首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Large granular lymphocytic (LGL) leukemia is a clonal lymphoproliferative disorder of CTL associated with cytopenias resulting from an immune and cytokine attack on hemopoietic progenitor cells. Extreme clonality of CTL expansions seen in LGL leukemia makes it an ideal model to study the role of the T cell repertoire in other less-polarized immune-mediated disorders. Complementarity-determining region 3 (CDR3) of the TCR is a unique Ag-specific region that can serve as a molecular marker, or clonotype, of the disease-specific T cells. We studied the variable portion of the beta-chain spectrum in a cohort of LGL leukemia patients. The CDR3 sequences were determined for the immunodominant clones and used to design clonotype-specific primers. By direct and semi-nested amplification, clonotype amplicons were found to be shared by multiple patients and controls. Analysis of the generated sequences demonstrated that the original clonotypes are rarely encountered in normal control samples; however, high levels of homology were found in both controls and patients. Clonotypes derived from individual LGL patients can be used as tumor markers for the malignant clone. More generally, clonotypic analysis and comparison of the variable portion of the beta-chain CDR3-specific sequences from a large number of patients may lead to better subclassification of not only LGL but also other immune-mediated disorders.  相似文献   

6.
B-cell chronic lymphocytic leukemia (B-CLL) is characterized by the accumulation of mature-appearing clonal B cells exhibiting coexpression of CD5 and CD23. In addition to the accumulation of neoplastic B cells, numerous T-cell abnormalities also occur in B-CLL patients. In this study, the presence, and distribution within the T-cell subsets, of clonal/oligoclonal T cells was studied. Multicolor flow cytometric techniques were employed using combinations of anti-CD3, anti-CD4, and anti-CD8 antibodies coupled with antibodies specific for V(alpha) and V(beta) T-cell receptor (TCR) epitopes. Molecular studies of TCR gene sequences were done to confirm the presence of clonal/oligoclonal T-cell populations. In the flow cytometric studies, examination of V(alpha)/V(beta)expression found evidence of clonal/oligoclonal expansion in 9 of 19 patients studied. In eight of the nine patients, the expansions were restricted to the CD3(+)CD8(+) cell population. Molecular analyses were performed in 16 patients, 12 of whom showed a clonal or oligoclonal pattern. Of the four patients who were negative in the molecular analyses, all demonstrated flow cytometric evidence of clonal/oligoclonal expansions. Thus, when the flow cytometric and molecular analyses were considered together, all 16 patients for whom parallel analyses were done showed evidence of clonal/oligoclonal expansions. These results confirm previous work demonstrating that the majority of B-CLL patients harbor clonal/oligoclonal expansions within the T-cell population. Additionally, based on the relative numbers of cells expressing specific V(alpha) or V(beta)epitopes, these results show that these expansions occur primarily within the CD3(+)CD8(+) T-cell population.  相似文献   

7.
Analysis of the paired i.e. matching TCR α- and β-chain rearrangements of single human T cells is required for a precise investigation of clonal diversity, tissue distribution and specificity of protective and pathologic T-cell mediated immune responses. Here we describe a multiplex RT-PCR based technology, which for the first time allows for an unbiased analysis of the complete sequences of both α- and β-chains of TCR from single T cells. We validated our technology by the analysis of the pathologic T-cell infiltrates from tissue lesions of two T-cell mediated autoimmune diseases, psoriasis vulgaris (PV) and multiple sclerosis (MS). In both disorders we could detect various T cell clones as defined by multiple T cells with identical α- and β-chain rearrangements distributed across the tissue lesions. In PV, single cell TCR analysis of lesional T cells identified clonal CD8(+) T cell expansions that predominated in the epidermis of psoriatic plaques. An MS brain lesion contained two dominant CD8(+) T-cell clones that extended over the white and grey matter and meninges. In both diseases several clonally expanded T cells carried dual TCRs composed of one Vβ and two different Vα-chain rearrangements. These results show that our technology is an efficient instrument to analyse αβ-T cell responses with single cell resolution in man. It should facilitate essential new insights into the mechanisms of protective and pathologic immunity in many human T-cell mediated conditions and allow for resurrecting functional TCRs from any αβ-T cell of choice that can be used for investigating their specificity.  相似文献   

8.
Chronic beryllium disease (CBD) is caused by beryllium exposure and is characterized by granulomatous inflammation with accumulation of CD4+ T cells in the lung. We analyzed TCR beta-chain and alpha-chain genes expressed by these CD4+ T cells. In the lungs of individual patients, as well as among four of five CBD patients studied, different oligoclonal expansions within the Vbeta3 subset were found to express homologous or even identical CDR3 amino acid sequences. These related expansions were specific for CBD patients, were compartmentalized to lung, and persisted at high frequency in patients with active disease. Limiting dilution cloning and analysis of coexpressed TCR alpha-chain genes confirmed that these TCRs were selectively expanded by a common Ag involving beryllium. Overall, homologous TCR beta- and alpha-chains showed identical V regions and invariant charged residues within the CDR3 but considerable variability in TCRJ usage. Remarkably, CBD patients expressing nearly identical TCRs did not share common HLA-DRB1 or DQ alleles. These results implicate particular CD4+ cells in the pathogenesis of CBD and provide insight into how beryllium is recognized in human disease.  相似文献   

9.
10.
Because myasthenia gravis (MG) is an autoimmune disease mediated by Abs specific for the acetylcholine receptor, helper T cells play a role in Ab production. In this study, we have performed large-scale cross-sectional and longitudinal TCR studies by CDR3 spectratyping using PBL and thymus tissues from MG patients. We found that there was no preferential usage of any particular TCR beta-chains that was identical among MG patients. However, the longitudinal study clearly demonstrated that one or more TCR Vbeta expansions persisted frequently in MG patients. Importantly, persistent TCR expansions correlated with clinical severity and high anti-acetylcholine receptor Ab titer. Finally, examinations of T cells expressing CXCR5, i.e., follicular B-helper T cells, revealed that spectratype expansions in MG patients were detected mainly in the CD4+ CXCR5+ T cell populations, whereas CD8+ T cells were the major source of clonal expansion in healthy subjects. These findings suggest that persistent clonal expansions of T cells in MG patients are associated with the development and maintenance of MG. Close examination of pathogenic T cells in MG provides useful information to elucidate the pathogenesis and to estimate the disease status.  相似文献   

11.
12.
The CD8 alphabetaT cell receptor repertoire in joint fluid of individuals with active psoriatic arthritis contained an average of 32 major oligoclonal expansions in many variable genes of the TCR beta chain (BV) families, as shown by beta-chain CDR3 length analysis. Interestingly, a small number of oligoclonal expansions were shared between simultaneous samples of joint fluid and blood; however, most expansions found in joint fluid were not identifiable in blood emphasizing the immunologic specificity of the clonal events for the inflamed joint at a given point of time. The CD4 T cell joint fluid repertoire contained fewer and smaller oligoclonal expansions also largely restricted to the joint, suggesting that CD4 T cells participate perhaps by interacting cognitively to generate the CD8 clones. The inferred amino acid sequence of a single CD8 oligoclonal expansion revealed that they usually are composed of one or a few structurally related clones at the amino acid sequence level with beta-chains that encode identical or highly homologous CDR3 motifs. These were not shared among patients. Moreover, several clones that encoded the same amino acid sequence were found to be structurally distinct at the nucleotide level, strongly implying clonal selection and expansion is operating at the level of specific TCR-peptide interactions. The findings support a model of psoriatic arthritis inflammation involving extensive and selective Ag, likely autoantigen, driven intra-articular CD4, and CD8 T cell clonal expansions.  相似文献   

13.
Gene transfer of TCR alphabeta-chains into T cells may be a promising strategy for providing valuable T lymphocytes in the treatment of tumors and other immune-mediated disorders. We report in this study the reconstitution of CD8(+) T cells by transfer of TCR alphabeta-chain genes derived from an infiltrating T cell into P815. Analysis of the clonal expansion and Vbeta subfamily usage of CD8(+) TIL in the tumor sites demonstrated that T cells using Vbeta10 efficiently infiltrated and expanded clonally. The TCR alpha- and beta-chain sequences derived from a tumor-infiltrating CD8(+)/Vbeta10(+) single T cell clone (P09-2C clone) were simultaneously determined by the RT-PCR/single-strand conformational polymorphism method and the single-cell PCR method. When P09-2C TCR alphabeta-chain genes were retrovirally introduced into CD8(+) T cells, the reconstituted T cells positively lysed the P815 tumor cells, but not the A20, EL4, or YAC-1 cells, in vitro. In addition, the CTL activity was blocked by the anti-H2L(d) mAb. Furthermore, T cells containing both TCR alpha- and beta-chains, but not TCR beta-chain alone, accumulated at the tumor-inoculated site when the reconstituted CD8(+) T cells were adoptively transferred to tumor-bearing nude mice. These findings suggest that it is possible to reconstitute functional tumor-specific CD8(+) T cells by transfer of TCR alphabeta-chain genes derived from TIL, and that such T cells might be useful as cytotoxic effector cells or as a vehicle for delivering therapeutic agents.  相似文献   

14.
The repertoire of CD4+ CD28- T cells in rheumatoid arthritis.   总被引:1,自引:0,他引:1       下载免费PDF全文
BACKGROUND: While oligoclonality of circulating CD4- CD8 and of CD8+ T cells is not uncommon, clonal dominance within the CD4 compartment is not frequently found in healthy individuals. In contrast, the majority of patients with rheumatoid arthritis (RA) have clonally expanded CD4+ T cell populations. Previous studies have demonstrated that these clonogenic CD4+ T cells do not express the CD28 molecule. To examine the correlation between CD28 expression and clonal proliferation, we have analyzed the T cell receptor (TCR) diversity of CD4+ CD28- T cells in normal individuals and in RA patients. MATERIAL AND METHODS: The size of the peripheral blood CD4+ CD28- compartment was determined in 30 healthy individuals and 30 RA patients by two-color FACS analysis. In 10 RA patients and five controls with more than 2.5% CD4+ CD28- T cells, TCR BV gene segment usage was analyzed with 19 BV-specific antibodies. Oligoclonality was assessed in sorted CD4+ CD28+ and CD28- T cells using TCR BV-BC-specific polymerase chain reaction and size fractionation. Clonal dominance was confirmed by direct sequencing. RESULTS: The CD4+ CD28- T cell compartment was expanded to more than 2.5% in 70% of the RA patients and 30% of the normal individuals. Compared with the CD4+ CD28+ T cells, the TCR BV gene segment usage among CD4+ CD28- cells was grossly skewed with the dominance of single BV elements. Molecular TCR analysis provided evidence for oligoclonality in 17 of 21 expanded BV elements. In two unrelated RA patients who shared both HLA-DRB1 alleles, the TCR beta-chain sequences of dominant clonotypes were highly conserved. CONCLUSIONS: Oligoclonality is a characteristic feature of CD4+ CD28- T cells which are expanded in some healthy individuals and in the majority of RA patients. The lack of CD28 expression is a common denominator of CD4+, CD8+, and CD4- CD8- T cells prone to develop clonal dominance. The limited TCR diversity of clonal CD4+ CD28- populations in RA patients suggests that these T cells recognize a limited spectrum of antigens. The fact that the majority of individuals with marked expansions and oligoclonality of CD4+ CD28- T cells are RA patients suggests a role for these unusual lymphocytes in the pathogenetic events leading to RA.  相似文献   

15.
Mice harbor a family of endogenous retroviruses, the mouse mammary tumor viruses (MMTV), which encode superantigens. These superantigens are responsible for the deletion of T cells expressing certain Vbeta chains of the T-cell receptor in the thymus. Human T cells are able to recognize MMTV-encoded superantigens presented by human major histocompatibility complex class II-positive cells. Owing to this and to the similarity of the human and murine immune systems, it was speculated that human endogenous retroviruses might also code for superantigens. Recently, it was reported that a proviral clone (IDDMK(1,2)22) of the human endogenous retrovirus family HTDV/HERV-K encodes a superantigen. The putative superantigen gene was located within the env region of the virus. Stimulated by these findings, we amplified by PCR and cloned into eucaryotic expression vectors open reading frames (ORFs) which were identical or very similar to IDDMK(1,2)22. When we transfected these vectors into A20 cells, a murine B-cell lymphoma, we were able to demonstrate mRNA expression and protein production. However, we did not find any evidence that the ORF stimulated human or murine T cells in a Vbeta-specific fashion, the most prominent feature of superantigens.  相似文献   

16.
It is generally believed that priming of efficient T-cell responses takes place in peripheral lymphoid tissues. Although this notion has been rigidly proven for infectious diseases, direct evidence for lymph node priming of in vivo T-cell responses against tumors is still lacking. In the present study, we conducted a full and nonbiased comparison of T-cell clonotypes in melanoma lesions and corresponding sentinel lymph nodes. Whereas most tumor lesions comprised a high number of T-cell clonotypes, only a small number of clonally expanded T cells were detected in the draining lymph nodes. Comparative clonotype mapping demonstrated the presence of identical T-cell clonotypes in the tumors and the respective sentinel lymph nodes, only when tumor cells were present in the latter. However, taking advantage of clonotype specific PCR amplification, TCR sequences representing clonally expanded T cells at the tumor site could be detected in the lymph nodes draining the tumors even in the absence of tumor cells. Evidence for the tumor-specific characteristics of these cells was obtained by in situ staining with peptide/HLA class I complexes demonstrating the presence of MART-1/HLA-A2- and MAGE-3/HLA-A2-reactive T cells at the tumor site, as well as in the draining lymph node. Our data indicate that T-cell responses to melanoma are primed in the sentinel lymph node by cross presentation of tumor antigens by dendritic cells.  相似文献   

17.
Cutaneous T-cell lymphoma is typically a clonal neoplasm of epidermotropic CD4+ T-lymphocytes that includes the entity mycosis fungoides (MF). After identification of patients with recurrent MF treated with total skin electron beam therapy (TSEBT) at the Yale University School of Medicine, this study attempted to compare T-cell receptor (TCR) gamma gene rearrangements via polymerase chain reaction (PCR) in both original and recurrent skin biopsies from these patients. Between 1974 and 1996, a total of 95 T2 MF patients were treated with TSEB, and four of these were identified for the study. Slides and tissue samples of both primary and recurrent skin biopsies for each patient were confirmed as being consistent with ME DNA for PCR was isolated from paraffin-embedded tissue samples. Using consensus primers that hybridize with conserved regions of the TCR gene, these regions of the genome were amplified. The PCR products were then analyzed by acrylamide gel electrophoresis. Of the primary and recurrent samples from four patients with a median disease-free interval (DFI) of 1222 days, only two showed evidence of a dominant TCR clone. A number of factors, including lack of sequence homology between the primers and the gene segments, the existence of multiple neoplastic cell lines, DNA degradation in the archival samples, and the presence of reactive as well as malignant lymphocytes, may have prevented the detection of dominant TCR rearranged clones in the samples. Despite the results of this study, TCR analysis via PCR and gel electrophoresis continues to be of utility in the evaluation of patients with MF when used in conjunction with other diagnostic modalities and in cases with nonspecific clinical, histopathological, and immunophenotyping findings.  相似文献   

18.
The minimal T-cell receptor (TCR) beta-chain (TCR beta) enhancer has been identified by transfection into lymphoid cells. The minimal enhancer was active in T cells and in some B-lineage cells. When a larger fragment containing the minimal enhancer was used, its activity was apparent only in T cells. Studies with phytohemagglutinin and 4 beta-phorbol-12,13-dibutyrate revealed that the enhancer activity was increased by these agents. By a combination of DNase I footprinting, gel mobility shift assay, and methylation interference analysis, seven different motifs were identified within the minimal enhancer. Furthermore, competition experiments showed that some of these elements bound identical or similar factors that are known to bind to the TCR V beta promoter decamer or to the immunoglobulin enhancer kappa E2 or muEBP-E motif. These shared motifs may be important in the differential gene activity among the different lymphoid subsets.  相似文献   

19.
The T-cell receptor (TCR) BV gene of human TCR AV24+ double-negative (DN) T cells, a novel subset of natural killer (NK) T cells, was investigated by single-cell sorting and single-cell polymerase chain reaction (PCR) methods. Seven of eleven TCR AV24+ DN T-cell clones utilized TCR BV8, three BV9, and one BV6. Six of seven TCR AV24/BV8+ DN T-cell clones had identical TCR beta and alpha chains, indicating that they were the same clone. All three TCR AV24/BV9+ DN T-cell clones also demonstrated the same amino acids in the CDR3 region. These findings strongly suggest that the usage of TCR beta and alpha chains on TCR AV24+ DN T cells is extremely restricted, supporting the notion that these cells recognize highly limited T-cell epitopes on antigens. All TCR AV24+ clones expressed the NKR-P1A mRNA, and so were true NK T cells. IL-2 and IL-4 mRNAs were detected in all clones, suggesting that the majority of these cells were Th0-type T cells. Six clones overexpressed Fas-ligand (Fas-L) mRNA and Fas antigen was detected on all clones at the mRNA level. In conclusion, TCR AV24+ DN T cells might recognize restricted T-cell epitopes on antigens and function as Th0-type T cells, inducer cells to Th1- or Th2-type T cells (regulatory T cells), and as Fas-L-positive cytolytic T cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号