首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Surface charges of protein molecules are not only important to biological functions but also crucial to the molecular assembly responsible for crystallization. Appropriate alteration in the surface charge distribution of a protein molecule induces new molecular alignment in the proper direction in the crystal and, hence, controls the crystal form. Apoferritin molecules are known to crystallize in two- and three-dimensional forms in the presence of cadmium ions, which bridge neighboring protein molecules. Here we report a controlled transformation of the apoferritin 2-D crystal by site-directed mutagenesis. In mutant apoferritin, two amino acid residues binding a cadmium-ion through their negative charge, were replaced by one type of nonionic amino acid residues. The amino acid residues, Asp-84 and Gln-86 in the sequence of recombinant (i.e., wild-type) horse L -apoferritin, were replaced by Ser. The wild-type apoferritin yielded a hexagonal lattice 2-D crystal in the presence of cadmium ions. In contrast, the mutant apoferritin yielded two types of oblique crystals independent of the presence of cadmium ions. Image reconstruction of electron micrographs of the mutant crystals made clear that the mutant apoferritin molecules oriented themselves with the 2-fold symmetry axis perpendicular to the crystal plane in both crystals, while the wild-type apoferritin molecules oriented themselves with the 3-fold symmetry axis perpendicular to the crystal plane. The changes of crystal forms and molecular orientation in the 2-D crystals were well explained by a change of the electrostatic interactions induced by the mutagenesis. © 1995 Wiley-Liss, Inc.  相似文献   

2.
The mutated hemoglobin HbC (beta 6 Glu-->Lys), in the oxygenated (R) liganded state, forms crystals inside red blood cells of patients with CC and SC diseases. Static and dynamic light scattering characterization of the interactions between the R-state (CO) HbC, HbA, and HbS molecules in low-ionic-strength solutions showed that electrostatics is unimportant and that the interactions are dominated by the specific binding of solutions' ions to the proteins. Microscopic observations and determinations of the nucleation statistics showed that the crystals of HbC nucleate and grow by the attachment of native molecules from the solution and that concurrent amorphous phases, spherulites, and microfibers are not building blocks for the crystal. Using a novel miniaturized light-scintillation technique, we quantified a strong retrograde solubility dependence on temperature. Thermodynamic analyses of HbC crystallization yielded a high positive enthalpy of 155 kJ mol(-1), i.e., the specific interactions favor HbC molecules in the solute state. Then, HbC crystallization is only possible because of the huge entropy gain of 610 J mol(-1) K(-1), likely stemming from the release of up to 10 water molecules per protein intermolecular contact-hydrophobic interaction. Thus, the higher crystallization propensity of R-state HbC is attributable to increased hydrophobicity resulting from the conformational changes that accompany the HbC beta 6 mutation.  相似文献   

3.
A simple 2D crystallization method using unfolded protein film as a supporting film of crystals was described, which allows modification of protein surfaces by injecting chemical reagents into the subphase after the crystal formation. As an example, glutaraldehyde was used to cross-link adjacent proteins and then stabilize protein crystals. The second layer of other proteins can also be formed on the apoferritin array using cross-linkers.The array of apoferritin is not only beneficial for electron crystallography but also for practical applications. For example, apoferritin produces a mineral core with a size which can be adjusted by the size to the cavity (i.e. 6 nm). Fabrication of such a small size of well defined fine particles is currently not easy using physical or chemical procedures. Using apoferritin, however, it is easy to produce uniform fine particles. If the core is designed to add interesting properties such as magnetism it is possible to make the highest class of magnetic film with ferritin 2D crystals.Basic researches toward practical applications of 2D protein crystal is now under way in various fields. The well defined size and function of protein molecules will benefit to many applications. The function and crystalline order can be designed by site-directed mutagenesis with the development of protein engineering.  相似文献   

4.
In situ laser Michelson interferometry was utilized to investigate mechanisms of growth and surface morphology in protein and virus crystallization, These included plant proteins canavalin and thaumatin and turnip yellow mosaic virus. The experimental apparatus allowed us to obtain interferometric patterns and investigate growth kinetics from growing macromolecular crystals as small as 20 μm. For the crystallization of canavalin, dislocations are the sources of growth steps on the surfaces. Supersaturation and time dependencies of the normal growth rates, tangential growth step velocities, and the slopes of the dislocation hillocks were measured. The kinetic coefficient β (rate of incorporation of protein molecules into the growing crystal) was estimated for canavalin to be 9 × 10-4 cm/sec. This is among the first estimates of such fundamental kinetic parameters for macromolecular crystallization. The change in the activities of dislocation sources under different growth conditions was also analyzed. Michelson interferometry was clearly demonstrated to be a useful tool for quantitative studies of macromolecular crystal growth.  相似文献   

5.
For insight into the solvent structure around protein molecules and its role in phase transformations, we investigate the thermodynamics of crystallization of the rhombohedral form of porcine insulin crystals. We determine the temperature dependence of the solubility at varying concentration of the co-solvent acetone, Cac=0%, 5%, 10%, 15%, and 20%, and find that, as a rule, the solubility of insulin increases as temperature increases. The enthalpy of crystallization, undergoes a stepwise shift from approximately -20 kJ mol(-1) at Cac=0%, 5%, and 10% to approximately -55 kJ mol(-1) at Cac=15% and 20%. The entropy change upon crystallization is approximately 35 J mol(-1) K(-1) for the first three acetone concentrations, and drops to approximately -110 J mol(-1) K(-1) at Cac=15% and 20%. DeltaS degrees cryst>0 indicates release of solvent, mostly water, molecules structured around the hydrophobic patches on the insulin molecules' surface in the solution. As Cac increases to 15% and above, unstructured acetone molecules apparently displace the waters and their contribution to DeltaS degrees cryst is minimal. This shifts DeltaS degrees cryst to a negative value close to the value expected for tying up of one insulin molecule from the solution. The accompanying increase in DeltaH degrees cryst suggests that the water structured around the hydrophobic surface moieties has a minimal enthalpy effect, likely due to the small size of these moieties. These findings provide values of the parameters needed to better control insulin crystallization, elucidate the role of organic additives in the crystallization of proteins, and help us to understand the thermodynamics of the hydrophobicity of protein molecules and other large molecules.  相似文献   

6.
Two kinds of layer silicate powder, Micromica and chlorite, were used to aid protein crystallization by the addition to hanging drops. Using appropriate crystallization buffers, Micromica powder facilitated crystal growth speed for most proteins tested in this study. Furthermore, the addition of Micromica powder to hanging drops allowed the successful crystallization of lysozyme, catalase, concanavalin A, and trypsin even at low protein concentrations and under buffer conditions that otherwise would not generate protein crystals. Except for threonine synthase and apoferritin, the presence of chlorite delayed crystallization but induced the formation of large crystals. X-ray analysis of thaumatin crystals generated by our novel procedure gave better quality data than did that of crystals obtained by a conventional hanging drop method. Our results suggest that the speed of crystal growth and the quality of the corresponding X-ray data may be inversely related, at least for the formation of thaumatin crystals. The effect of Micromica and chlorite powders and the application of layer silicate powder for protein crystallization are discussed.  相似文献   

7.
Protein crystals and their growth   总被引:2,自引:0,他引:2  
Recent results on the associations between protein molecules in crystal lattices, crystal-solution surface energy, elastic properties, strength, and spontaneous crystal cracking are reviewed and discussed. In addition, some basic approaches to understanding the solubility of proteins are followed by an overview of crystal nucleation and growth. It is argued that variability of mixing in batch crystallization may be a source of the variation in the number of crystals ultimately appearing in the sample. The frequency at which new molecules join a crystal lattice is measured by the kinetic coefficient and is related to the observed crystal growth rate. Numerical criteria used to discriminate diffusion- and kinetic-limited growth are discussed on this basis. Finally, the creation of defects is discussed with an emphasis on the role of impurities and convection on macromolecular crystal perfection.  相似文献   

8.
The streptavidin two-dimensional (2D) crystallization model has served as a paradigm for molecular self-assembly at interfaces. We have developed quantitative Brewster angle microscopy for the in situ measurement of spatially resolved relative protein surface densities. This allows investigation of both the thermodynamics and morphologies of 2D crystal growth. For crystal structure analysis, we employ TEM on grown crystals transferred to solid substrates. Comparison of results between commercially available streptavidin, recombinant streptavidin, and site-directed streptavidin mutants has provided insight into the protein protein and protein-lipid interactions that underlie 2D crystallization.  相似文献   

9.
Concentration changes in supersaturated solutions during the nucleation and growth of the orthorhombic form of hen egg-white lysozyme crystals have been observed for 121 d at 35 degrees C and pH 4.6, and with 3% NaCl. The effect of a variation in the initial protein concentration on the rate of approach to solubility in equilibrium is analyzed, by applying a model, originally developed for the understanding of protein self-assembly. It is shown that the observed kinetics can be explained fairly well by this model, whose basic assumptions are that (a) the nucleation is induced by aggregation of i0 molecules into particular geometry, and (b) the growth proceeds via attachment of a monomer. The i0 value for this process is four, which agrees with the number of molecules in a unit cell. Similarity and dissimilarity of the observed crystal growth to that of low molecular weight substances are discussed.  相似文献   

10.
The growth processes and defect structures of protein and virus crystals have been studied in situ by atomic force microscopy (AFM), X-ray diffraction topography, and high-resolution reciprocal space scanning. Molecular mechanisms of macromolecular crystallization were visualized and fundamental kinetic and thermodynamic parameters, which govern the crystallization process of a number of macromolecular crystals, have been determined. High-resolution AFM imaging of crystal surfaces provides information on the packing of macromolecules within the unit cell and on the structure of large macromolecular assemblies. X-ray diffraction techniques provide a bulk probe with poorer spatial resolution but excellent sensitivity to mosaicity and strain. Defect structures and disorder created in macromolecular crystals during growth, seeding, and post-growth treatments including flash cooling were characterized and their impacts on the diffraction properties of macromolecular crystals have been analyzed. The diverse and dramatic effects of impurities on growth and defect formation have also been studied. Practical implications of these fundamental insights into the improvement of macromolecular crystallization protocols are discussed.  相似文献   

11.
Average growth rates of the (0 1 0) and (0 1 0) faces (R<0 1 0>) of monoclinic lysozyme crystals were measured in situ under 0.1 and 100 MPa. From the dependence of the growth rates on the lysozyme concentration, we determined the solubility of the crystal as a function of temperature at 0.1 and 100 MPa. The solubility increased with an increase in pressure. From the comparison between the growth rates under 0.1 and 100 MPa at the same supersaturation level, we found that the growth rates of the monoclinic lysozyme crystals kinetically increase with an increase in pressure. Supersaturation dependencies of the growth rates under 0.1 and 100 MPa were well fitted with a two-dimensional (2D) nucleation growth model of a birth-and-spread type. The fitting results suggest that the increase in the growth rates with pressure can be explained by the decrease in the average ledge surface energy of 2D island, the average distance between the kinks on a step and the activation energies in the incorporation processes of solute molecules.  相似文献   

12.
To start systematically investigating the quality improvement of protein crystals, the elementary growth processes of protein crystals must be first clarified comprehensively. Atomic force microscopy (AFM) has made a tremendous contribution toward elucidating the elementary growth processes of protein crystals and has confirmed that protein crystals grow layer by layer utilizing kinks on steps, as in the case of inorganic and low-molecular-weight compound crystals. However, the scanning of the AFM cantilever greatly disturbs the concentration distribution and solution flow in the vicinity of growing protein crystals. AFM also cannot visualize the dynamic behavior of mobile solute and impurity molecules on protein crystal surfaces. To compensate for these disadvantages of AFM, in situ observation by two types of advanced optical microscopy has been recently performed. To observe the elementary steps of protein crystals noninvasively, laser confocal microscopy combined with differential interference contrast microscopy (LCM-DIM) was developed. To visualize individual mobile protein molecules, total internal reflection fluorescent (TIRF) microscopy, which is widely used in the field of biological physics, was applied to the visualization of protein crystal surfaces. In this review, recent progress in the noninvasive in situ observation of elementary steps and individual mobile protein molecules on protein crystal surfaces is outlined.  相似文献   

13.
Yau ST  Thomas BR  Galkin O  Gliko O  Vekilov PG 《Proteins》2001,43(4):343-352
We apply in situ atomic force microscopy to the crystallization of ferritins from solutions containing approximately 5% (w/w) of their inherent molecular dimers. Molecular resolution imaging shows that the dimers consist of two bound monomers. The constituent monomers are likely partially denatured, resulting in increased hydrophobicity of the dimer surface. Correspondingly, the dimers strongly adsorb on the crystal surface. The adsorbed dimers hinder step growth and on incorporation by the crystal initiate stacks of up to 10 triple and single vacancies in the subsequent crystal layers. The molecules around the vacancies are shifted by approximately 0.1 molecular dimensions from their crystallographic positions. The shifts strain the lattice and, as a consequence, at crystal sizes > 200 microm, the accumulated strain is resolved by a plastic deformation whereupon the crystal breaks into mosaic blocks 20-50 microm in size. The critical size for the onset of mosaicity is similar for ferritin and apoferritin and close to the value for a third protein, lysozyme; it also agrees with theoretical predictions. Trapped microcrystals in ferritin and apoferritin induce strain with a characteristic length scale equal to that of a single point defect, and, as a consequence, trapping does not contribute to the mosaicity. The sequence of undesired phenomena that include heterogeneity generation, adsorption, incorporation, and the resulting lattice strain and mosaicity in this and other proteins systems, could be avoided by improved methods to separate similar proteins species (microheterogeneity) or by increasing the biochemical stability of the macromolecules against oligomerization.  相似文献   

14.
Crystallization of the mutated hemoglobin, HbC, which occurs inside red blood cells of patients expressing betaC-globin and exhibiting the homozygous CC and the heterozygous SC (in which two mutant beta-globins, S and C, are expressed) diseases, is a convenient model for processes underlying numerous condensation diseases. As a first step, we investigated the molecular-level mechanisms of crystallization of this protein from high-concentration phosphate buffer in its stable carbomonoxy form using high-resolution atomic force microscopy. We found that in conditions of equilibrium with the solution, the crystals' surface reconstructs into four-molecule-wide strands along the crystallographic a (or b) axis. However, the crystals do not grow by the alignment of such preformed strands. We found that the crystals grow by the attachment of single molecules to suitable sites on the surface. These sites are located along the edges of new layers generated by two-dimensional nucleation or by screw dislocations. During growth, the steps propagate with random velocities, with the mean being an increasing function of the crystallization driving force. These results show that the crystallization mechanisms of HbC are similar to those found for other proteins. Therefore, strategies developed to control protein crystallization in vitro may be applicable to pathology-related crystallization systems.  相似文献   

15.
在278.2~308.2 K温度范围内,测定阿奇霉素在水/乙醇混合溶剂中的溶解度,根据固液平衡理论建立了该体系的溶解度修正模型。采用X线粉末衍射法和差示扫描量热法,对阿奇霉素在不同温度、不同体积比的水/乙醇混合溶剂中得到的晶体进行鉴别。同时利用溶解度数据估算了阿奇霉素在水/乙醇体系中的溶解热(-25.26~-16.11 k J/mol)、混合热(-9.94~-3.25 k J/mol)。通过溶液化学理论推导了阿奇霉素溶剂化平衡常数K与活度系数γ2的方程:γ2=1/(1+K),建立了溶剂化焓与温度、水/乙醇两者体积比(φ)之间的关系式,为ΔH=RTln(17.86exp(3.4φ)-1)。采用溶析结晶方法得到的6种阿奇霉素晶体,均属单斜晶系,但具有不同的晶胞参数且其密度和熔点也不同。同时发现温度越高,水/乙醇体积比越大,得到的晶体稳定性越差(晶体的熔点和密度降低)。在水/乙醇混合溶剂的溶析结晶体系中,产生阿齐霉素多晶型的现象与溶剂化作用的强弱有关。  相似文献   

16.
In globular proteins, there are intermolecular hydrogen bonds between protein and water molecules, and between water molecules, which are bound with the proteins, in addition to intramolecular hydrogen bonds. To estimate the contribution of these hydrogen bonds to the conformational stability of a protein, the thermodynamic parameters for denaturation and the crystal structures of five Thr to Val and five Thr to Ala mutant human lysozymes were determined. The denaturation Gibbs energy (DeltaG) of Thr to Val and Thr to Ala mutant proteins was changed from 4.0 to -5.6 kJ/mol and from 1.6 to -6.3 kJ/mol, respectively, compared with that of the wild-type protein. The contribution of hydrogen bonds to the stability (DeltaDeltaG(HB)) of the Thr and other mutant human lysozymes previously reported was extracted from the observed stability changes (DeltaDeltaG) with correction for changes in hydrophobicity and side chain conformational entropy between the wild-type and mutant structures. The estimation of the DeltaDeltaG(HB) values of all mutant proteins after removal of hydrogen bonds, including protein-water hydrogen bonds, indicates a favorable contribution of the intra- and intermolecular hydrogen bonds to the protein stability. The net contribution of an intramolecular hydrogen bond (DeltaG(HB[pp])), an intermolecular one between protein and ordered water molecules (DeltaG(HB[pw])), and an intermolecular one between ordered water molecules (DeltaG(HB[ww])) could be estimated to be 8. 5, 5.2, and 5.0 kJ/mol, respectively, for a 3 A long hydrogen bond. This result shows the different contributions to protein stability of intra- and intermolecular hydrogen bonds. The entropic cost due to the introduction of a water molecule (DeltaG(H)()2(O)) could be also estimated to be about 8 kJ/mol.  相似文献   

17.
C M Yip  M D Ward 《Biophysical journal》1996,71(2):1071-1078
Atomic force microscopy performed on single crystals of three different polymorphs of bovine insulin revealed molecularly smooth (001) layers separated by steps whose heights reflect the dimensions of a single insulin hexamer. Whereas contact mode imaging caused etching that prevented molecular-scale resolution, tapping mode imaging in solution provided molecular-scale contrast that enabled determination of lattice parameters and polymorph identification while simultaneously enabling real-time examination of growth modes and assessment of crystal quality. Crystallization proceeds layer by layer, a process in which the protein molecules assemble homoepitaxially with nearly perfect orientational and translational commensurism. Tapping mode imaging also revealed insulin aggregates attached to the (001) faces, their incorporation into growing terraces, and their role in defect formation. These observations demonstrate that tapping mode imaging is ideal for real-time in situ investigation of the crystallization of soft protein crystals of relatively small proteins such as insulin, which cannot withstand the lateral shear forces exerted by the scanning probe in conventional imaging modes.  相似文献   

18.
To elucidate correlative relationships between structural change and thermodynamic stability in proteins, a series of mutant human lysozymes modified at two buried positions (Ile56 and Ile59) were examined. Their thermodynamic parameters of denaturation and crystal structures were studied by calorimetry and X-ray crystallography. The mutants at positions 56 and 59 exhibited different responses to a series of amino acid substitutions. The changes in stability due to substitutions showed a linear correlation with changes in hydrophobicity of substituted residues, having different slopes at each mutation site. However, the stability of each mutant was found to be represented by a unique equation involving physical properties calculated from mutant structures. By fitting present and previous stability data for mutant human lysozymes substituted at various positions to the equation, the magnitudes of the hydrophobicity of a carbon atom and the hydrophobicity of nitrogen and neutral oxygen atoms were found to be 0.178 and -0.013 kJ/mol.A(2), respectively. It was also found that the contribution of a hydrogen bond with a length of 3.0 A to protein stability was 5.1 kJ/mol and the entropy loss of newly introduction of a water molecules was 7.8 kJ/mol.  相似文献   

19.
Bulk crystallization is emerging as a new industrial operation for protein recovery. Characterization of bulk protein crystallization is more complex than protein crystallization for structural study where single crystals are grown in flow cells. This is because both nucleation and crystal growth processes are taking place while the supersaturation falls. An algorithm is presented to characterize crystallization using the rates of the two kinetic processes, nucleation and growth. The values of these rates allow ready comparison of the crystallization process under different operating conditions. The crystallization, via adjustment to the isoelectric pH of a fungal lipase from clarified fermentation broth, is described for a batch stirred reactor. A maximum nucleation rate of five to six crystals formed per microliter of suspension per second and a high power dependency ( approximately 11) on the degree of supersaturation were found. The suspended protein crystals were found to grow at a rate of up to 15-20 nm/s and also to exhibit a high power dependency ( approximately 6) of growth rate on the degree of supersaturation.  相似文献   

20.
Heat transitions in crystals of leghemoglobin (LH) are studied by means of scanning microcalorimetry and microscopy. It has been found that LH crystals do not melt and their loss of crystal lattice is due to the denaturation of protein globules inside the crystal. Peculiarities of the crystal state (as compared to the solution) are shown in an increase in the cooperative character of heat transition and relaxation time of the system. Subsequent consideration of different variants of correlation of two stages of heat absorption by LH crystals made it possible to determine the type of physical process proceeding in the object by the shape of calorimetric curve. Both observed peaks of heat absorption were grouped with intramolecular processes of different thermodynamic properties. The first peak of heat absorption is a manifestation of intramolecular mobility, both of individual protein segments in relation to each other and of individual segments of alpha-helical regions. Thus microcalorimetry allows a study of peculiar intramolecular dynamics of globular proteins precisely in the crystal state, because the crystal as if synchronizes the movement of individual molecules at the expense of the unification of their kinetic energy, surroundings and mutual orientation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号