首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Exciting studies involving the molecular regulation of lymphangiogenesis in lymphatic-associated disorders (e.g., wound healing, lymphedema and tumor metastasis) have focused renewed attention on the intrinsic relationship between lymphatic endothelial cells (LECs) and extracellular matrix (ECM) microenvironment. ECM molecules and remodeling events play a key role in regulating lymphangiogenesis, and the "functionality"-relating molecules, especially hyaluronan, integrins, reelin, IL-7, and matrix metalloproteinases, provide the most fundamental and critical prerequisite for LEC growth, migration, tube formation, and survival, although lymphangiogenesis is directly or/and indirectly controlled by VEGF-C/-D/VEGFR- 3- Prox-1-, Syk/SLP76-, podoplanin/Ang-2/Nrp-2-, FOXC2-, and other signaling pathways in embryonic and pathological processes. New knowledge regarding the differentiation of initial lymphatics should enable improvements in understanding of a variety of cytokines, chemokines, and other factors. The lymphatic colocalization with histochemical staining by using the novel molecular markers (e.g., LYVE-1), along with subsequent injection technique with ferritin or some tracer, will reveal functional and structural features of newly formed and preexisting lymphatics. Growing recognition of the multiple functions of ECM and LEC molecules for important physiological and pathological events may be helpful in identifying the crucial changes in tissues subjected to lymph circulation and ultimately in the search for rational therapeutic approaches to prevent lymphatic-associated disorders.  相似文献   

2.
Renal lymphangiogenesis is a new field of international nephrology in recent years and plays an important role in the progression of chronic renal disease. CD137 was originally described as a surface molecule present on activated T and NK cells and detected on hypoxic endothelial cells and inflamed blood vessels, but its function on lymphatic endothelial cells remains unclear. We investigated the relationships among CD137, lymphangiogenesis and macrophages, which are involved in interstitial fibrosis. Similar to other chronic inflammatory diseases, we found lymphangiogenesis and expression of CD137 in the renal tissue of patients with IgA nephropathy. CD137-positive lymphatic vessels were involved in the development process of IgA nephropathy and positively correlated with serum creatinine, serum urea nitrogen, serum uric acid, and urinary 24 h total protein. The expression of these indicators was negatively correlated with eGFR, plasma albumin, and HB. In mouse models of UUO, we verified that CD137 expression was significantly elevated during lymphangiogenesis and that its ligand CD137L was released by macrophages after VEGF-C stimulation in the kidney. In vitro, recombinant CD137L significantly enhanced LEC proliferation, migration and tube formation, and these effects were inhibited by CD137 siRNA. Mechanistically, the CD137L interaction with CD137 induced the transition from LC3-I to LC3-II and the expression of Atg5, Atg7, Atg12 and p62 proteins by activating the PI3K/AKT/mTOR pathway to promote autophagy. Knockdown of Atg5 and Atg7 blocked CD137L-induced autophagy. Thus, we propose that CD137L secretion by macrophages interacts with CD137 on lymphatic endothelial cells to prompt lymphangiogenesis in the kidney, which further drives fibrogenic responses. Our findings suggest that inhibition of the CD137-CD137L pathway is a novel therapeutic approach for obstructive nephropathy.  相似文献   

3.
Emerging evidence indicates that bone marrow (BM)-derived endothelial progenitor cells (EPCs) contribute to angiogenesis-mediated growth of certain tumors in mice and human. EPCs regulate the angiogenic switch via paracrine secretion of proangiogenic growth factors and by direct luminal incorporation into sprouting nascent vessels. While the contributions of EPCs to neovessel formation in spontaneous and transplanted tumors and to the metastatic transition have been reported to be relatively low, remarkably, specific EPC ablation in vivo has resulted in severe angiogenesis inhibition and impaired primary and metastatic tumor growth. The existence of a BM reservoir of EPCs, and the selective involvement of EPCs in neovascularization, have attracted considerable interest because these cells represent novel target for therapeutic intervention. In addition, EPCs are also being used as pharmacodynamic surrogate markers for monitoring cancer progression, as well as for optimizing efficacy of anti-angiogenic therapies in the clinic. This review will focus primarily on recent advances and emerging concepts in the field of EPC biology and discuss ongoing debates involving the role of EPCs in tumor neovascularization. For detailed information on the in vitro characterization of EPCs contribution to non-tumor pathologies, the reader is directed towards several excellent reviews and publications [F. Bertolini, Y. Shaked, P. Mancuso and R.S. Kerbel, Nat. Rev., Cancer 6 (2006) 835–845. [1]] [J.M. Hill, T. Finkel and A.A. Quyyumi, Vox Sang. 87 Suppl 2 (2004) 31–37. [2]] [A.Y. Khakoo and T. Finkel, Annu. Rev. Med. 56 (2005) 79–101. [3]] [H.G. Kopp, C.A. Ramos and S. Rafii, Curr. Opin. Hematol. 13 (2006) 175–181. [4]; K.K. Hirschi, D.A. Ingram and M.C. Yoder, Arterioscler. Thromb. Vasc. Biol. 28 (2008) 1584–1595. [5]; F. Timmermans, J. Plum, M.C. Yoder, D.A. Ingram, B. Vandekerckhove and J. Case, J. Cell. Mol. Med. 13 (2009) 87–102. [6]] and reviews by Bertolini, Voest and Yoder in this issue.  相似文献   

4.
Circulating smooth muscle progenitor cells contribute to atherosclerosis   总被引:20,自引:0,他引:20  
  相似文献   

5.
Human ECFCs contribute to vascular repair. For this reason, they are considered as valuable cell therapy products in ischemic diseases. Porous scaffolds are prepared that are composed of natural polysaccharides, pullulan and dextran, by chemical crosslinking without use of organic solvents. These porous scaffolds, which have pores with an average size of 42 μm and a porosity of 21%, preserve the viability and the proliferation of cord-blood ECFCs. After 7 d of culture in porous scaffolds, ECFCs express endothelial markers (CD31 and vWf) and maintain endothelial functions. The cultured cells can be easily retrieved by enzymatic degradation of the porous scaffolds. In vitro results suggest that the porous scaffold could allow cell delivery of ECFCs for treatment of vascular diseases.  相似文献   

6.
Pathological angiogenesis promotes tumor growth, metastasis, and atherosclerotic plaque rupture. Macrophages are key players in these processes. However, whether these macrophages differentiate from bone marrow-derived monocytes or from local vascular wall-resident stem and progenitor cells (VW-SCs) is an unresolved issue of angiogenesis. To answer this question, we analyzed vascular sprouting and alterations in aortic cell populations in mouse aortic ring assays (ARA). ARA culture leads to the generation of large numbers of macrophages, especially within the aortic adventitia. Using immunohistochemical fate-mapping and genetic in vivo-labeling approaches we show that 60% of these macrophages differentiate from bone marrow-independent Ly6c+/Sca-1+ adventitial progenitor cells. Analysis of the NCX−/− mouse model that genetically lacks embryonic circulation and yolk sac perfusion indicates that at least some of those progenitor cells arise yolk sac-independent. Macrophages represent the main source of VEGF in ARA that vice versa promotes the generation of additional macrophages thereby creating a pro-angiogenetic feedforward loop. Additionally, macrophage-derived VEGF activates CD34+ progenitor cells within the adventitial vasculogenic zone to differentiate into CD31+ endothelial cells. Consequently, depletion of macrophages and VEGFR2 antagonism drastically reduce vascular sprouting activity in ARA. In summary, we show that angiogenic activation induces differentiation of macrophages from bone marrow-derived as well as from bone marrow-independent VW-SCs. The latter ones are at least partially yolk sac-independent, too. Those VW-SC-derived macrophages critically contribute to angiogenesis, making them an attractive target to interfere with pathological angiogenesis in cancer and atherosclerosis as well as with regenerative angiogenesis in ischemic cardiovascular disorders.Subject terms: Stem-cell differentiation, Stem-cell niche, Adult stem cells, Cell signalling  相似文献   

7.
他汀类药物对外周血内皮祖细胞的影响   总被引:12,自引:0,他引:12  
Zhu JH  Tao QM  Chen JZ  Wang XX  Zhu JH  Shang YP 《生理学报》2004,56(3):357-364
本文旨在探讨他汀类药物氟伐他汀对外周血内皮祖细胞(endothelial progenitor cells,EPCs)数量和功能的影响.用密度梯度离心从外周血获取单个核细胞,将其接种在人纤维连接蛋白(human fibronectin)包被的培养板中,培养7 d后,收集贴壁细胞,加入不同浓度氟伐他汀(分别为0.01、0.1、1、10μmol/L)和辛伐他汀(1 μmol/L),培养一定的时间(6、12、24、48 h).用激光共聚焦显微镜鉴定FITC-UEA-I和DiI-acLDL双染色阳性细胞为正在分化的EPCs,用流式细胞仪检测其表面标志进一步鉴定EPCs,在倒置荧光显微镜下计数.采用MTT比色法、改良的Boyden小室、粘附能力测定实验和体外血管生成试剂盒观察EPCs的增殖能力、迁移能力、粘附能力和体外血管生成能力.结果显示,氟伐他汀可显著增加外周血EPCs的数量,并且EPCs数量随氟伐他汀浓度增加及作用时间延长而增加,1 μmol/L浓度氟伐他汀作用24h对EPCs的数量影响最为显著(较对照组增加15倍,P<0.05).在动物实验中,喂养氟伐他汀3周后,大鼠的EPCs也较对照组增加2倍(P<0.05),进一步支持了体外实验的结果.氟伐他汀和辛伐他汀也显著改善外周血EPCs的粘附能力、迁移能力、增殖能力和体外血管生成的能力,相同浓度的氟伐他汀和辛伐他汀(1 μmol/L)对EPCs数量和功能的影响并无显著差异.上述观察结果提示他汀类药物可增加EPCs的数量,改善EPCs功能.  相似文献   

8.
The present study was undertaken to determine the mechanism by which phorbol ester stimulates eicosanoid synthesis in endothelial cells. We observed that phorbol 12-myristate 13-acetate (PMA) actively stimulated eicosanoid synthesis over a prolonged period of time, and the stimulatory effect was abolished by cycloheximide and actinomycin D. Western blot was employed to test the hypothesis that PMA elicited sustained eicosanoid synthesis via the stimulation of de novo synthesis of prostaglandin G/H synthase (cyclooxygenase, EC 1.14.99.1). Treatment of cultured human umbilical vein endothelial cells resulted in an enhancement of the 70-kDa immunoreactive prostaglandin G/H synthase band over the control cells treated with medium alone. The enhancement was abolished by cycloheximide. Human umbilical vein endothelial cells were then metabolically labeled with L-[35S]methionine, and the effect of PMA on methionine incorporation was evaluated by immunoblotting. PMA increased the synthetic rate of prostaglandin G/H synthase over the control cells. By pulse-chase experiments, we further showed that prostaglandin G/H synthase has a rapid turnover rate (t1/2 less than 10 min) in control cells, and PMA had no effect on the enzyme turnover. Our data indicate that PMA increases the synthesis of prostaglandin G/H synthase which is required for circumventing the autoinactivation of prostaglandin G/H synthase and hence permit sustained conversion of arachidonic acid into eicosanoids.  相似文献   

9.
Renal artery stenosis (RAS) promotes microvascular rarefaction and fibrogenesis, which may eventuate in irreversible kidney injury. We have shown that percutaneous transluminal renal angioplasty (PTRA) or endothelial progenitor cells (EPC) improve renal cortical hemodynamics and function in the poststenotic kidney. The renal medulla is particularly sensitive to hypoxia, yet little is known about reversibility of medullary injury on restoration of renal blood flow. This study was designed to test the hypothesis that PTRA, with or without adjunct EPC delivery to the stenotic kidney, may improve medullary remodeling and tubular function. RAS was induced in 21 pigs using implantation of irritant coils, while another group served as normal controls (n = 7 each). Two RAS groups were then treated 6 wk later with PTRA or both PTRA and EPC. Four weeks later, medullary hemodynamics, microvascular architecture, and oxygen-dependent tubular function of the stenotic kidneys were examined using multidetector computed tomography, microcomputed tomography, and blood oxygenation level-dependent MRI, respectively. Medullary protein expression of vascular endothelial growth factor, endothelial nitric oxide synthase, hypoxia-inducible factor-1α, and NAD(P)H oxidase p47 were determined. All RAS groups showed decreased medullary vascular density and blood flow. However, in RAS+PTRA+EPC animals, EPC were engrafted in tubular structures, oxygen-dependent tubular function was normalized, and fibrosis attenuated, despite elevated expression of hypoxia-inducible factor-1α and sustained downregulation of vascular endothelial growth factor. In conclusion, EPC delivery, in addition to PTRA, restores medullary oxygen-dependent tubular function, despite impaired medullary blood and oxygen supply. These results support further development of cell-based therapy as an adjunct to revascularization of RAS.  相似文献   

10.
Peripheral nerves exhibit robust regenerative capabilities in response to selective injury among amniotes, but the regeneration of entire muscle groups following volumetric muscle loss is limited in birds and mammals. In contrast, lizards possess the remarkable ability to regenerate extensive de novo muscle after tail loss. However, the mechanisms underlying reformation of the entire neuromuscular system in the regenerating lizard tail are not completely understood. We have tested whether the regeneration of the peripheral nerve and neuromuscular junctions (NMJs) recapitulate processes observed during normal neuromuscular development in the green anole, Anolis carolinensis. Our data confirm robust axonal outgrowth during early stages of tail regeneration and subsequent NMJ formation within weeks of autotomy. Interestingly, NMJs are overproduced as evidenced by a persistent increase in NMJ density 120 and 250 days post autotomy (DPA). Substantial Myelin Basic Protein (MBP) expression could also be detected along regenerating nerves indicating that the ability of Schwann cells to myelinate newly formed axons remained intact. Overall, our data suggest that the mechanism of de novo nerve and NMJ reformation parallel, in part, those observed during neuromuscular development. However, the prolonged increase in NMJ number and aberrant muscle differentiation hint at processes specific to the adult response. An examination of the coordinated exchange between peripheral nerves, Schwann cells, and newly synthesized muscle of the regenerating neuromuscular system may assist in the identification of candidate molecules that promote neuromuscular recovery in organisms incapable of a robust regenerative response.  相似文献   

11.
Background aimsHuman endothelial progenitor cells (EPC) play an important role in regenerative medicine and contribute to neovascularization on vessel injury. They are usually enriched from peripheral blood, cord blood and bone marrow. In human fat tissue, EPC are rare and their isolation remains a challenge.MethodsFat tissue was prepared by collagenase digestion, and the expression of specific marker proteins was evaluated by flow cytometry in the stromal vascular fraction (SVF). For enrichment, magnetic cell sorting was performed with the use of CD133 microbeads and EPC were cultured until colonies appeared. A second purification was performed with CD34; additional isolation steps were performed with the use of a combination of CD34 and CD31 microbeads. Enriched cells were investigated by flow cytometry for the expression of endothelial specific markers, by Matrigel assay and by the uptake of acetylated low-density lipoprotein.ResultsThe expression pattern confirmed the heterogeneous nature of the SVF, with rare numbers of CD133+ detectable. EPC gained from the SVF by magnetic enrichment showed cobblestone morphology of outgrowth endothelial cells and expressed the specific markers CD31, CD144, vascular endothelial growth factor (VEGF)R2, CD146, CD73 and CD105. Functional integrity was confirmed by uptake of acetylated low-density lipoprotein and the formation of tube-like structures on Matrigel.ConclusionsRare EPC can be enriched from human fat tissue by magnetic cell sorting with the use of a combination of microbeads directed against CD133, an early EPC marker, CD34, a stem cell marker, and CD31, a typical marker for endothelial cells. In culture, they differentiate into EC and hence could have the potential to contribute to neovascularization in regenerative medicine.  相似文献   

12.
We have isolated a variant [PC3(R)] of the human prostate PC3 tumor cell line which showed resistance to several anticancer drugs. Studies to evaluate the mechanisms of resistance to anticancer drugs in the PC3(R) cell line indicated that mdrl was not overexpressed. Studies also indicated that activities of topo I and topo II were not different in these cell lines, nor was there any difference in the formation of drug-induced KCl-SDS precipitable complexes, including that topoisomerases were not involved in the development of resistance in PC3(R) cells. While the activity of glutathione S-transferase and total glutathione levels were also similar in these cell lines, the glutathione peroxidase activity in PC3(R) cells was 5-fold lower than in PC3 cells. ] Furthermore, proto-oncogene expression for c-myc, and H-ras was significantly higher in resistant cell than in sensitive cells, indicating that the amplication of early response genes may play a role in the emergence of de novo resistance in PC3(R) cells.  相似文献   

13.
Bradykinin released by the endothelium is thought to play an important local role in cardiovascular regulation. However, the molecular identity of endothelial proteases liberating bradykinin from its precursors remained unclear. Using RT-PCR and Southern blotting techniques we detected mRNA for tissue kallikrein (KLK1) in human umbilical vein endothelial cells and in bovine aortic endothelial cells. Protein expression was confirmed by precipitation of KLK1 from lysates of endothelial cells pre-labeled with [35S]-cysteine/methionine. Partial purification of tissue kallikrein from total endothelial cell extracts resulted in a protein triplet of about 50 kDa in Western blots using specific anti-KLK1 antibodies. The immunodetection of tissue kallikrein antigen in the fractions from ion exchange chromatography correlated with the presence of amidolytic tissue kallikrein activity. Stimulation of endothelial cells with angiotensin II (ANG-II), which recently has been shown to activate the vascular kinin system and to cause vasodilation, resulted in the release of bradykinin and kallidin. ANG-II-dependent relaxation of pre-constricted rings from human umbilical veins was abolished in the presence of a specific tissue kallikrein inhibitor. We conclude that endothelial cells de novo express significant amounts of tissue kallikrein, which likely serves in the local generation of vasoactive kinins.  相似文献   

14.
Lymphatic endothelial and smooth-muscle cells in tissue culture   总被引:9,自引:0,他引:9  
Summary Endothelial and smooth-muscle cells from bovine mesenteric lymphatic vessels have been collected and cultured in vitro. The endothelial cells grew as a monolayer exhibiting a “cobblestone” appearance with individual cells tending to be more flattened at confluence than their blood vascular counterparts. Approximately 30% of these cells expressed Factor VIII antigen compared with bovine mesenteric artery or human umbilical-vein endothelium in which the majority of cells were positive. The lymphatic smooth-muscle cells exhibited focal areas of multilayering and were Factor VIII negative. The availability of lymphatic endothelial and smooth-muscle cells in culture will provide a new tool for the investigation of the biological properties of the lymphatic vessels and their role in homeostasis. Supported by the Medical Research Council of Canada, Grant MA-7925  相似文献   

15.
16.
Bone-marrow-derived, circulating endothelial precursor cells contribute to neoangiogenesis in various diseases. Rapamycin has recently been shown to have anti-angiogenic effects in an experimental tumor model. Our group has developed a culture system that allows expansion and endothelial differentiation of human CD133(+) precursor cells. We could show by PCR analysis that mTOR, the rapamycin-binding protein, was expressed in fresh CD133(+) cells, in expanded cells after 28 days, and in differentiated endothelial cells. Rapamycin inhibited proliferation of CD133(+) cells dose dependently at similar concentrations as hematopoietic Jurkat or HL-60 cells. Apoptosis was induced by rapamycin after 48 h of treatment, which could be reduced by preincubation with FK 506. Furthermore, the development of adherent endothelial cells from expanded CD133(+) cells was dose dependently inhibited. Expression of endothelial antigens CD144 and von Willebrand factor on differentiating endothelial precursors was reduced by rapamycin. In summary, rapamycin inhibits proliferation and differentiation of human endothelial precursor cells underlining its anti-angiogenic effects.  相似文献   

17.
This paper presents our experience to date with using a cyclosporine formulation Equoral (IVAX Pharmaceuticals) together with mycophenolate mofetil plus a steroid immunosuppressive regimen in the treatment of de novo renal transplant recipients. Ten cadaveric donor renal transplant recipients of mean age 51.6 years (range 37-66) were followed up over 6 months for the development of rejection attacks and side effects. All patients received prednisolone, mycophenolate mofetil (1 g/day during the first 5 days posttransplant and then 20 mg/kg/day) plus cyclosporine (3 mg/kg/day). Biopsy proven acute rejection episodes were observed in 2 out of 10 patients (20%). Six months patient as well as renal graft survival rate was 100%. The development of graft function was immediate after transplantation. The mean serum creatinine levels were gradually decreased. Over the 6-month posttransplant period, the function of the graft was satisfactory and stable. The majority of observed adverse events were those commonly reported with the use of cyclosporine and they resolved with a reduction in cyclosporine dose. Equoral treatment demonstrated an acceptable safety profile with maintenance of adequate renal function without incidence of malignancy/lymphoproliferative disease or serious infections. In conclusion, Equoral plus mycophenolate mofetil immunosuppression seems effective and safe on terms acute rejection rates, patient and renal graft survival rates and side profiles.  相似文献   

18.
Lymphatic network and lymphangiogenesis in the gastric wall.   总被引:4,自引:0,他引:4  
A family of growth factors highly specific for endothelial cells was identified more than 10 years ago, in which the receptor of vascular endothelial growth factor C (VEGFR-3) is implicated in the regulation of lymphatic development and regeneration. Comparative studies on the lymphatic network and lymphangiogenesis have been done mainly using combined 5'-nucleotidase (5'-Nase) enzyme and VEGFR-3 immunohistochemical approaches in adult and fetal gastric walls. Developing lymphatic networks represented fewer blind ends and branches than mature networks in whole-mount preparations. Many circular lymphatic-like structures exhibited VEGFR-3 expression and weak 5'-Nase activity in the early embryonic stage, showing visible morphological properties in the lymphatic endothelium. These newly formed lymphatics showed an obvious accumulation in the submucosa and serosa and a variation in the intensity of VEGFR-3 binding to endothelial cells among samples. A reaction product for anti-VEGFR-3 was found on the luminal surface of endothelial cells and on the membrane of some organelles and intraluminal lymphocytes. These findings indicate that an active proliferating feature of the clustered developing lymphatics may create a favorable environment for their sprouting and growth, which may serve as a functional requirement for lymph drainage in the region.  相似文献   

19.
Tissue engineering may offer patients new options when replacement or repair of an organ is needed. However, most tissues will require a microvascular network to supply oxygen and nutrients. One strategy for creating a microvascular network would be promotion of vasculogenesis in situ by seeding vascular progenitor cells within the biopolymeric construct. To pursue this strategy, we isolated CD34(+)/CD133(+) endothelial progenitor cells (EPC) from human umbilical cord blood and expanded the cells ex vivo as EPC-derived endothelial cells (EC). The EPC lost expression of the stem cell marker CD133 but continued to express the endothelial markers KDR/VEGF-R2, VE-cadherin, CD31, von Willebrand factor, and E-selectin. The cells were also shown to mediate calcium-dependent adhesion of HL-60 cells, a human promyelocytic leukemia cell line, providing evidence for a proinflammatory endothelial phenotype. The EPC-derived EC maintained this endothelial phenotype when expanded in roller bottles and subsequently seeded on polyglycolic acid-poly-l-lactic acid (PGA-PLLA) scaffolds, but microvessel formation was not observed. In contrast, EPC-derived EC seeded with human smooth muscle cells formed capillary-like structures throughout the scaffold (76.5 +/- 35 microvessels/mm(2)). These results indicate that 1) EPC-derived EC can be expanded in vitro and seeded on biodegradable scaffolds with preservation of endothelial phenotype and 2) EPC-derived EC seeded with human smooth muscle cells form microvessels on porous PGA-PLLA scaffolds. These properties indicate that EPC may be well suited for creating microvascular networks within tissue-engineered constructs.  相似文献   

20.
Objectives:  Neovascularization represents a major challenge in tissue engineering applications since implantation of voluminous grafts without sufficient vascularity results in hypoxic cell death of implanted cells. An attractive therapeutic approach to overcome this is based on co-implantation of endothelial cells to create vascular networks. We have investigated the potential of human endothelial progenitor cells (EPC) to form functional blood vessels in vivo in direct comparison to vascular-derived endothelial cells, represented by human umbilical vein endothelial cells (HUVEC).
Materials and methods:  EPCs were isolated from human peripheral blood, expanded in vitro and analysed in vitro for phenotypical and functional parameters. In vivo vasculogenic potential of EPCs and HUVECs was evaluated in a xenograft model where spheroidal endothelial aggregates were implanted subcutaneously into immunodeficient mice.
Results:  EPCs were indistinguishable from HUVECs in terms of expression of classical endothelial markers CD31, von Willebrand factor, VE-cadherin and vascular endothelial growth factor-R2, and in their ability to endocytose acetylated low-density lipoprotein. Moreover, EPCs and HUVECs displayed almost identical angiogenic potential in vitro , as assessed by in vitro Matrigel sprouting assay. However in vivo , a striking and unexpected difference between EPCs and HUVECs was detected. Whereas implanted HUVEC spheroids gave rise to formation of a stable network of perfused microvessels, implanted EPC spheroids showed significantly impaired ability to form vascular structures under identical experimental conditions.
Conclusion:  Our results indicate that vascular-derived endothelial cells, such as HUVECs are superior to EPCs in terms of promoting in vivo vascularization of engineered tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号