首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Comparative studies have been performed on the binding properties of zinc ions to human brain calmodulin and S100b protein. Calmodulin is characterized by two sets of Zn2+ binding sites, with KD ranging from 8.10?5M to 3.10?4M. The S100b protein also exhibited two sets of zinc binding sites, with a much higher affinity. KD = 10?7 ? 10?6M. We suggest that S100b protein should no longer be considered only as a “calcium binding protein” but also as a “zinc binding protein”, and that Zn2+ ions are involved in the functions of the S100 proteins.  相似文献   

2.
Functional S100P requires dimer formation and dimerization might form for one of the two reasons: i. producing a pair of sites for target protein binding or ii. modulation of cation binding affinity. The extent of exposed protein hydrophobicity was related to dimer formation.  相似文献   

3.
Flow dialysis measurements of calcium binding to bovine brain S100 alpha alpha, S100a (alpha beta), and S100b (beta beta) proteins in 20 mM Tris-HCl buffer at pH 7.5 and 8.3 revealed that S100 proteins bind specifically 4 Ca2+ eq/mol of protein dimer. The specific calcium-binding sites had, therefore, been assigned to typical amino acid sequences on the alpha and beta subunit. The protein affinity for calcium is much lower in the presence of magnesium and potassium. Potassium strongly antagonizes calcium binding on two calcium-binding sites responsible for most of the Ca2+-induced conformational changes on S100 proteins (probably site II alpha and site II beta). Zinc-binding studies in the absence of divalent cations revealed eight zinc-binding sites/mol of S100b protein dimer that we assumed to correspond to 4 zinc-binding sites/beta subunit. Zinc binding to S100b studied with UV spectroscopy methods showed that the occupation of the four higher affinity sites and the four lower affinity sites on the protein dimer were responsible for different conformational changes in S100b structure. Zinc binding on the higher affinity sites regulates calcium binding to S100b by increasing the protein affinity for calcium and decreasing the antagonistic effect of potassium on calcium binding. Zinc-binding studies on S100a and S100 alpha alpha protein showed that the Trp-containing S100 proteins bind zinc more weakly than S100b protein. Calcium-binding studies on zinc-bound S100a proved that calcium- and zinc-binding sites were distinct although there was no increase in zinc-bound S100a affinity for calcium, as in S100b protein. Finally we provide evidence that discrepancies between previously published results on the optical properties of S100b protein probably result from oxidation of the sulfhydryl groups in the protein.  相似文献   

4.
Purification and characterization of adipose tissue S-100b protein   总被引:14,自引:0,他引:14  
We have purified S-100 protein from bovine brain using Ca2+-dependent affinity chromatography on N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7)-Sepharose (Endo, T., Tanaka, T., Isobe, T., Kasai, H., Okuyama, T., and Hidaka, H. (1981) J. Biol. Chem. 256, 12485-12489). By essentially the same procedure, W-7-Sepharose binding protein has been purified to apparent homogeneity from bovine abdominal adipose tissue. Electrophoretically, the purified protein from adipose tissue co-migrated with brain S-100b protein both in the presence and absence of sodium dodecyl sulfate and the protein was indistinguishable from brain S-100b region in terms of amino acid composition, two-dimensional tryptic peptide mapping and reactivity with anti-brain S-100b serum. Immunohistochemical analysis confirmed the existence of S-100b protein in the adipose cell where the protein seems to be located in both the nucleus and cytoplasm. Thus, the results indicate that the adipose cells contain the protein possibly identical with brain S-100b protein. In addition, the contents of S-100b protein in various rat tissues were measured by enzyme immunoassay method using the anti-bovine brain S-100b serum. Significant amounts of S-100b protein were found not only in the adipose tissue but also in the peripheral tissue such as trachea and skin. These observations suggest that S-100b protein should no longer be considered as a protein specific to nervous tissues.  相似文献   

5.
Purification and properties of S-100 protein from porcine brain   总被引:1,自引:0,他引:1  
  相似文献   

6.
S100b protein, chemically modified by thioethanol groups (linked via disulfide bonds to two out of four Cys per dimer) was largely similar to reduced native S100b protein in its overall structure and differed only by small modifications extending, however, to the whole protein structure. Studies combining direct Ca2+ binding and associated conformational changes revealed that this chemical modification markedly increased the Ca2(+)-binding affinities (especially in the presence of physiological concentrations of K+ and Mg2+) and introduced a strong positive cooperativity. Different binding models are discussed and it emerges that in both proteins the Ca2(+)-binding sites are not equivalent and probably interact. Like the reduced protein, chemically modified S100b protein binds four Zn2+ ions in two classes of sites (of high and low affinities). Whereas the overall Zn2+ affinity was only slightly decreased, the binding sequence was probably reversed by the introduction of thioethanol groups. Moreover, in the presence of zinc, the Ca2+ affinities were higher and even identical, in both proteins.  相似文献   

7.
S100P is a member of the S100 subfamily of calcium-binding proteins that are believed to be associated with various diseases, and in particular deregulation of S100P expression has been documented for prostate and breast cancer. Previously, we characterized the effects of metal binding on the conformational properties of S100P and proposed that S100P could function as a Ca2+ conformational switch. In this study we used fluorescence and CD spectroscopies and isothermal titration calorimetry to characterize the target-recognition properties of S100P using a model peptide, melittin. Based on these experimental data we show that S100P and melittin can interact in a Ca2+-dependent and -independent manner. Ca2+-independent binding occurs with low affinity (Kd approximately 0.2 mM), has a stoichiometry of four melittin molecules per S100P dimer and is presumably driven by favorable electrostatic interactions between the acidic protein and the basic peptide. In contrast, Ca2+-dependent binding of melittin to S100P occurs with high affinity (Kd approximately 5 microM) has a stoichiometry of two molecules of melittin per S100P dimer, appears to have positive cooperativity, and is driven by hydrophobic interactions. Furthermore, Ca2+-dependent S100P-melittin complex formation is accompanied by significant conformational changes: Melittin, otherwise unstructured in solution, adopts a helical conformation upon interaction with Ca2+-S100P. These results support a model for the Ca2+-dependent conformational switch in S100P for functional target recognition.  相似文献   

8.
We purified to homogeneity rat brain S100b protein, which constitutes about 90% of the soluble S100 protein fraction. Purified rat S100b protein comigrates with bovine S100b protein in nondenaturant system electrophoresis but differs in its amino acid composition and in its electrophoretic mobility in urea-sodium dodecyl sulfate-polyacrylamide gel with bovine S100b protein. The properties of the Ca2+ and Zn2+ binding sites on rat S100b protein were investigated by flow dialysis and by fluorometric titration, and the conformation of rat S100b in its metal-free form as well as in the presence of Ca2+ or Zn2+ was studied. The results were compared with those obtained for the bovine S100b protein. In the absence of KCl, rat brain S100b protein is characterized by two high-affinity Ca2+ binding sites with a KD of 2 X 10(-5) M and four lower affinity sites with KD about 10(-4) M. The calcium binding properties of rat S100b protein differ from bovine S100b only by the number of low-affinity calcium binding sites whereas similar Ca2+-induced conformational changes were observed for both proteins. In the presence of 120 mM KCl rat brain S100b protein bound two Zn2+-ions/mol of protein with a KD of 10(-7) M and four other with lower affinity (KD approximately equal to 10(-6) M). The occupancy of the two high-affinity Zn2+ binding sites was responsible for most of the Zn2+-induced conformational changes in the rat S100b protein. No increase in the tyrosine fluorescence quantum yield after Zn2+ binding to rat S100b was observed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Canine S100A12 (cS100A12) is a calcium-binding protein of the S100 superfamily of EF-hand proteins, and its expression is restricted to neutrophils and monocytes. Interaction of S100A12 with the receptor for advanced glycation end products (RAGE) has been suggested to play a central role in inflammation. Moreover, S100A12 has been shown to represent a sensitive and specific marker for gastrointestinal inflammation in humans. Only human, porcine, bovine, and rabbit S100A12 have been purified to date, and an immunoassay for the quantification of S100A12 is available only for humans. Therefore, the aim of this study was to develop a protocol for the purification of S100A12 and to partially characterize this protein in the dog (Canis lupus familiaris) as a prelude to the development of an immunologic method for its detection and quantification in canine serum and fecal specimens. Leukocytes were isolated from canine whole blood by dextran sedimentation, and canine S100A12 was extracted from the cytosol fraction of these cells. Further purification of cS100A12 comprised of ammonium sulfate precipitation, hydrophobic interaction chromatography, and strong cation- and anion-exchange column chromatography. Canine S100A12 was successfully purified from canine whole blood. The relative molecular mass of the protein was estimated at 10,379.5 and isoelectric focusing revealed an isoelectric point of 6.0. The approximate specific absorbance of cS100A12 at 280 nm was determined to be 1.78 for a 1 mg/ml solution. The N-terminal AA sequence of the first 15 residues of cS100A12 was Thr-Lys-Leu-Glu-Asp-His-X-Glu-Gly-Ile-Val-Asp-Val-Phe-His, and revealed 100% identity with the predicted protein sequence available through the canine genome project. Sequence homology for the 14 N-terminal residues identified for cS100A12 with those of feline, bovine, porcine, and human S100A12 was 78.6%. We conclude that canine S100A12 can be successfully purified from canine whole blood using the described methods.  相似文献   

10.
The phosphorylation of a 55,000-dalton protein (Protein IIIb) present in mammalian brain was previously shown to be increased by depolarizing agents in the presence of calcium, by cyclic nucleotides, and by appropriate neurotransmitters. We now report that Protein IIIb has been purified 660-fold to near homogeneity and partially characterized. The hydrodynamic properties of the purified protein indicate that it exists as an elongated monomer. cAMP-dependent protein kinase catalyzes the incorporation of 0.82 mol of phosphate into serine/mol of protein. The protein is heterogeneous in isoelectric focusing, exhibiting multiple forms with isoelectric points ranging in pH from 6.6 to 7.3.  相似文献   

11.
12.
A low molecular weight, native zinc binding, cytosolic protein (LMZP) has been isolated, purified and characterized from human normal term placenta. Gel filtration of heat treated placental cytosol after sequential acetone precipitation (80% ppt) revealed a major zinc binding protein in the range of low molecular weight. This partially purified zinc binding fraction was further fractionated on DEAE-Sephadex A-25. The zinc was eluted in one of the three peak fractions. Further, the purity of zinc binding protein was confirmed on fast protein liquid chromatography (FPLC). The purified placental LMZP was homogenous on SDS-polyacrylamide gel electrophoresis with a single band. Ultraviolet (UV) spectrum of LMZP showed an absorption maximum at 257 nm which disappeared at pH 2. Molecular weight of LMZP as determined by gel chromatography, SDS-polyacrylamide gel electrophoresis and amino acid analysis was 6 kDa. It was calculated that 1 g atom of zinc was bound to 1 mole of the LMZP. Unlike in classical metallothionein, the amino acid composition of placental LMZP revealed the presence of aromatic amino acids, lower content of cysteine and higher content of histidine, glutamic acid and aspartic acid (10, 9 and 5 residues/mole, respectively).  相似文献   

13.
Ribosomes are key macromolecular protein synthesis machineries in the cell. Human ribosomes have so far not been studied to atomic resolution because of their particularly complex structure as compared with other eukaryotic or prokaryotic ribosomes, and they are difficult to prepare to high homogeneity, which is a key requisite for high-resolution structural work. We established a purification protocol for human 80S ribosomes isolated from HeLa cells that allows obtaining large quantities of homogenous samples as characterized by biophysical methods using analytical ultracentrifugation and multiangle laser light scattering. Samples prepared under different conditions were characterized by direct single particle imaging using cryo electron microscopy, which helped optimizing the preparation protocol. From a small data set, a 3D reconstruction at subnanometric resolution was obtained showing all prominent structural features of the human ribosome, and revealing a salt concentration dependence of the presence of the exit site tRNA, which we show is critical for obtaining crystals. With these well-characterized samples first human 80S ribosome crystals were obtained from several crystallization conditions in capillaries and sitting drops, which diffract to 26 Å resolution at cryo temperatures and for which the crystallographic parameters were determined, paving the way for future high-resolution work.  相似文献   

14.
We recently discovered that the vascular responsiveness to adrenomedullin (AM), a potent vasoactive peptide, decreased during sepsis and hemorrhage in the rat and was markedly improved by its novel binding protein (AMBP-1). Moreover, AM/AMBP-1 appears to be one of the leading candidates for further development to treat sepsis and hemorrhage. However, the extremely high cost of commercial AMBP-1 limits the development of human AM and AMBP-1 as therapeutic agents. The purpose of this study was to isolate and purify AMBP-1 from normal human serum and test its stability and biological activity under in vitro and in vivo conditions. AMBP-1 was isolated and purified from normal human serum with a yield of about 3.0 mg per 100 mL and purity of >99%. The purified AMBP-1 has a AM-binding capacity similar to that of the commercial AMBP-1. Human AM and human AMBP-1 in combination significantly inhibited lipopolysaccharide-induced tumor necrosis factor (TNF)-alpha and interleukin (IL)-6 production from macrophages. The biological activity of the purified human AMBP-1 was well preserved when stored at 45 degrees C for 5 d in solution or at 100 degrees C for 1 h in powder. Moreover, administration of AM and purified AMBP-1 to hemorrhaged rats attenuated tissue injury and neutrophil accumulation. Purified AMBP-1 in combination with AM also suppressed the hemorrhage-induced rise in serum cytokines TNF-alpha and IL-6. Thus, we have successfully purified biologically active AMBP-1 from human normal serum and demonstrated the stability of purified human AMBP-1. This technique will enable us to further develop human AM/AMBP-1 as a novel treatment for safe and effective therapy of patients with hemorrhagic shock, sepsis, and ischemic injury.  相似文献   

15.
16.
Purification and characterization of the human brain insulin receptor   总被引:2,自引:0,他引:2  
The insulin receptor from human brain cortex was purified by a combination monoclonal antibody affinity column and a wheat germ agglutinin column. This purified receptor preparation exhibited major protein bands of apparent Mr = 135,000 and 95,000, molecular weights comparable to those for the alpha and beta subunits of the purified human placental and rat liver receptors. A minor protein band of apparent Mr = 120,000 was also observed in the brain receptor preparation. Crosslinking of 125I-insulin to all three receptor preparations was found to preferentially label a protein of apparent Mr = 135,000. In contrast, cross-linking of 125I-labeled insulin-like growth factor I to the brain preparation preferentially labeled the protein of apparent Mr = 120,000. The purified brain insulin receptor was found to be identical with the placental insulin receptor in the amount of neuraminidase-sensitive sialic acid and reaction with three monoclonal antibodies to the beta subunit of the placental receptor. In contrast, a monoclonal antibody to the insulin binding site recognized the placental receptor approximately 300 times better than the brain receptor. These results indicate that the brain insulin receptor differs from the receptor in other tissues and suggests that this difference is not simply due to the amount of sialic acid on the receptor.  相似文献   

17.
Purification of alpha 2-plasmin inhibitor (alpha 2PI) from human plasma by affinity chromatography on plasminogen-Sepharose resulted in copurification of a contaminating protein with Mr 17,000 as judged by sodium dodecyl sulphate/polyacrylamide gel electrophoresis. This contaminating protein could not be removed from the purified alpha 2-PI preparation by several types of gel chromatography applied. The use of the kringle 1-3 part of plasminogen, K(1 + 2 + 3), bound to Sepharose for affinity chromatography, instead of plasminogen-Sepharose, resulted in an alpha 2PI preparation without this contaminant. The contaminating protein was found to interact specifically with the kringle 4 part of plasminogen (K4) and not with K(1 + 2 + 3) or miniplasminogen. The K4-binding protein was purified by ammonium sulphate precipitation, affinity chromatography on K4-Sepharose, ion-exchange chromatography and gel filtration on AcA 34. The relative molecular mass of the protein (Mr 68 000) was estimated by gel filtration. This suggests a tetrameric protein composed of four subunits (Mr 17,000), that are dissociated by 1% sodium dodecyl sulphate. Dissociation into subunits was also demonstrated by gel filtration in the presence of 6 M guanidine hydrochloride. A specific antibody was raised in rabbits against the purified protein and this antibody was shown not to react with any known fibrinolytic components. The pI of the K4-binding protein was found to be 5.8. The first three N-terminal amino acids were determined to be Glu-Pro-Pro. The concentration of the protein in plasma was estimated to be 0.20 +/- 0.03 microM (15 +/- 2 mg/l). The electrophoretic mobility of the K4-binding protein was shown by crossed immunoelectrophoresis to be influenced by the presence of Ca2+, EDTA and heparin. The protein was found to enhance plasminogen activation catalyzed by tissue-type plasminogen activator (t-PA) in the presence of poly(D-lysine). The protein appeared to be a novel plasma protein tentatively called 'tetranectin'.  相似文献   

18.
19.
Aldehyde dehydrogenase (EC 1.2.1.3) has been purified from human brain; this constitutes the first purification to homogeneity from the brain of any mammalian species. Of the three isozymes purified two are mitochondrial in origin (Peak I and Peak II) and one is cytoplasmic (Peak III). By comparison of properties, the cytoplasmic Peak III enzyme could be identified as the same as the liver cytoplasmic E1 isozyme (N.J. Greenfield and R. Pietruszko (1977) Biochim. Biophys. Acta 483, 35-45). The Peak I and Peak II enzymes resemble the liver mitochondrial E2 isozyme, but both have properties that differ from those of the liver enzyme. The Peak I enzyme is extremely sensitive to disulfiram while the Peak II enzyme is totally insensitive; liver mitochondrial E2 isozyme is partially sensitive to disulfiram. The specific activity is 0.3 mumol/mg/min for the Peak I and 3.0 mumol/mg/min for the Peak II enzyme; the specific activity of the liver mitochondrial E2 isozyme is 1.6 mumol/min/mg under the same conditions. The Peak I enzyme is also inhibited by acetaldehyde at low concentrations, while the Peak II enzyme and the liver mitochondrial E2 isozyme are not inhibited under the same conditions. The precise relationship of brain Peak I and II enzymes to the liver E2 isozyme is not clear but it cannot be excluded at the present time that the two brain mitochondrial enzymes are brain specific.  相似文献   

20.
A soluble tripeptidylaminopeptidase has been isolated from human post-mortem cerebral cortex by anion exchange, hydrophobic interaction and size-exclusion chromatography. From gel filtration studies the active enzyme can exist in both high molecular weight (Mr>106) and smaller forms. The enzyme hydrolyses Ala-Ala-Phe-7-amino-4-methylcoumarin with a pH optimum of around 7.5 and Km of 148 M. It did not hydrolyse N-succinyl-Ala-Ala-Phe-7-amino-4-methylcoumarin, aminoacyl- or dipeptidyl-7-amino-methylcoumarins and was not inhibited by bestatin. The enzyme was inhibited by phenylmethylsulphonyl-fluoride, 3,4-dichloroisocoumarin, N-hydroxymercuriphenyl-sulphonic acid and N-ethylmaleimide showing that its activity is serine and cysteine dependent. The purified enzyme released tripeptides from several naturally occurring neuropeptides with quite broad specificity. Cholecystokinin octapeptide, angiotensin III and neurokinin A were the most rapidly hydrolysed. Peptides with Pro residues arount the point of cleavage were not hydrolysed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号