首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Constant pressure molecular dynamics simulations, which secure the system to be under hydrostatic pressure, are used to simulate the behavior of liquid crystals consisting of anisotropic molecules with both translational and orientational freedom. In order to investigate to what extent can the properties known to real liquid crystalline phases be explained by the anisotropy of the shape of the molecules alone, the molecular dynamic (MD) simulation uses purely repulsive short-range pair potentials representing soft spherocylinders. A clear change in the microscopic as well as the macroscopic physical properties are observed near the phase transition from nematic liquid crystal to isotropic liquid.  相似文献   

2.
Y. H. Kim  P. Pincus 《Biopolymers》1979,18(9):2315-2322
We present a theoretical model which describes a cooperative helix–coil liquid-crystal phase transition. We show that this model predicts a first-order phase transition where certain types of chainlike macromolecules in solution make a transition from a nearly coiled to a nearly rigid conformation accompanied by a simultaneous development of long-range nematic-type liquid crystalline orientational order. From this model, the phase boundaries between nematic and isotropic phases are obtained as functions of concentration of macromolecules and of other physical parameters.  相似文献   

3.
Actin filaments (F-actin) are important determinants of cellular shape and motility. These functions depend on the collective organization of numerous filaments with respect to both position and orientation in the cytoplasm. Much of the orientational organization arises spontaneously through liquid crystal formation in concentrated F-actin solutions. In studying this phenomenon, we found that solutions of purified F-actin undergo a continuous phase transition, from the isotropic state to a liquid crystalline state, when either the mean filament length or the actin concentration is increased above its respective threshold value. The phase diagram representing the threshold filament lengths and concentrations at which the phase transition occurs is consistent with that predicted by Flory's theory on solutions of noninteracting, rigid cylinders (Flory, 1956b). However, in contrast to other predictions based on this model, we found no evidence for the coexistence of isotropic and anisotropic phases. Furthermore, the phase transition proved to be temperature dependent, which suggests the existence of orientation-dependent interfilament interactions or of a temperature-dependent filament flexibility. We developed a simple method for growing undistorted fluorescent acrylodan-labeled F-actin liquid crystals; and we derived a simple theoretical treatment by which polarization-of-fluorescence measurements could be used to quantitate, for the first time, the degree of spontaneous filament ordering (nematic order parameter) in these F-actin liquid crystals. This order parameter was found to increase monotonically with both filament length and concentration. Actin liquid crystals can readily become distorted by a process known as "texturing." Zigzaging and helicoidal liquid crystalline textures which persisted in the absence of ATP were observed through the polarizing microscope. Possible texturing mechanisms are discussed.  相似文献   

4.
Correcting Misperceptions about the History of Castanea Stands in Satoyama in Japan. Mistaken ideas about the naturalness of past and present landscapes are widespread in diverse cultures and in the scientific literature, and many of these ideas are only now being seriously challenged by current research (e.g., Erickson 2006; Fairhead and Leach 1996; Hall 1998; Ramankutty and Foley 1999; Willis et al. 2004). For example, the chestnut, Castanea crenata, has long been an important tree in Japanese culture, which has been cultivated, among other things, for its much loved edible nut and its valuable timber. Today, the widely-held view in Japan, which also appears in the scholarly and popular literature, is that in the past Castanea stands covered a large area throughout Japan, and these stands only disappeared because of economic development, especially in association with railway construction. Otaru, Hokkaido, is one of the places where people believe Castanea stands covered a large area and were deforested only recently. Local people in Otaru believe that the stand in Temiya Park has existed since the Jomon Period. For a more accurate historical perspective on Japanese forestation, we have performed pollen analysis to clarify the timing of the introduction of the Castanea tree into Otaru region and to reveal the history of this specific Castanea stand in Temiya Park. The results indicate that Castanea was first found in Otaru region 7100 B.P., but that it was not cultivated extensively until recently. Based on our study, and on data from this area dating to the late 19th century, we concluded instead that the Castanea stand we studied in Temiya Park, Otaru, was established after the mid-20th century. We believe the results of this study are applicable to Castanea stands in other parts of Japan as well.  相似文献   

5.
Abstract

The two-ellipsoid model (TEM) is proposed as a versatile single-site model which can be used in the study of liquid crystal phases. This TEM uses two ellipsoids to describe a molecule, one ellipsoid for the geometry and the other for the interaction strengths of the molecule. The present TEM can mimic asymmetric interactions of a liquid crystal molecule by separating the center of the interaction ellipsoid from that of the geometry ellipsoid. The potential energy surfaces of the present TEMs compare favorably with those of the corresponding Gay-Berne and the site–site models.

Monte Carlo simulations with 320 particles are performed for a symmetric interaction TEM and an asymmetric interaction TEM. The asymmetric interaction TEM displays a slightly higher transition temperature than the symmetric interaction TEM indicating that asymmetric interactions can be a driving force in a phase transition. Radial and cylindrical distribution functions of two models in the isotropic phase are similar, but those in the nematic phase are quite different.  相似文献   

6.
This paper is an introduction to gravitational and space life sciences and a summary of key achievements in the field. Current global research is focused on understanding the effects of gravity/microgravity on microbes, cells, plants, animals and humans. It is now established that many plants and animals can progress through several generations in microgravity. Astrobiology is emerging as an exciting field promoting research in biospherics and fabrication of controlled environmental life support systems. India is one of the 14-nation International Space Exploration Coordination Group (2007) that hopes that someday humans may live and work on other planets within the Solar System. The vision statement of the Indian Space Research Organization (ISRO) includes planetary exploration and human spaceflight. While a leader in several fields of space science, India is yet to initiate serious research in gravitational and life sciences. Suggestions are made here for establishing a full-fledged Indian space life sciences programme.  相似文献   

7.
The lattice model of Flory has been extended in order to consider equilibrium between isotropic and nematic phases containing helix–coil type chains. Nearly complete exclusion of coil sequences from the lyotropic nematic phase produces an enhanced cooperativity in the helix–coil transition. In poor solvents this enhancement begins to occur at concentrations typical of some experiments.  相似文献   

8.
Phase relationships in solutions of rodlike, molecules were investigated with solutions of poly(γ-benzyl L -glutamate) having degrees of polymerization of 1500 and 3600, in N,N′-dimethylformamide–methanol and in N,N′-dimethylformamide–water at 30°C. With these systems, corresponding boundary curves for isotropic and anisotropic solution were obtained as a function of composition. Phase diagrams for these ternary systems were analysed on the basis of a theoretical treatment by Flory for a binary system consisting of a rodlike polymer and a solvent and found to be in good agreement with that predicted theoretically. For example, the polymer concentration above which the isotropic phase cannot exist and that of anisotropic conjugate phase agree with the values calculated. Furthermore, viscosities were measured as a function of polymer concentration by the falling-sphere method to confirm the boundary composition between the isotropic solution and heterogeneous region. These results were also found to coincide with those on phase equilibrium.  相似文献   

9.
The phase diagram of Pf1 solutions has been studied indirectly by observation of 2H quadrupole splittings of the solvent signal and measurement of dipolar couplings in solute macromolecules. At low volume fractions of Pf1 and at high ionic strength, alignment of both the phage and the solute depends strongly on the strength of the magnetic field. Both the theoretical and experimentally determined phase diagram of Pf1 show that at low concentrations and high ionic strengths the solution becomes isotropic. However, just below the nematic phase boundary the behavior of the system is paranematic, with cooperative alignment which depends on the strength of the applied magnetic field. Above 16 mg/ml Pf1 is fully nematic up to 600 mM NaCl. Alignment of proteins with a significant electric dipole moment, which tends to be strong in Pf1, can be reduced by either high ionic strength or low phage concentration. Because ionic strength modulates both the orientation and magnitude of the alignment tensor in Pf1 medium, measurement at two ionic strengths can yield linearly independent alignment tensors.  相似文献   

10.
The Hadamard transform (Hendy and Penny, Syst. Zool. 38(4):297–309, 1989; Hendy, Syst. Zool. 38(4):310–321, 1989) provides a way to work with stochastic models for sequence evolution without having to deal with the complications of tree space and the graphical structure of trees. Here we demonstrate that the transform can be expressed in terms of the familiar P[τ]=e Q[τ] formula for Markov chains. The key idea is to study the evolution of vectors of states, one vector entry for each taxa; we call this the n-taxon process. We derive transition probabilities for the process. Significantly, the findings show that tree-based models are indeed in the family of (multi-variate) exponential distributions.  相似文献   

11.
12.
Abstract

Liposomes made of dipalmitoylphosphatidylcholine (DPPC2), dipalmitoyl-phosphatidylglycerol (DPPG), and different long-chain fatty alcohols were investigated with respect to their colloidal stability, chain-melting phase transition temperature, and temperature dependent inter-vesicle fusion. In particular, the practical usefulness of the stoichiometric 1/2 (mol/mol) mixtures of the phospholipids and fatty alcohols, mainly elaidoyl alcohol (EL-OH) were studied. The mole fraction of DPPG in the bilayers of such vesicles affects crucially the colloidal stability of the resulting lipid suspensions; at least 15 mol-% of DPPG (relative to DPPC) must be incorporated into the bilayers in order to make the liposome suspension colloidally sufficiently stable at room temperature. The corresponding DPPC/DPPG/EL-OH (0.85/0.15/2) mixed lipid vesicles undergo a lamellar-gel to inverted hexagonal (HIT) phase transition at 52.7°C, however, and then fuse and aggregate massively. The related phase transition temperature of the DPPC/DPPG/palmitelaidoyl alcohol (0.85/0.15/2) mixture is 48.4°C. This indicates that the chain-melting phase transition temperature of the investigated lipid mixtures is rather sensitive to the alcohol chain-length. This transition temperature is independent, however, of the bulk proton concentration in the pH region between 4.9 and 7.2. Stoichiometric 1/2 mixtures of phospholipids and EL-OH have a high propensity for the inter-vesicle fusion at 42°C and neutral pH. The reason for such fusion 10°C below the lamellar-to-nonlamellar phase transition temperature are the defects that are generated during the chain-melting of the (partly segregated) phospholipid component at 42°C; the proximity of the lamellar to non-lamellar phase transition temperature of the phospholipid/fatty alcohol (1/2) complex at 52°C also plays an important role.  相似文献   

13.
Microfibrillar fragments of purified crab and shrimp chitin were prepared by hydrolysis in 3 HCl at its boiling point (104°C). After removal of the acid by centrifugal washing and dialysis, an ultrasound treatment converts the residual product to a colloidal suspension stabilized by NH3+ charges. When dewatered to a critical concentration, spontaneous formation of a two-phase equilibrium system occurs. The upper phase (lower concentration) is isotropic and the lower phase is anisotropic. The latter displays chiral nematic order and dries to a solid film which mimics the helicoid organization characteristic of the chitin microfibrils in the cuticle of arthropods.  相似文献   

14.
In order to investigate the ordered structure of nematic liquid crystal molecules confined in a nanoslit, we carried out a classical molecular dynamics simulation of uniaxial prolate Gay–Berne particles in a flat, structureless slit at several temperatures. When the slit gap is so small that the system is not assumed as the bulk, particles in the slit possess orientationally ordered structures different from ones in the bulk. The weak spacial orientational correlation existed when the temperature corresponded to the isotropic phase in the bulk system. The first order isotropic–nematic phase transition was not clearly observed and the transitional phenomenon of the creation and annihilation of the uniaxial domains were observed. These results revealed that the ordered structure depends on the number of particles, in other words, cell size, and that the system with 100,000 or more particles gives reasonable results of an infinitely wide slit. The number of particles is converted into up to 220 particles of the length of the base.  相似文献   

15.
Bacteria often inhabit and exhibit distinct dynamical behaviors at interfaces, but the physical mechanisms by which interfaces cue bacteria are still poorly understood. In this work, we use interfaces formed between coexisting isotropic and liquid crystal (LC) phases to provide insight into how mechanical anisotropy and defects in LC ordering influence fundamental bacterial behaviors. Specifically, we measure the anisotropic elasticity of the LC to change fundamental behaviors of motile, rod-shaped Proteus mirabilis cells (3 μm in length) adsorbed to the LC interface, including the orientation, speed, and direction of motion of the cells (the cells follow the director of the LC at the interface), transient multicellular self-association, and dynamical escape from the interface. In this latter context, we measure motile bacteria to escape from the interfaces preferentially into the isotropic phase, consistent with the predicted effects of an elastic penalty associated with strain of the LC about the bacteria when escape occurs into the nematic phase. We also observe boojums (surface topological defects) present at the interfaces of droplets of nematic LC (tactoids) to play a central role in mediating the escape of motile bacteria from the LC interface. Whereas the bacteria escape the interface of nematic droplets via a mechanism that involved nematic director-guided motion through one of the two boojums, for isotropic droplets in a continuous nematic phase, the elasticity of the LC generally prevented single bacteria from escaping. Instead, assemblies of bacteria piled up at boojums and escape occurred through a cooperative, multicellular phenomenon. Overall, our studies show that the dynamical behaviors of motile bacteria at anisotropic LC interfaces can be understood within a conceptual framework that reflects the interplay of LC elasticity, surface-induced order, and topological defects.  相似文献   

16.
F-actin gels of increasing concentrations (25-300 microM) display in vitro a progressive onset of birefringence due to orientational ordering of actin filaments. At F-actin concentrations <100 microM, this birefringence can be erased and restored at will by sonication and gentle flow, respectively. Hence, the orientational ordering does not result from a thermodynamic transition to a nematic phase but instead is due to mechanical stresses stored in the gels. In contrast, at F-actin concentrations > or =100 microM, gels display spontaneous birefringence recovery, at rest, which is the sign of true nematic ordering, in good agreement with statistical physics models of the isotropic/nematic transition. Well-aligned samples of F-actin gels could be produced and their small-angle x-ray scattering patterns are quite anisotropic. These patterns show no sign of filament positional short-range order and could be modeled by averaging the form factor with the Maier-Saupe nematic distribution function. The derived nematic order parameter S of the gels ranged from S = 0.7 at 300 microM to S = 0.4 at 25 microM. Both birefringence and small-angle x-ray scattering data indicate that, even in absence of cross-linking proteins, spontaneous cooperative alignment of actin filaments may arise in motile regions of living cells where F-actin concentrations can reach values of a few 100 microM.  相似文献   

17.
Bacteria often inhabit and exhibit distinct dynamical behaviors at interfaces, but the physical mechanisms by which interfaces cue bacteria are still poorly understood. In this work, we use interfaces formed between coexisting isotropic and liquid crystal (LC) phases to provide insight into how mechanical anisotropy and defects in LC ordering influence fundamental bacterial behaviors. Specifically, we measure the anisotropic elasticity of the LC to change fundamental behaviors of motile, rod-shaped Proteus mirabilis cells (3 μm in length) adsorbed to the LC interface, including the orientation, speed, and direction of motion of the cells (the cells follow the director of the LC at the interface), transient multicellular self-association, and dynamical escape from the interface. In this latter context, we measure motile bacteria to escape from the interfaces preferentially into the isotropic phase, consistent with the predicted effects of an elastic penalty associated with strain of the LC about the bacteria when escape occurs into the nematic phase. We also observe boojums (surface topological defects) present at the interfaces of droplets of nematic LC (tactoids) to play a central role in mediating the escape of motile bacteria from the LC interface. Whereas the bacteria escape the interface of nematic droplets via a mechanism that involved nematic director-guided motion through one of the two boojums, for isotropic droplets in a continuous nematic phase, the elasticity of the LC generally prevented single bacteria from escaping. Instead, assemblies of bacteria piled up at boojums and escape occurred through a cooperative, multicellular phenomenon. Overall, our studies show that the dynamical behaviors of motile bacteria at anisotropic LC interfaces can be understood within a conceptual framework that reflects the interplay of LC elasticity, surface-induced order, and topological defects.  相似文献   

18.
Onsager's method of studying the nematic phase is developed for general molecular interactions. It is shown that the symmetry of the molecule helps determine the type of transition that occurs in passing from the isotropic phase to the anisotropic phase. The possible relation between the nematic phase and spindle structure is briefly discussed.  相似文献   

19.
Phosphatidylcholines were incorporated into hexagonal liquid cyrstalline mixtures of the non-ionic detergents Triton X-100 and octaethyleneglycoldodecylether with D2O. It is shown by nuclear magnetic resonance (NMR) that the phospholipids adopt the hexagonal liquid crystalline structure of the detergent host lattice. The anisotropic motion of the phospholipid headgroups seems to be unaffected, whereas the acyl chains are disordered. Increasing phospholipid concentration leads to separation of a lamellar phase. The lamellar structure is also preferred at elevated temperatures. Phosphatidylcholines with saturated acyl chains undergo a transition from the hexagonal liquid crystalline to an ordered lamellar state. The shape of the 31P-NMR signals suggests that pure gel phase phospholipid separates out. The headgroup region of this gel phase phospholipid becomes immobilized after a few weeks of storage below the transition temperature as judged from 31P-NMR. At the same time 2H-NMR exhibits a new signal from D62O undergoing slow isotropic motion. This behavior bears resemblance to the formation of a coagel in fatty acid-water systems.  相似文献   

20.
Abstract

The van der Waals approach to predict liquid-vapor coexistence, becomes exact in the limit of weak, long-ranged attractive forces. However, for shorter ranged attractions, the liquid range shrinks and eventually disappears altogether. When the width of the attractive well becomes very small (less than 7% of the diameter of particles), an iso-structural solid-solid transition, reminiscent of the liquid-vapor transition, appears in the crystalline phase. This transition, that should be experimentally observable in certain colloidal suspensions, ends in a critical point. In quasi-two dimensional systems (e.g. confined colloids), this critical point induces the formation of a stable hexatic phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号