首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For the rational design of a stable collagen triple helix according to the conventional rule that the pyrrolidine puckerings of Pro, 4-hydroxyproline (Hyp) and 4-fluoroproline (fPro) should be down at the X-position and up at the Y-position in the X-Y-Gly repeated sequence for enhancing the triple helix propensities of collagen model peptides, a series of peptides were prepared in which X- and Y-positions were altogether occupied by Hyp(R), Hyp(S), fPro(R) or fPro(S). Contrary to our presumption that inducing the X-Y residues to adopt a down-up conformation would result in an increase in the thermal stability of peptides, the triple helices of (Hyp(S)-Hyp(R)-Gly)(10) and (fPro(S)-fPro(R)-Gly)(10) were less stable than those of (Pro-Hyp(R)-Gly)(10) and (Pro-fPro(R)-Gly)(10), respectively. As reported by B?chinger's and Zagari's groups, (Hyp(R)-Hyp(R)-Gly)(10) which could have an up-up conformation unfavorable for the triple helix, formed a triple helix that has a high thermal stability close to that of (Pro-Hyp(R)-Gly)(10). These results clearly show that the empirical rule based on the conformational preference of pyrrolidine ring at each of X and Y residues should not be regarded as still valid, at least for predicting the stability of collagen models in which both X and Y residues have electronegative groups at the 4-position.  相似文献   

2.
X-ray analysis has been carried out on a crystal of the collagen model peptide (Hyp(R)-Hyp(R)-Gly)10 [where Hyp(R) is 4(R)-hydroxyproline] with 1.5 A resolution. The triple-helical structure of (Hyp(R)-Hyp(R)-Gly)10 has the same helical parameters and Rich and Crick II hydrogen bond patterns as those of other collagen model peptides. However, our full-length crystal structure revealed that almost all consecutive Hyp(R) residues take the up-up pucker in contrast to putative down-up puckering propensities of other collagen model peptides. The unique feature of thermodynamic parameters associated with the conformational transition of this peptide from triple helix to single coil is that both enthalpy and entropy changes of the transition are much smaller than those of other model peptides such as (Pro-Pro-Gly)10 and (Pro-Hyp(R)-Gly)10. To corroborate the precise structural information including main- and side-chain dihedral angles and intra- and interwater bridge networks, we estimated the degrees of hydration by comparing molecular volumes observed experimentally in solution to those calculated ones from the crystal structure. The results showed that the degree of hydration of (Hyp(R)-Hyp(R)-Gly)10 is comparable to that of (Pro-Hyp(R)-Gly)10 in the triple-helical state, but the former was more highly hydrated than (Pro-Hyp(R)-Gly)10 in the single-coil state. Because hydration reduces the enthalpy due to the formation of a hydrogen bond with a water molecule and diminishes the entropy due to the restriction of water molecules surrounding a peptide molecule, we concluded that the high thermal stability of (Hyp(R)-Hyp(R)-Gly)10 is able to be described by its high hydration in the single-coil state.  相似文献   

3.
Researchers have recently questioned the role hydroxylated prolines play in stabilizing the collagen triple helix. To address these issues, we have developed new molecular mechanics parameters for the simulation of peptides containing 4(R)-fluoroproline (Flp), 4(R)-hydroxyproline (Hyp), and 4(R)-aminoproline (Amp). Simulations of peptides based on these parameters can be used to determine the components that stabilize hydroxyproline over proline in the triple helix. The dihedrals F-C-C-N, O-C-C-N, and N-C-C-N were built using a N-beta-ethyl amide model. One nanosecond simulations were performed on the trimers [(Pro-Pro-Gly)(10)](3), [(Pro-Hyp-Gly)(10)](3), [(Pro-Amp-Gly)(10)](3), [(Pro-Amp(1+)-Gly)(10)](3), and [(Pro-Flp-Gly)(10)](3) in explicit solvent. The results of our simulations suggest that pyrrolidine ring conformation is mediated by the strength of the gauche effect and classical electrostatic interactions.  相似文献   

4.
Collagen is an abundant, triple-helical protein comprising three strands of the repeating sequence: Xaa-Yaa-Gly. (2S)-Proline and (2S,4R)-4-hydroxyproline (Hyp) are common in the primary structure of collagen. Here, we use nonnatural proline derivatives to reveal determinants of collagen stability. Specifically, we report high-yielding syntheses of (2S,4S)-4-chloroproline (clp) and (2S,4R)-4-chloroproline (Clp). We find that the molecular structure of Ac-Clp-OMe in the solid state is virtually identical to that of Ac-Hyp-OMe. In contrast, the conformational properties of Ac-clp-OMe are similar to those of Ac-Pro-OMe. Ac-Clp-OMe has a stronger preference for a trans amide bond than does Ac-Pro-OMe, whereas Ac-clp-OMe has a weaker preference. (Pro-Clp-Gly)(10) forms triple helices that are significantly more stable than those of (Pro-Pro-Gly)(10). Triple helices of (clp-Pro-Gly)(10) have stability similar to those of (Pro-Pro-Gly)(10). Unlike (Pro-Clp-Gly)(10) and (clp-Pro-Gly)(10), (clp-Clp-Gly)(10) does not form a stable triple helix, presumably due to a deleterious steric interaction between proximal chlorines on different strands. These data, which are consistent with previous work on 4-fluoroprolines and 4-methylprolines, support the importance of stereoelectronic and steric effects in the stability of the collagen triple helix and provide another means to modulate that stability. (  相似文献   

5.
Summary The role of 4-hydroxyproline (Hyp) in stabilizing collagen triple helical structure has been investigated comprehensively. Recently it was emphasized that the preferential pyrrolidine ring pucker influenced by the stereoelectronic effects of substituted groups mainly affects the thermal stability of the triple helix. To examine this explanation, we synthesized and characterized (fPro R -Pro-Gly)10 and (fPro S -Pro-Gly)10. According to the results of CD and analytical ultracentrifugation, (fPro S -Pro-Gly)10 takes a triple helical structure and (fPro R -Pro-Gly)10 exists in a single chain structure, the trend of which is not consistent with the relationship between (Hyp S -Pro-Gly)10 and (Hyp R -Pro-Gly)10. In order to rationalize experimental results as a whole, we carried out DSC analyses and determined the thermodynamic parameters associated with the structural transition of these collagen model peptides. In this paper, we reported the DSC results for (Pro-Pro-Gly)10, (Pro-Hyp R -Gly)10 and (Pro-fPro R -Gly)10 as a part of this study. Based on those parameters, we concluded that Hyp and fPro stabilize the triple helix in different stabilizing mechanisms; the increased stability of (Pro-Hyp R -Gly)10 is ascribed primarily to the enthalpic effects while that of (Pro-fPro R -Gly)10 is achieved through the entropic ones.  相似文献   

6.
Extensive studies on the structure of collagen have revealed that the hydroxylation of Pro residues in a variety of model peptides with the typical (X-Y-Gly)(n) repeats (X and Y: Pro and its analogues) represents one of the major factors influencing the stability of triple helices. While(2S,4R)-hydroxyproline (Hyp) at the position Y stabilizes the triple helix, (2S,4S)-hydroxyproline (hyp) at the X-position destabilizes the helix as demonstrated that the triple helix of (hyp-Pro-Gly)(15) is less stable than that of (Pro-Pro-Gly)(15) and that a shorter peptide (hyp-Pro-Gly)(10) does not form the helix. To clarify the role of the hydroxyl group of Pro residues to play in the stabilization mechanism of the collagen triple helix, we synthesized and crystallized a model peptide (Pro-Hyp-Gly)(4) -(hyp-Pro-Gly)(2) -(Pro-Hyp-Gly)(4) and analyzed its structure by X-ray crystallography and CD spectroscopy. In the crystal, the main-chain of this peptide forms a typical collagen like triple helix. The majority of hyp residues take down pucker with exceptionally shallow angles probably to relieve steric hindrance, but the remainders protrude the hydroxyl group toward solvent with the less favorable up pucker to fit in a triple helix. There is no indication of the existence of an intra-molecular hydrogen bond between the hydroxyl moiety and the carbonyl oxygen of hyp supposed to destabilize the triple helix. We also compared the conformational energies of up and down packers of the pyrrolidine ring in Ac-hyp-NMe(2) by quantum mechanical calculations.  相似文献   

7.
8.
To explore further the recent demonstration that hydroxyproline stabilizes the triple-helical structure of collagen, two peptides containing allohydroxyproline, (aHyp-Pro-Gly)10 and (Pro-aHyp-Gly)10, were synthesized by a modified Merrifield technique which yields products of defined molecular weight. Examination of the peptides by optical rotation and circular dichroism showed that neither of them formed triple-helical structures in aqueous solution. Since the peptides had less tendency than (Pro-Hyp-Gly)10 to become helical, the results demonstrated that the trans-4-hydroxyl group of hydroxyproline makes a specific contribution to stability of the triple helix formed by (Pro-Hyp-Gly)10. Since the peptides also had less tendency than (Pro-Pro-Gly10 to become helical, the results further demonstrated that the cis-4-hydroxyl group on allohydroxyproline decreases the stability of the triple helix. The observations provided direct support for previous data indicating that incorporation of proline analogues such as allohydroxyproline into pro-alpha chains during procollagen biosynthesis prevents the polypeptides from becoming triple helical.  相似文献   

9.
The collagen triple helix is one of the most abundant protein motifs in animals. The structural motif of collagen is the triple helix formed by the repeated sequence of -Gly-Xaa-Yaa-. Previous reports showed that H-(Pro-4(R)Hyp-Gly)(10)-OH (where '4(R)Hyp' is (2S,4R)-4-hydroxyproline) forms a trimeric structure, whereas H-(4(R)Hyp-Pro-Gly)(10)-OH does not form a triple helix. Compared with H-(Pro-Pro-Gly)(10)-OH, the melting temperature of H-(Pro-4(R)Hyp-Gly)(10)-OH is higher, suggesting that 4(R)Hyp in the Yaa position has a stabilizing effect. The inability of triple helix formation of H-(4(R)Hyp-Pro-Gly)(10)-OH has been explained by a stereoelectronic effect, but the details are unknown. In this study, we synthesized a peptide that contains 4(R)Hyp in both the Xaa and the Yaa positions, that is, Ac-(Gly-4(R)Hyp-4(R)Hyp)(10)-NH(2) and compared it to Ac-(Gly-Pro-4(R)Hyp)(10)-NH(2), and Ac-(Gly-4(R)Hyp-Pro)(10)-NH(2). Ac-(Gly-4(R)Hyp-4(R)Hyp)(10)-NH(2) showed a polyproline II-like circular dichroic spectrum in water. The thermal transition temperatures measured by circular dichroism and differential scanning calorimetry were slightly higher than the values measured for Ac-(Gly-Pro-4(R)Hyp)(10)-NH(2) under the same conditions. For Ac-(Gly-4(R)Hyp-4(R)Hyp)(10)-NH(2), the calorimetric and the van't Hoff transition enthalpy DeltaH were significantly smaller than that of Ac-(Gly-Pro-4(R)Hyp)(10)-NH(2). We postulate that the denatured states of the two peptides are significantly different, with Ac-(Gly-4(R)Hyp-4(R)Hyp)(10)-NH(2) forming a more polyproline II-like structure instead of a random coil. Two-dimensional nuclear Overhauser effect spectroscopy suggests that the triple helical structure of Ac-(Gly-4(R)Hyp-4(R)Hyp)(10)-NH(2) is more flexible than that of Ac-(Gly-Pro-4(R)Hyp)(10)-NH(2). This is confirmed by the kinetics of amide (1)H exchange with solvent deuterium of Ac-(Gly-4(R)Hyp-4(R)Hyp)(10)-NH(2), which is faster than that of Ac-(Gly-Pro-4(R)Hyp)(10)-NH(2). The higher transition temperature of Ac-(Gly-4(R)Hyp-4(R)Hyp)(10)-NH(2), can be explained by the higher trans/cis ratio of the Gly-4(R)Hyp peptide bonds than that of the Gly-Pro bonds, and this ratio compensates for the weaker interchain hydrogen bonds.  相似文献   

10.
We have shown recently that glycosylation of threonine in the peptide Ac-(Gly-Pro-Thr)(10)-NH(2) with beta-d-galactose induces the formation of a collagen triple helix, whereas the nonglycosylated peptide does not. In this report, we present evidence that a collagen triple helix can also be formed in the Ac-(Gly-Pro-Thr)(10)-NH(2) peptide, if the proline (Pro) in the Xaa position is replaced with 4-trans-hydroxyproline (Hyp). Furthermore, replacement of Pro with Hyp in the sequence Ac-(Gly-Pro-Thr(beta-d-Gal))(10)-NH(2) increases the T(m) of the triple helix by 15.7 degrees C. It is generally believed that Hyp in the Xaa position destabilizes the triple helix because (Pro-Pro-Gly)(10) and (Pro-Hyp-Gly)(10) form stable triple helices but the peptide (Hyp-Pro-Gly)(10) does not. Our data suggest that the destabilizing effect of Hyp relative to Pro in the Xaa position is only true in the case of (Hyp-Pro-Gly)(10). Increasing concentrations of galactose in the solvent stabilize the triple helix of Ac-(Gly-Hyp-Thr)(10)-NH(2) but to a much lesser extent than that achieved by covalently linked galactose. The data explain some of the forces governing the stability of the annelid/vestimentiferan cuticle collagens.  相似文献   

11.
The collagen triple helix is characterized by the repeating sequence motif Gly-Xaa-Yaa, where Xaa and Yaa are typically proline and (2S,4R)-4-hydroxyproline (4(R)Hyp), respectively. Previous analyses have revealed that H-(Pro-4(R)Hyp-Gly)(10)-OH forms a stable triple helix, whereas H-(4(R)Hyp-Pro-Gly)(10)-OH does not. Several theories have been put forth to explain the importance of proline puckering and conformation in triple helix formation; however, the details of how they affect triple helix stability are unknown. Underscoring this, we recently demonstrated that the polypeptide Ac-(Gly-4(R)Hyp-4(R)Hyp)(10)-NH(2) forms a triple helix that is more stable than Ac-(Gly-Pro-4(R)Hyp)(10)-NH(2). Here we report crystal the structure of the H-(Gly-4(R)Hyp-4(R)Hyp)(9)-OH peptide at 1.55 A resolution. The puckering of the Yaa position 4(R)Hyp in this structure is up (Cgamma exo), as has been found in other collagen peptide structures. Notably, however, the 4(R)Hyp in the Xaa position also takes the up pucker, which is distinct from all other collagen structures. Regardless of the notable difference in the Xaa proline puckering, our structure still adopts a 7/2 superhelical symmetry similar to that observed in other collagen structures. Thus, the basis for the observed differences in the thermodynamic data of the triple helix<--> coil transition between our peptide and other triple helical peptides likely results from contributions from the unfolded state. Indeed, the unfolded state of the H-(Gly-4(R)Hyp-4(R)Hyp)(9)-OH peptide seems to be stabilized by a preformed polyproline II helix in each strand, which could be explained by the presence of a unique repeating intra-strand water-mediated bridge observed in the H-(Gly-4(R)Hyp-4(R)Hyp)(9)-OH structure, as well as a higher amount of trans peptide bonds.  相似文献   

12.
The single-crystal structures of three collagen-like host-guest peptides, (Pro-Pro-Gly)(4) -Hyp-Yaa-Gly-(Pro-Pro-Gly)(4) [Yaa = Thr, Val, Ser; Hyp = (4R)-4-hydroxyproline] were analyzed at atomic resolution. These peptides adopted a 7/2-helical structure similar to that of the (Pro-Pro-Gly)(9) peptide. The stability of these triple helices showed a similar tendency to that observed in Ac-(Gly-Hyp-Yaa)(10) -NH(2) (Yaa = Thr, Val, Ser) peptides. On the basis of their detailed structures, the differences in the triple-helical stabilities of the peptides containing a Hyp-Thr-Gly, Hyp-Val-Gly, or Hyp-Ser-Gly sequence were explained in terms of van der Waals interactions and dipole-dipole interaction between the Hyp residue in the X position and the Yaa residue in the Y position involved in the Hyp(X):Yaa(Y) stacking pair. This idea also explains the inability of Ac-(Gly-Hyp-alloThr)(10) -NH(2) and Ac-(Gly-Hyp-Ala)(10) -NH(2) peptides to form triple helices. In the Hyp(X):Thr(Y), Hyp(X):Val(Y), and Hyp(X):Ser(Y) stacking pairs, the proline ring of the Hyp residues adopts an up-puckering conformation, in agreement with the residual preference of Hyp, but in disagreement with the positional preference of X in the Gly-Xaa-Yaa sequence.  相似文献   

13.
G Némethy  H A Scheraga 《Biopolymers》1989,28(9):1573-1584
Interactions with water make an important contribution to the free energy of stabilization of the collagen triple helix, but they do not alter the structure of the triple helix, i.e., the packing geometry of the three strands. Conformational energy computations have been carried out on poly(tripeptide) analogues of collagen, with the introduction of a newly developed form of a hydration shell model to compute the free energy of hydration. The most stable triple helix formed by poly(Gly-Pro-Pro), obtained earlier from conformational energy computations [M. H. Miller & H. A. Scheraga (1976) J. Polym. Sci. Polym. Symp. 54, 171], with a structure that is very closely similar to the observed structure, is strongly favored over other three-strand complexes, both in the absence and the presence of hydration. The hydration shell model does not provide an explanation for the increased stability of the poly(Gly-Pro-Hyp) triple helix as compared to poly(Gly-Pro-Pro). It appears that the difference should be attributed to specific binding of water, and effect that is not yet included in the present version of the hydration shell model. On the other hand, this model accounts for the observed enthalpy of unfolding of a poly(Gly-Pro-Pro) triple helix to isolated single chains in solution in terms of intramolecular noncovalent interactions and the free energy of hydration.  相似文献   

14.
4(R)-Hydroxyproline in the Yaa position of the -Gly-Xaa-Yaa-repeated sequence of collagen plays a crucial role in the stability of the triple helix. Since the peptide (4(R)-Hyp-Pro-Gly)10 does not form a triple helix, it was generally believed that polypeptides with a -Gly-4(R)-Hyp-Yaa-repeated sequence do not form a triple helix. Recently, we found that acetyl-(Gly-4(R)-Hyp-Thr)10-NH2 forms a triple helix in aqueous solutions. To further study the role of 4(R)-hydroxyproline in the Xaa position, we made a series of acetyl-(Gly-4(R)-Hyp-Yaa)10-NH2 peptides where Yaa was alanine, serine, valine, and allo-threonine. We previously hypothesized that the hydroxyl group of threonine might form a hydrogen bond to the hydroxyl group of 4(R)hydroxyproline. In water, only the threonine- and the valine-containing peptides were triple helical. The remaining peptides did not form a triple helix in water. In 1,2- and in 1,3-propanediol at 4 degrees C, all the soluble peptides were triple helical. From the transition temperature of the triple helices, it was found that among the examined residues, threonine was the most stable residue in the acetyl-(Gly-4(R)-Hyp-Yaa)10-NH2 peptide. The transition temperatures of the valine- and allo-threonine-containing peptides were 10 degrees lower than those of the threonine peptide. Surprisingly, the serine-containing peptide was the least stable. These results indicate that the stability of these peptides depends on the presence of a methyl group as well as the hydroxyl group and that the stereo configuration of the two groups is essential for the stability. In the threonine peptide, we hypothesize that the methyl group shields the interchain hydrogen bond between the glycine and the Xaa residue from water and that the hydroxyl groups of threonine and 4(R)hydroxyproline can form direct or water-mediated hydrogen bonds.  相似文献   

15.
Heating and subsequent cooling mixtures of (Pro-Pro-Gly)(10) and (Pro-Hyp-Gly)(10) peptides leads to formation of model heterotrimeric collagen helices that can be isolated by HPLC. These heterotrimeric collagen peptide helices are shown to be fundamentally unstable as denaturing then renaturing experiments result in heterotrimeric/homotrimeric mixtures.As the proportion of hydroxyproline-containing chains in the trimers increases, differential scanning calorimetry shows that the helix melting temperatures and denaturation enthalpies increasing non-linearly. Three types of Rich-Crick hydrogen bonds observed by NMR allow modelling of heterotrimeric structures based on published homotrimeric X-ray data. This revealed a small axial movement of (Pro-Hyp-Gly)(10) chains towards the C-terminal of the helix, demonstrating heterotrimeric asymmetry.  相似文献   

16.
The collagen model peptide (Pro-Pro-Gly)10 is known to fold into a triple helix in solution. So far, the triple helix has been considered to exist as a single state. However, our previous study of (Pro-Pro-Gly)10 in solution has indicated the presence of two different states of the triple helix, a lower (HL) and a higher temperature state (HH). In the present study, these triple-helical states were investigated in more detail by NMR. Complete stereospecific assignments of the methylene protons of the proline residues were accomplished by the use of NOESY and TOCSY spectra. The temperature dependence of the 1H chemical shifts showed that the HL-to-HH thermal transition can be attributed to a conformational change of the first proline (Pro1) residues of the (Pro-Pro-Gly) triplets. Since TOCSY spectra with a 10 ms mixing-time confirmed a down puckering of these Pro residues in the HL state, but interconverting down and up puckerings in the HH state, the HL-to-HH thermal transition corresponds to conformational changes of the pyrrolidine rings of the Pro1 residues from an uniform down puckering to a more flexible state. The results confirm that thermal unfolding of the triple helix proceeds through the intermediate HH state.  相似文献   

17.
Recombinant expression of collagens and fragments of collagens is often difficult, as their biosynthesis requires specific post-translational enzymes, in particular prolyl 4-hydroxylase. Although the use of hydroxyproline-deficient variants offers one possibility to overcome this difficulty, these proteins usually differ markedly in stability when compared with the hydroxyproline-containing analogs. Here, we report a method to stabilize collagen-like peptides by fusing them to the N terminus of the bacteriophage T4 fibritin foldon domain. The isolated foldon domain and the chimeric protein (GlyProPro)(10)foldon were expressed in a soluble form in Escherichia coli. The recombinant proteins and the synthetic (ProProGly)(10) peptide were characterized by circular dichroism (CD) spectroscopy, differential scanning calorimetry, and analytical ultracentrifugation. We show that the foldon domain, which comprises only 27 amino acid residues, forms an obligatory trimer with a high degree of thermal stability. The CD thermal unfolding profiles recorded from foldon are monophasic and completely reversible upon cooling. Similar Van't Hoff and calorimertic enthalpy values of trimer formation indicated a cooperative all-or-none transition. As reported previously, (ProProGly)(10) peptides form collagen triple helices of only moderate stability. When fused to the foldon domain, however, triple helix formation of (GlyProPro)(10) is concentration independent, and the midpoint temperature of the triple helix unfolding is significantly increased. The stabilizing function of the trimeric foldon domain is explained by the close vicinity of its N termini, which induce a high local concentration in the range of 1 M for the C termini of the collagen-like-peptide. Collagen-foldon fusion proteins should be potentially useful to study receptor-collagen interactions.  相似文献   

18.
In a designed fusion protein the trimeric domain foldon from bacteriophage T4 fibritin was connected to the C terminus of the collagen model peptide (GlyProPro)(10) by a short Gly-Ser linker to facilitate formation of the three-stranded collagen triple helix. Crystal structure analysis at 2.6 A resolution revealed conformational changes within the interface of both domains compared with the structure of the isolated molecules. A striking feature is an angle of 62.5 degrees between the symmetry axis of the foldon trimer and the axis of the triple helix. The melting temperature of (GlyProPro)(10) in the designed fusion protein (GlyProPro)(10)foldon is higher than that of isolated (GlyProPro)(10,) which suggests an entropic stabilization compensating for the destabilization at the interface.  相似文献   

19.
Kazuo Sutoh  Haruhiko Noda 《Biopolymers》1974,13(12):2461-2475
The analysis of thermal melting curves of (PPG)n (n = 10, 12, 14, and 15) and (PPG)n(APG)m (PPG)n (2n + m = 15; m = 1, 3, and 5) revealed that the enthalpy and entropy changes accompanying the transition from the random coil to the triple helix are ?2500 cal and ?6.3 e.u. per one mole of the tripeptide of the form of Pro-Pro-Gly, and ?3100 cal and ?11.2 e.u. per one mole of the tripeptide of the form of Ala-Pro-Gly. The thermal instability of the triple helix composed of Ala-Pro-Gly sequences, compared to the helix of Pro-Pro-Gly sequences, is due to the larger entropy change of Ala-Pro-Gly (?11.2 e.u.) compared to that of Pro-Pro-Gly (?6.3 e.u.), not from the difference in the enthalpy change. The difference in the enthalpy change between Pro-Pro-Gly and Ala-Pro-Gly arises from the hydrophobic bond between two pyrrolidine rings of proline residues formed in the triple helix. Since the enthalpy change for the formation of hydrophobic bonds is positive, it is also concluded that only one hydrogen bond is formed in a tripeptide unit, regardless of the amino acid sequence. The enthalpy change for the formation of this hydrogen bond is ?3100 cal/mol, and that of the hydrophobic bond between two pyrrolidine rings is +600 cal/mol.  相似文献   

20.
Relevant parameters and stereochemical consequences of helices [alpha-helix, 3(10)-helix, beta-bend ribbon spiral, gamma-helix, 2.0(5)-helix, poly(Pro)(n) type-I and -II helices, and collagen triple helix] of peptides based on alpha-amino acids for use as templates in various branches of chemistry are briefly discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号