首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The genetic structure and temporal patterns of genetic diversity in a population of Burkholderia (Pseudomonas) cepacia, isolated from a southeastern blackwater stream, were investigated by multilocus enzyme electrophoresis. Allelic variation in seven structural gene loci was monitored at a single stream location at 0, 6, 12, and 24 h and at 2, 4, 8, 16, and 32 days. Over the length of the study, 217 isolates were collected, from which 65 unique electrophoretic types (ETs) were identified. Most of these ETs were present at only one or two time periods and were considered transients; however, one resident ET was particularly abundant (64 of the 217 isolates [29.4%]) and was found at all time points except day 32. The mean genetic diversity of the entire population was 0.520, and the index of association (a measure of multilocus linkage disequilibrium) was 1.33. These results, taken in conjunction with a previous study focusing on spatial patterns of genetic diversity in lotic B. cepacia, show that these bacterial populations exhibit greater variability among sites than within a site over time, suggesting relative stability over short time periods.  相似文献   

2.
A collection of 121 isolates of Rhizobium leguminosarum biovar (bv.) trifolii was obtained from root nodules of Trifolium subterraneum L. (subclover) plants growing in an established pasture. The collection consisted of a single isolate from each of 18 plants sampled from seven microplots. The following year, a further 28 and 27 isolates were collected from the first and seventh sampling points, respectively. Analysis of restriction fragment length polymorphisms (RFLPs) of both chromosomal and Sym (symbiotic) plasmid DNA and multilocus enzyme electrophoresis (MLEE) were used to assess the diversity, genetic relationships and structure of this population. Symbiotic effectiveness tests were used to examine the symbiotic phenotype of each isolate collected in the first year. Analysis of RFLPs of the first year isolates revealed 13 chromosomal types and 25 Sym plasmid types. Similar Sym plasmid types were grouped into 14 families containing 1–6 members. No new chromosomal types and six new Sym plasmid types were detected in the second year. The symbiotic effectiveness of the first year isolates of the same Sym plasmid type was similar. Significant differences in symbiotic effectiveness were detected between different Sym plasmid types in the same plasmid family. Representative isolates of each chromosomal type Sym plasmid type identified in the first year were analysed using multilocus enzyme electrophoresis. Mean genetic diversity per locus was high (0.559). Enzyme electrophoresis revealed 17 electrophoretic types (ETs). Ouster analysis of the enzyme data revealed large genetic diversity amongst the ETs. Strong linkage disequilibrium was observed for the population as a whole, i.e. clonal population structure, but significantly less disequilibrium was observed among a cluster of ETs suggesting that recombination occurred between ETs within the cluster. Our results revealed that a population of naturally occurring isolates of Rhizobium leguminosarum bv. trifolii can be genetically diverse and support the possibility that recombination plays a role in generating new genotypes.  相似文献   

3.
In order to acquire a better understanding of the spatial and temporal variations of genetic diversity of Burkholderia cepacia populations in the rhizosphere of Zea mays , 161 strains were isolated from three portions of the maize root system at different soil depths and at three distinct plant growth stages. The genetic diversity among B. cepacia isolates was analysed by means of the random amplified polymorphic DNA (RAPD) technique. A number of diversity indices (richness, Shannon diversity, evenness and mean genetic distance) were calculated for each bacterial population isolated from the different root system portions. Moreover, the analysis of molecular variance ( amova ) method was applied to estimate the genetic differences among the various bacterial populations. Our results showed that, in young plants, B. cepacia colonized preferentially the upper part of the root system, whereas in mature plants, B. cepacia was mostly recovered from the terminal part of the root system. This uneven distribution of B. cepacia cells among different root system portions partially reflected marked genetic differences among the B. cepacia populations isolated along maize roots on three distinct sampling occasions. In fact, all the diversity indices calculated indicated that genetic diversity increased during plant development and that the highest diversity values were found in mature maize plants, in particular in the middle and terminal portions of the root system. Moreover, the analysis of RAPD patterns by means of the amova method revealed highly significant divergences in the degree of genetic polymorphism among the various B. cepacia populations.  相似文献   

4.
A Burkholderia cepacia population naturally occurring in the rhizosphere of Zea mays was investigated in order to assess the degree of root association and microbial biodiversity at five stages of plant growth. The bacterial strains isolated on semiselective PCAT medium were mostly assigned to the species B. cepacia by an analysis of the restriction patterns produced by amplified DNA coding for 16S rRNA (16S rDNA) (ARDRA) with the enzyme AluI. Partial 16S rDNA nucleotide sequences of some randomly chosen isolates confirmed the ARDRA results. Throughout the study, B. cepacia was strictly associated with maize roots, ranging from 0.6 to 3.6% of the total cultivable microflora. Biodiversity among 83 B. cepacia isolates was analyzed by the random amplified polymorphic DNA (RAPD) technique with two 10-mer primers. An analysis of RAPD patterns by the analysis of molecular variance method revealed a high level of intraspecific genetic diversity in this B. cepacia population. Moreover, the genetic diversity was related to divergences among maize root samplings, with microbial genetic variability markedly higher in the first stages of plant growth; in other words, the biodiversity of this rhizosphere bacterial population decreased over time.  相似文献   

5.
Escherichia coli is an important member of the gastrointestinal tract of humans and warm-blooded animals (primary habitat). In the external environment outside the host (secondary habitat), it is often considered to be only a transient member of the microbiota found in water and soil, although recent evidence suggests that some strains can persist in temperate soils and freshwater beaches. Here we quantified the population genetic structure of E. coli from a longitudinal collection of environmental strains isolated from six freshwater beaches along Lake Huron and the St. Clair River in Michigan. Multilocus enzyme electrophoresis (MLEE) and multilocus sequence typing (MLST) revealed extensive genetic diversity among 185 E. coli isolates with an average of 40 alleles per locus. Despite evidence for extensive recombination generating new alleles and genotypic diversity, several genotypes marked by distinct MLEE and MLST profiles were repeatedly recovered from separate sites at different times. A PCR-based phylogrouping technique showed that the persistent, naturalized E. coli belonged to the B1 group. These results support the hypothesis that persistent genotypes have an adaptive advantage in the secondary habitat outside the host.  相似文献   

6.
Multilocus enzyme electrophoresis of 161 Hafnia alvei isolates from 158 hosts and 3 water column samples collected in Australia revealed that this species consists of two genetically distinct groups. The two groups of H. alvei differed significantly in their genetic structure and host distribution. The taxonomic class of the host but not geographic locality explained a significant proportion of the observed genetic and biochemical variation among strains within each genetic group.  相似文献   

7.
Multilocus isoenzyme electrophoresis was used to screen 47 field isolates of Yersinia ruckeri for electrophoretic variation at 15 enzyme loci. Only four electrophoretic types were observed, thus indicating that the genetic structure of Y. ruckeri is clonal. Forty-two isolates were of one electrophoretic type, a reflection of the low amount of genetic diversity extant in this species. Although sorbitol fermentation has been considered to be indicative of a second biotype, no significant gene frequency differences were found between the group of 20 isolates that readily used sorbitol as the sole carbon source and the group of 27 that did not.  相似文献   

8.
Abstract Introducing the genetically engineered microorganism Pseudomonas cepacia AC1100 into soil microcosms resulted in elevated taxonomic diversity determined by phenotypic analyses of culturable isolates and genetic diversity determined by analysis of the heterogeneity of total microbial community DNA reannealing kinetics. The greatest impact occurred when P. cepacia AC1100 was introduced along with the herbicide 2,4,5-T, which P. cepacia AC1100 can degrade. The data suggests that both changes in the balance of populations and genetic recombination contributed to the increased diversity.  相似文献   

9.
AIMS: Determination of genetic diversity among UK Burkholderia cepacia isolates from various environmental niches, principally woodland tree rhizospheres and onions. METHODS AND RESULTS: Genus determination was made using polymerase chain reaction (PCR) amplification and fatty acid methyl ester profiling. Genetic diversity was investigated by repetitive sequence genetic PCR fingerprinting. Several onion isolates were similar to clinical isolates but others were diverse. Some environmental isolates were possibly synonymous with B. cepacia and B. gladioli but most from woodland rhizospheres were distinct and clustered together. The 16S rRNA genes of representatives from these clusters were PCR amplified, sequenced and phylogenetically compared with all known Burkholderia and related species. This revealed that the rhizospheric isolates had closest affinity with Burkholderia spp. with known bioremediative and biocontrol capabilities and were unrelated to taxa comprising plant or human pathogenic strains. CONCLUSIONS: All of the analyses investigated revealed that environmental and onion isolates of B. cepacia complex bacteria are genetically diverse but that woodland rhizospheric isolates are related to each other and unrelated to plant or human pathogenic strains. SIGNIFICANCE AND IMPACT OF THE STUDY: Woodland rhizospheric isolates of B. cepacia are potentially good candidates for use in bioremediation and biocontrol, as they appear distinct from plant or human pathogenic strains.  相似文献   

10.
The study was undertaken to determine the clonal relationship and the genetic diversity among Escherichia coli isolates by comparing a non-motile O157 variant with three O157:H7 EHEC isolates and one O55:H7 enteropathogenic E. coli (EPEC) strain. E. coli strains were characterized by sorbitol phenotype, multilocus enzyme electrophoresis, pulsed-field gel electrophoresis, random amplification polymorphic DNA, and the presence of specific virulence genes (stx, E-hly and LEE genes). Sorbitol fermentation was observed in O157:H- (strain 116I), O55:H7 and O157:H7 (strain GC148) serotypes. stx1 or stx2 and E-hly genes were only detected among O157:H7 isolates. LEE typing revealed specific allele distribution: eaegamma, tirgamma, espAgamma, espBgamma associated with EPEC O55:H7 and EHEC O157:H7 strains (B1/1 and EDL 933), eaealpha, tiralpha, espAalpha, espBalpha related to the 116I O157:H- strain and the GC148 strain presented non-typable LEE sequences. Multilocus enzyme profiles revealed two main clusters associated with specific LEE pathotypes. E. coli strains were discriminated by random amplification of polymorphic DNA-polymerase chain reaction and pulsed-field gel electrophoresis methodologies. The molecular approaches used in this study allowed the determination of the genetic relatedness among E. coli strains as well as the detection of lineage specific group markers.  相似文献   

11.
Multilocus enzyme electrophoresis was used to determine genetic relationships amongst 32 intestinal sprrochaetes ( Serpulina spp.) isolated from rats (17), rheas (7), chickens (4), ducks (2), a swan (1) and a flamingo (1). The strains were divided into 20 electrophoretic types (ETs), with a mean genetic diversity per locus of 0.62. The results were compared with those previously published for procine intestinal spirochaetes. One strain from a healthy rat, and three rhea strains which were recovered from cases of necrotizing typhlitis, were grouped in the same ETs as certain procine strains of Serpulina hydysenteriae . The rhea strains could be differentiated from these by pulsed-field gel electrophoresis. Fifteen of the rat strains could be differentiated from these by pulsed-field gel electrophoresis. Fifteen of the rat strains were genetically and phenotypically closely related. In contrast the avian strains were genetically more heterogeneous, with pathogenic isolates located in three different genetic groups.  相似文献   

12.
The Burkholderia cepacia complex (BCC) comprises at least nine closely related species of abundant environmental microorganisms. Some of these species are highly spread in the rhizosphere of several crop plants, particularly of maize; additionally, as opportunistic pathogens, strains of the BCC are capable of colonizing humans. We have developed and validated a multilocus sequence typing (MLST) scheme for the BCC. Although widely applied to understand the epidemiology of bacterial pathogens, MLST has seen limited application to the population analysis of species residing in the natural environment; we describe its novel application to BCC populations within maize rhizospheres. 115 BCC isolates were recovered from the roots of different maize cultivars from three different Italian regions over a 9-year period (1994-2002). A total of 44 sequence types (STs) were found of which 41 were novel when compared with existing MLST data which encompassed a global database of 1000 clinical and environmental strains representing nearly 400 STs. In this study of rhizosphere isolates approximately 2.5 isolates per ST was found, comparable to that found for the whole BCC population. Multilocus sequence typing also resolved inaccuracies associated with previous identification of the maize isolates based on recA gene restriction fragment length polymorphims and species-specific polymerase chain reaction. The 115 maize isolates comprised the following BCC species groups, B. ambifaria (39%), BCC6 (29%), BCC5 (10%), B. pyrrocinia (8%), B. cenocepacia IIIB (7%) and B. cepacia (6%), with BCC5 and BCC6 potentially constituting novel species groups within the complex. Closely related clonal complexes of strains were identified within B. cepacia, B. cenocepacia IIIB, BCC5 and BCC6, with one of the BCC5 clonal complexes being distributed across all three sampling sites. Overall, our analysis demonstrates that the maize rhizosphere harbours a massive diversity of novel BCC STs, so that their addition to our global MLST database increased the ST diversity by 10%.  相似文献   

13.
Genetic diversity within populations of Fusarium pseudograminearum isolated from wheat grains from the Canadian provinces of Alberta and Saskatchewan was investigated. Three restriction enzymes (EcoRI, HaeIII, and PstI) were used to carry out restriction analysis of the nuclear ribosomal DNA (nrDNA) intergenic spacer region (IGS region) and eight primers were used to generate inter-simple sequence-repeat (ISSR) molecular markers. Our study indicated substantially high genetic diversity within these two populations, but low genetic differentiation and frequent gene flow among populations. The IGS data showed no genetic distinction between the two Alberta populations and only minor genetic differentiation between the Saskatchewan and Alberta populations. Analysis of molecular variance indicated that most genetic variability resulted from differences among isolates within populations. Multilocus linkage disequilibrium analysis suggested a panmictic population genetic structure and the occurrence of significant recombination in F. pseudograminearum. Regular gene flow and random mating between isolates from different populations could result in novel genotypes with both improved pathological and biological traits.  相似文献   

14.
Eighty soil-borne Bacillus cereus group isolates were collected from two neighbouring geographical sites in Belgium. Their genetic relationships and population structure were assessed using Multilocus sequence typing analysis of five chromosomal genes, while the contribution of extrachromosomal elements to the population dynamics was gauged by the presence, diversity and transfer capacity of pXO1- and pXO2-like plasmids. Globally, the bacterial population displayed a broad diversity, including an important subpopulation of psychrotolerant isolates related to Bacillus weihenstephanensis . pXO1- and pXO2-like replicons were present in 12% and 21% of the isolates, but no Bacillus anthracis -related toxin genes were found. Furthermore, only one of the isolates containing a pXO2-related plasmid was shown to be able to mobilize small non-self-conjugative plasmids. Interestingly, several B. cereus sensu lato isolates displaying the same sequence type were observed to have different plasmid contents, suggesting the occurrence of horizontal gene exchange. Similarly, a number of pXO2-like replicons with identical sequences were found in distinct bacterial isolates, therefore strongly arguing for lateral transfers among sympatric bacteria.  相似文献   

15.
An optimized multilocus enzyme electrophoresis method, which involves polyacrylamide-agarose gel electrophoresis followed by electrophoretic transfers on nitrocellulose sheets, was developed for the analysis of enzyme polymorphism in several aerobic and anaerobic bacterial species including Staphylococcus aureus, Streptococcus pneumoniae, S. agalactiae, Klebsiella pneumoniae and K. oxytoca, Clostridium bifermentans and C. sordellii, and Prevotella bivia. Serial electrophoretic transfers (during 5-15 min each) from a single polyacrylamide gel could be achieved for most enzymes studied, and allowed an increased definition of enzyme bands on nitrocellulose as compared to migration gels. Four enzymes, which could not be blotted in such conditions, could still be stained in gels after blotting. Thus, the method allowed the combined analysis of several enzymes after a single gel electrophoresis separation. The analysis of enzyme polymorphism in the various species studied raised the interest of polymorphic loci such as esterase or glutamic-oxaloacetic transaminase for epidemiologic studies. The method characterized a genetic diversity of enzyme loci of S. pneumoniae higher than previously reported, and is thus convenient for the analysis of genetic relationships between related isolates. Since the present method reduces the tediousness of multilocus enzyme electrophoresis and requires experimental conditions that are not specific for the bacterial population studied, it may be proposed for rapid population genetics analysis of a wide variety of bacteria.  相似文献   

16.
AIMS: Multilocus sequence typing (MLST) was used to examine the diversity and population structure of Campylobacter jejuni isolates associated with sporadic cases of gastroenteritis in Australia, and to compare these isolates with those from elsewhere. METHODS AND RESULTS: A total of 153 Camp. jejuni isolates were genotyped. Forty sequence types (STs) were found, 19 of which were previously undescribed and 21 identified in other countries. The 19 newly described STs accounted for 43% of isolates, 16 of which were assigned to known clonal complexes. Eighty-eight percent of isolates were assigned to a total of 15 clonal complexes. Of these, four clonal complexes accounted for 60% of isolates. Three STs accounted for nearly 40% of all isolates and appeared to be endemic, while 21 STs were represented by more than one isolate. Seven infections were acquired during international travel, and the associated isolates all had different STs, three of which were exclusive to the travel-acquired cases. Comparison of serotypes among isolates from clonal complexes revealed further diversity. Eight serotypes were identified among isolates from more than one clonal complex, while isolates from six clonal complexes displayed serotypes not previously associated with those clonal complexes. CONCLUSIONS: Multilocus sequence typing is a useful tool for the discrimination of subtypes and examination of the population structure of Camp. jejuni associated with sporadic infections. SIGNIFICANCE AND IMPACT OF THE STUDY: This study highlights the genotypic diversity of Camp. jejuni in Australia, demonstrating that STs causing disease have both a global and a local distribution evident from the typing of domestically and internationally acquired Camp. jejuni isolates.  相似文献   

17.
Flavobacterium psychrophilum is the causative agent of bacterial cold water disease (BCWD), which affects a variety of freshwater-reared salmonid species. A large-scale study was performed to investigate the genetic diversity of F. psychrophilum in the four Nordic countries: Denmark, Finland, Norway, and Sweden. Multilocus sequence typing of 560 geographically and temporally disparate F. psychrophilum isolates collected from various sources between 1983 and 2012 revealed 81 different sequence types (STs) belonging to 12 clonal complexes (CCs) and 30 singleton STs. The largest CC, CC-ST10, which represented almost exclusively isolates from rainbow trout and included the most predominant genotype, ST2, comprised 65% of all isolates examined. In Norway, with a shorter history (<10 years) of BCWD in rainbow trout, ST2 was the only isolated CC-ST10 genotype, suggesting a recent introduction of an epidemic clone. The study identified five additional CCs shared between countries and five country-specific CCs, some with apparent host specificity. Almost 80% of the singleton STs were isolated from non-rainbow trout species or the environment. The present study reveals a simultaneous presence of genetically distinct CCs in the Nordic countries and points out specific F. psychrophilum STs posing a threat to the salmonid production. The study provides a significant contribution toward mapping the genetic diversity of F. psychrophilum globally and support for the existence of an epidemic population structure where recombination is a significant driver in F. psychrophilum evolution. Evidence indicating dissemination of a putatively virulent clonal complex (CC-ST10) with commercial movement of fish or fish products is strengthened.  相似文献   

18.
The genus Agrobacterium includes plant-associated bacteria and opportunistic human pathogens. Taxonomy and nomenclature within the genus remain controversial. In particular, isolates of human origin were all affiliated with the species Agrobacterium (Rhizobium) radiobacter, while phytopathogenic strains were designated under the synonym denomination Agrobacterium tumefaciens. In order to study the relative distribution of Agrobacterium strains according to their origins, we performed a multilocus sequence-based analysis (MLSA) on a large collection of 89 clinical and environmental strains from various origins. We proposed an MLSA scheme based on the partial sequence of 7 housekeeping genes (atpD, zwf, trpE, groEL, dnaK, glnA, and rpoB) present on the circular chromosome of A. tumefaciens C58. Multilocus phylogeny revealed that 88% of the clinical strains belong to genovar A7, which formed a homogeneous population with linkage disequilibrium, suggesting a low rate of recombination. Comparison of genomic fingerprints obtained by pulsed-field gel electrophoresis (PFGE) showed that the strains of genovar A7 were epidemiologically unrelated. We present genetic evidence that genovar A7 may constitute a human-associated population distinct from the environmental population. Also, phenotypic characteristics, such as culture at 42°C, agree with this statement. This human-associated population might represent a potential novel species in the genus Agrobacterium.  相似文献   

19.
A field experiment under rainfed conditions was conducted in Durango, México, to assess N2-fixation of three cultivars of common bean (Phaseolus vulgaris L.) using 15N-methodology. In addition, diversity of rhizobial isolates obtained from nodules of the different plant genotypes was evaluated by intrinsic antibiotic resistance (IAR), PCR using enterobacterial repetitive intergenic consensus (ERIC) primers, PCR-RFLP analysis of the 16S rRNA gene and multilocus enzyme electrophoresis (MLEE). Selected isolates were used to determine acetylene reduction and competitive ability under greenhouse conditions. The three cultivars tested did not show high variation in N2-fixation, the %Ndfa values ranged from 19 to 26%. Variability in N2-fixation efficiency among various native rhizobial isolates was very high and our results indicate that differences in competitive abilitiy exist also. PCR-RFLP of the 16S rRNA gene and MLEE revealed that most of the isolates belong to the species Rhizobium etli. Intrinsic antibiotic resistance analysis and ERIC-PCR showed high diversity among isolates. In contrast, our results using MLEE show low genetic diversity (H = 0.105).  相似文献   

20.
Escherichia coli , a normal inhabitant of the intestinal tract of mammals and birds, is a diverse species. Most studies on E. coli populations involve organisms from humans or human-associated animals. In this study, we undertook a survey of E. coli from native Australian mammals, predominantly Rattus tunneyi , living in a relatively pristine environment in the Bundjalung National Park. The genetic diversity was assessed and compared by multilocus enzyme electrophoresis (MLEE), sequence analysis of the mdh (malate dehydrogenase) gene and biotyping using seven sugars. Ninety-nine electrophoretic types were identified from the 242 isolates analysed by MLEE and 15 sequences from the mdh genes sequenced from 21 representative strains. The Bundjalung isolates extend the diversity represented by the E. coli reference (ECOR) set , with new MLEE alleles found in six out of 10 loci. Many of the Bundjalung isolates fell into a discrete group in MLEE. Other Bundjalung strains fell into the recognized E. coli ECOR set groups, but tended to be at the base of both the MLEE and mdh gene trees, implying that these strains are derived independently from ancestral forms of the ECOR groups and that ECOR strains represent only a subset of E. coli adapted to humans and human-associated animals. Linkage disequilibrium analysis showed that the Bundjalung population has an 'epidemic' population structure. The Bundjalung isolates were able to utilize more sugars than the ECOR strains, suggesting that diet plays a prominent role in adaptation of E. coli .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号