of treatment depends crucially on the timing and duration of antiretroviral therapy. Data on SIV-infected macaques receiving transient drug therapy during acute infection support these theoretical predictions. The data and modelling suggest that among subjects controlling SIV replication most efficiently after treatment, there is a positive correlation between cellular immune responses and virus load in the post-acute stage of infection. Among subjects showing less-efficient virus control, the correlation is negative. We discuss our findings in relation to previously published data on HIV infection.  相似文献   

15.
We have modelled the within-patient evolutionary process during HIV infection using different methodologies. New viral strains arise during the course of HIV infection. These multiple strains of the virus are able to use different coreceptors, in particular the CCR5 and the CXCR4 (R5 and X4 phenotypes, respectively) influence the progression of the disease to the AIDS phase. We present a model of HIV early infection and CTLs response which describes the dynamics of R5 quasispecies, specifying the R5 to X4 switch and the effects of the immune response. We illustrate the dynamics of HIV multiple strains in the presence of multidrug HAART therapy. The HAART combined with X4 strain blocker drugs might help to reduce infectivity and lead to slower progression of the disease. On the methodology side, our model represents a paradigm of integrating formal methods and mathematical models as a general framework to study HIV multiple strains during disease progression, and it will inch towards providing help in selecting among vaccines and drug therapies. The results presented here are one of the rare cases of methodological cross comparison (stochastic and deterministic) and a novel implementation of model checking in therapy validation.  相似文献   

16.
Morphine-induced immune alterations in vivo   总被引:5,自引:0,他引:5  
The high incidence of human immunodeficiency virus (HIV) seropositivity among drug abusers prompted us to examine in an animal model the effects of morphine on aspects of the immune system that may be specifically related to HIV infection. We now report a robust, sustained elevation in the ratio of CD4+/CD8+ cells in the spleen and thymus of mice chronically treated with morphine. Since CD4+ cells have been reported to be target cells for HIV, these alterations, in concert with a marked cellular atrophy that appears to be restricted to organs of the immune system, suggest that opiates may serve as cofactors in altering the immune status of the host and thus contribute to the increased susceptibility to HIV infection and eventual development of AIDS in opiate abusers.  相似文献   

17.
Abstract

Over the last few years, a relative decline of the morbidity and mortality of human immunodeficiency virus (HIV) infection in industrialised countries has been observed due to the use of a potent combined therapy known as high active antiretroviral therapies (HAARTs). It has led to a decrease of viral load and a quantitative and qualitative improvement of immune function in patients, especially CD4+ T-lymphocyte count, having as a consequence a decrease of infectious complications and a global clinical improvement. Besides the positive effects of HAARTs on immune and metabolic alterations during HIV infection, it has been reported that the commonly used drugs AZT, ddI, and ddC are toxic to hepatocytes. Recent reports continue to point to the mitochondria as targets for toxicity. The prevalence of these symptoms is continued during acquired immunodeficiency syndrome (AIDS). The effects of oxidative stress occurring as a consequence of mitochondrial toxicity may amplify some of the pathophysiological and phenotypic events during infection. Mitochondrial stabilisation and antioxidative strategies are possible new therapeutic aims since the antiretroviral treatment is prolonged with increased longevity from AIDS, which has become a more manageable chronic illness. The aim of the present review article is to summarize the current knowledge about mitochondrial dysfunction during HAART and its consequence for patients with chronic treatment. Oxidative stress may serve as one pathway for cellular damage in AIDS and its treatment. One important future goal is to prevent or attenuate the side effects of HAART so that improved disease management can be achieved.  相似文献   

18.
Human immunodeficiency virus (HIV) is the infectious agent causing acquired immu-nodeficiency syndrome (AIDS),a deadliest scourge of human society. Hepatitis C virus (HCV) is a major causative agent of chronic liver disease and infects an estimated 170 million people worldwide,resulting in a serious public health burden. Due to shared routes of transmission,co-infection with HIV and HCV has become common among individuals who had high risks of blood exposures. Among hemophiliacs the co-infection rate accounts for 85%; while among injection drug users (IDU) the rate can be as high as 90%. HIV can accelerate the progression of HCV-related liver disease,particularly when immunodeficiency has developed. Although the effect of HCV on HIV infection is controversial,most studies showed an increase in mortality due to liver disease. HCV may act as a direct cofactor to fasten the progression of AIDS and decrease the tolerance of highly active antiretroviral therapy (HARRT). Conversely,HAART-related hepatotoxicity may enhance the progression of liver fibrosis. Due to above complications,co-infection with HCV and HIV-1 has imposed a critical challenge in the management of these patients. In this review,we focus on the epidemiology and transmission of HIV and HCV,the impact of the two viruses on each other,and their treatment.  相似文献   

19.
Better understanding of the acute/chronic inflammation in airways is very important in order to avoid lung injuries for patients undergoing mechanical ventilation for treatment of respiratory problems. Local lung inflammation is triggered by many mechanisms within the lung, including pathogens. In this study, a cellular automata based model (CA) for pulmonary inflammation that incorporates biophysical processes during inflammatory responses was developed. The developed CA results in three possible outcomes related to homeostasis (healing), persistent infection, and resolved infection with high inflammation (inflamed state). The results from the model are validated qualitatively against other existing computational models. A sensitivity analysis was conducted on the model parameters and the outcomes were assessed. Overall, the model results showed possible outcomes that have been seen in clinical practice and animal models. The present model can be extended to include inflammation resulting from damage tissue and eventually to model inflammation resulting from acute lung injury and multiple organ dysfunction syndromes in critical illness and injury.  相似文献   

20.
With few exceptions, humans are the only species known to develop acquired immunodeficiency syndrome (AIDS) after human immunodeficiency virus (HIV) infection. We report here that an isolate of HIV type 2, EHO, readily established persistent infection in 100% of Macaca nemestrina in three consecutive transmission studies. Of the eight infected animals, five showed persistently high virus load and six developed AIDS-like diseases or CD4+ cell depletion within 4 years of infection. The pathology and clinical signs closely parallel those of HIV-1 infection of humans, including lymphadenopathy, anemia, CD4+ cell depletion, and opportunistic infections. A cell-free virus stock was established from the lymph nodes of an animal that developed AIDS-like diseases. This virus, HIV-2/287, was highly pathogenic in M. nemestrina, causing CD4+ cell depletion within 2–8 weeks post-infection. While both HIV-2 EHO and HIV-2/287 use predominantly CXCR4, the latter shows greatly enhanced replicative capacity in macaque peripheral blood mononuclear cells (PBMCs). The establishment of a human immunodeficiency virus that causes rapid and reproducible CD4+ cell depletion in macaques could facilitate the study of HIV pathogenesis and the development of effective vaccines and therapy against AIDS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号