首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ecosystems in the tropics are predicted to have stronger responses to nutrient enrichment, greater diversity, and more intense biotic interactions than in temperate areas. Mangrove forests, which occur across a broad biogeographic range from warm temperate to tropical, provide a unique opportunity to test these hypotheses by investigating the responses of herbivores to nutrient enrichment in temperate versus tropical latitudes. Mangroves are complex intertidal ecosystems with spatial differences in structure and diversity along tidal gradients and are threatened globally by human activities including nutrient over-enrichment. In this study, we used long-term fertilization experiments at the Indian River Lagoon, FL; Twin Cays, Belize; and Bocas del Toro, Panamá to determine how increased nutrients impact herbivore abundance and herbivory of Rhizophora mangle at the tree, forest, and regional scales. At these locations, which span approximately 2185 km and 18.4º of latitude, we fertilized individual trees with one of three treatments (Control, +N, +P) in two zones (fringe, scrub) along transects perpendicular to the shoreline and measured their responses for 4 years. Herbivory was measured as folivory, loss of yield, and tissue mining. Although nutrient enrichment altered plant growth, leaf traits, and nutrient dynamics, these variables had little effect on folivory at any location. Our results did not support the prediction that herbivory and per capita consumption are greatest at the most tropical location. Instead, folivory was highest at the most temperate location and lowest at the intermediate location. Folivory was generally higher in the fringe than in the scrub zone, but the pattern varied by location, herbivore, and nutrient treatment. Folivory by a dominant herbivore, Aratus pisonii, decreased from the highest to the lowest latitude. Our data suggest that factors controlling population dynamics of A. pisonii cascade to the mangrove canopy, linking herbivory to crab densities.  相似文献   

2.

Background and Aims

Phenology is one of most sensitive traits of plants in response to regional climate warming. Better understanding of the interactive effects between warming and other environmental change factors, such as increasing atmosphere nitrogen (N) deposition, is critical for projection of future plant phenology.

Methods

A 4-year field experiment manipulating temperature and N has been conducted in a temperate steppe in northern China. Phenology, including flowering and fruiting date as well as reproductive duration, of eight plant species was monitored and calculated from 2006 to 2009.

Key Results

Across all the species and years, warming significantly advanced flowering and fruiting time by 0·64 and 0·72 d per season, respectively, which were mainly driven by the earliest species (Potentilla acaulis). Although N addition showed no impact on phenological times across the eight species, it significantly delayed flowering time of Heteropappus altaicus and fruiting time of Agropyron cristatum. The responses of flowering and fruiting times to warming or N addition are coupled, leading to no response of reproductive duration to warming or N addition for most species. Warming shortened reproductive duration of Potentilla bifurca but extended that of Allium bidentatum, whereas N addition shortened that of A. bidentatum. No interactive effect between warming and N addition was found on any phenological event. Such additive effects could be ascribed to the species-specific responses of plant phenology to warming and N addition.

Conclusions

The results suggest that the warming response of plant phenology is larger in earlier than later flowering species in temperate grassland systems. The effects of warming and N addition on plant phenology are independent of each other. These findings can help to better understand and predict the response of plant phenology to climate warming concurrent with other global change driving factors.  相似文献   

3.
Wood density (WD) is believed to be a key trait in driving growth strategies of tropical forest species, and as it entails the amount of mass per volume of wood, it also tends to correlate with forest carbon stocks. Yet there is relatively little information on how interspecific variation in WD correlates with biomass dynamics at the species and population level. We determined changes in biomass in permanent plots in a logged forest in Vietnam from 2004 to 2012, a period representing the last 8 years of a 30 years logging cycle. We measured diameter at breast height (DBH) and estimated aboveground biomass (AGB) growth, mortality, and net AGB increment (the difference between AGB gains and losses through growth and mortality) per species at the individual and population (i.e. corrected for species abundance) level, and correlated these with WD. At the population level, mean net AGB increment rates were 6.47 Mg ha?1 year?1 resulting from a mean AGB growth of 8.30 Mg ha?1 year?1, AGB recruitment of 0.67 Mg ha?1 year?1 and AGB losses through mortality of 2.50 Mg ha?1 year?1. Across species there was a negative relationship between WD and mortality rate, WD and DBH growth rate, and a positive relationship between WD and tree standing biomass. Standing biomass in turn was positively related to AGB growth, and net AGB increment both at the individual and population level. Our findings support the view that high wood density species contribute more to total biomass and indirectly to biomass increment than low wood density species in tropical forests. Maintaining high wood density species thus has potential to increase biomass recovery and carbon sequestration after logging.  相似文献   

4.
Association mapping based on the linkage disequilibrium provides a promising tool to identify genes responsible for quantitative variations underlying complex traits. Presented here is a maize association mapping panel consisting of 155 inbred lines with mainly temperate germplasm, which was phenotyped for 34 traits and genotyped using 82 SSRs and 1,536 SNPs. Abundant phenotypic and genetic diversities were observed within the panel based on the phenotypic and genotypic analysis. A model-based analysis using 82 SSRs assigned all inbred lines to two groups with eight subgroups. The relative kinship matrix was calculated using 884 SNPs with minor allele frequency ≥20% indicating that no or weak relationships were identified for most individual pairs. Three traits (total tocopherol content in maize kernel, plant height and kernel length) and 1,414 SNPs with missing data <20% were used to evaluate the performance of four models for association mapping analysis. For all traits, the model controlling relative kinship (K) performed better than the model controlling population structure (Q), and similarly to the model controlling both population structure and relative kinship (Q + K) in this panel. Our results suggest this maize panel can be used for association mapping analysis targeting multiple agronomic and quality traits with optimal association model.  相似文献   

5.
Using a barley mapping population, ‘Vlamingh’ × ‘Buloke’ (V × B), whole grain analyses were undertaken for physical seed traits and malting quality. Grain density and size were predicted by digital image analysis (DIA), while malt extract and protein content were predicted using near infrared (NIR) analysis. Validation of DIA and NIR algorithms confirmed that data for QTL analysis was highly correlated (R 2 > 0.82), with high RPD values (the ratio of the standard error of prediction to the standard deviation, 2.31–9.06). Endosperm hardness was measured on this mapping population using the single kernel characterisation system. Grain density and endosperm hardness were significantly inter-correlated in all three environments (r > 0.22, P < 0.001); however, other grain components were found to interact with the traits. QTL for these traits were also found on different genomic regions, for example, grain density QTLs were found on chromosomes 2H and 6H, whereas endosperm hardness QTLs were found on 1H, 5H, and 7H. In this study, the majority of the genomic regions associated with grain texture were also coincident with QTLs for grain size, yield, flowering date and/or plant development genes. This study highlights the complexity of genomic regions associated with the variation of endosperm hardness and grain density, and their relationships with grain size traits, agronomic-related traits, and plant development loci.  相似文献   

6.
Previous studies have demonstrated changes in plant growth and reproduction in response to nutrient availability, but responses of plant growth and reproduction to multiple levels of nutrient enrichment remain unclear. In this study, a factorial field experiment was performed with manipulation of nitrogen (N) and phosphorus (P) availability to examine seed production of the dominant species, Stipa krylovii, in response to N and P addition in a temperate steppe. There were three levels of N and P addition in this experiment, including no N addition (0 g N m−2 year−1), low N addition (10 g N m−2 year−1), and high N addition (40 g N m−2 year−1) for N addition treatment, and no P addition (0 g P m−2 year−1), low P addition (5 g P m−2 year−1), and high P addition (10 g P m−2 year−1) for P addition treatment. Low N addition enhanced seed production by 814%, 1371%, and 1321% under ambient, low, and high P addition levels, respectively. High N addition increased seed production by 2136%, 3560%, and 3550% under ambient, low, and high P addition levels, respectively. However, P addition did not affect seed production in the absence of N addition, but enhanced it under N addition. N addition enhanced seed production mainly by increasing the tiller number and inflorescence abundance per plant, whereas P addition stimulated it by decreasing the plant density yet stimulating height of plants and their seed number per inflorescence. Our results indicate seed production is not limited by P availability but rather by N availability in the temperate steppe, whereas seed production will be increased by P addition when N availability is improved. These findings enable a better understanding of plant reproduction dynamics in the temperate steppe under intensified nutrient enrichment and can inform their improved management in the future.  相似文献   

7.
Preference of phytoseiid mite, Amblyseius swirskii (Athias-Henriot) was assessed on four cultivars of ornamental pepper banker plant candidates; Red Missile (RM), Masquerade (MA), Explosive Ember (EE) and Black Pearl (BP) for potential control of pestiferous insects in floriculture. Significant differences in cultivar preference by A. swirskii was observed in choice experiments whether the test was pre- (with pollen) or during bloom. Overall, female mites laid more eggs when pollen was provided as a food source. The number of tuft domatia per cultivar leaf appeared to positively influence host preference in the choice plant tests pre-bloom. In addition, cultivar RM had the highest mean number ± SEM of tuft domatia per leaf (5.1 ± 0.3) and motiles per plant (4.0 ± 1.2), followed by MA, EE and BP. In choice tests on blooming plants, A. swirskii showed preference for both cultivars RM and MA compared to EE. These experiments indicated that the number of tuft domatia and availability of pollen can influence the host preference of A. swirskii for an ornamental pepper banker plant cultivar. Results from this study will help growers, researchers, educators and extension personnel in understanding the plant phenology promoting adoption of suitable banker plants for managing greenhouse and landscape insect pests.  相似文献   

8.
There are two important allocation hypotheses in plant biomass allocation: allometric and isometric. We tested these two hypotheses in an alpine steppe using plant biomass allocation under nitrogen (N) addition and precipitation (Precip) changes at a community level. An in situ field manipulation experiment was conducted to examine the two hypotheses and the responses of the biomass to N addition (10 g N m?2 y?1) and altered Precip (±50% precipitation) in an alpine steppe on the Qinghai–Tibetan Plateau from 2013 to 2016. We found that the plant community biomass differed in its response to N addition and reduced Precip such that N addition significantly increased aboveground biomass (AGB), while reduced Precip significantly decreased AGB from 2014 to 2016. Moreover, reduced Precip enhanced deep soil belowground biomass (BGB). In the natural alpine steppe, the allocation between AGB and BGB was consistent with the isometric hypotheses. In contrast, N addition or altered Precip enhanced biomass allocation to aboveground, thus leading to allometric growth. More importantly, reduced Precip enhanced biomass allocation into deep soil. Our study provides insight into the responses of alpine steppes to global climate change by linking AGB and BGB allocation.  相似文献   

9.
The effect of infection by the fungal endophyte Neotyphodium, host genotype, and their interaction on growth and physiology, as well as photosynthesis, was investigated in the native grass Achnatherum sibiricum. We artificially inoculated the endophyte into mature tillers of endophyte-free A. sibiricum. Plants were clipped to 5 cm height after recording growth traits, and analyzed for total nonstructural carbohydrates (TNC %), the percentage of nitrogen (N %), and carbon (C %) in leaves before and after clipping. In our study, the prominent host genotype–endophyte infection interactions detected in A. sibiricum indicates that, for many growth and storage traits, endophyte infection can impact a little change. However, there is no overriding consistently positive effect of the endophyte on growth or storage in A. sibiricum before or after clipping. Our study showed that the interaction between endophyte and host grasses was highly contingent on plant genotypes. We found host genotype overrode fungal endophyte infection in influencing tiller number and photosynthetic properties of A. sibiricum before clipping. After clipping, host genotype accounted for more of the variation in regrowth and above-ground biomass of A. sibiricum than endophyte infection. Our study showed that host genotype affected the total nonstructural carbohydrates of A. sibiricum before and after clipping, whereas endophyte infection increased the carbon content after clipping. Genotype by infection interactions for plant height, leaf mass, total nonstructural carbohydrates, and photosynthetic characteristics indicated genotype-specific effects of endophytes on A. sibiricum physiology and photosynthetic capacity. The host genotype–endophyte infection interactions detected in A. sibiricum suggest that host genotype overrides fungal endophyte infection on growth, physiology, and nutrient content of this native grass. In contrast, endophyte effects did not appear to positively affect growth, physiology, or photosynthetic capacity before or after clipping.  相似文献   

10.
《Aquatic Botany》1986,24(1):27-34
Potamogeton richardsonii (A. Benn) Rydb., a submerged rooted aquatic plant, is common in small temperate lakes. In some regions of a Minnesota lake, P. richardsonii plants rarely branched and had few inflorescences, while in other areas of the same lake P. richardsonii plants typically had many branches and inflorescences. To identify factors affecting branch and flower number, three experiments were carried out in the two lake regions: reciprocal transplants, nutrient addition and clipping. The results from transplants of cloned material suggested that the morphological differences had neither genetic nor substrate bases. Nutrient additions were added by implanting fertilizer stakes in lake sediments. There was no significant response to nutrient addition. There was a response to clipping. When the apical meristem was removed, the numbers of leaves, branches and flowers increased significantly. Since there are both natural and anthropogenic sources of apex removal, a number of agents, including herbivores, may increase P. richardsonii reproductive potential.  相似文献   

11.
Invasive plant species can interact with native soil microbes in ways that change how they use nutrients and allocate biomass. To examine whether Microstegium vimineum form symbiotic associations with arbuscular mycorrhizal fungi (AMF) and whether AMF mediate nutrient acquisition and growth of the plant, we conducted a field survey in Raleigh, NC and Hangzhou, China and two experiments in growth chambers. This is the first report that M. vimineum is mycorrhizal, with colonization rates of 47 and 21 % in its native and invaded range, respectively. In the growth chamber, addition of an AMF inoculum mixture significantly promoted M. vimineum biomass accumulation in both field and sterilized soils, particularly after 64 days of growth. Arbuscular mycorrhizal fungi also increased plant phosphorous (P) uptake but did not consistently affect total plant nitrogen (N) acquisition, leading to decreases in plant N:P ratios. More interestingly, AMF significantly altered plant morphology, increasing the number of stolons and aerial roots per individual (59 and 723 %), aerial roots per gram aboveground biomass (374 %) and aerial roots per stolon (404 %). Our results suggest that mycorrhizal enhancement of plant growth by stimulating tillering may serve as another mechanism by which M. vimineum can quickly take over new territory. Future studies on invasive plant-microbial interactions are needed to understand the mechanisms through which microbes contribute to the competitive ability of invasive plants.  相似文献   

12.
Nitrogen (N) fertilization, as a grassland management strategy, has been widely used to improve forage quality and increase the productivity of grasslands degraded by overstocking. It is widely accepted that N addition will alter ecosystem structure and function, and that these effects may be altered by natural disturbances, such as fire. We examined the effects of annual burning and N fertilization (17.5 g N m?2 year?1, at a surplus rate in order to simulate agriculture treatment) on foliar chemistry and stoichiometric ratios of eight dominant species (Leymus chinensis, Stipa grandis, Cleistogenes squarrosa, Potentilla bifurca, Thalictrum squarrosum, Artemisia frigida, Kochia prostrata and Caragana microphylla) in a temperate steppe in northern China. After 3 years of treatments, annual burning significantly increased soil extractable phosphorus (P) concentration but showed no effects on soil inorganic N concentration, whereas N fertilization caused a significant increase in inorganic N concentration but not of extractable P. Species differed substantially with respect to all nutritional and stoichiometric variables. Both annual burning and N fertilization caused significant increases in foliar N and P concentrations and thus decreases in carbon (C):N and C:P ratios. While annual burning showed no effects on N:P ratios, N fertilization produced higher N:P ratios. However, species responded idiosyncratically to both fire and N fertilization in terms of foliar N concentration, C:N and N:P ratio. In addition, there was no interaction between fire and N fertilization that affected all variables. This study suggests that both annual burning and N fertilization have direct impacts on plant elemental composition and that fire- and N addition-induced changes of community composition may have important consequences for plant-mediated biogeochemical cycling pathways in temperate steppe ecosystem.  相似文献   

13.
Forest biogeochemical cycles are shaped by effects of dominant tree species on soils, but the underlying mechanisms are not well understood. We investigated effects of temperate tree species on interactions among carbon (C), nitrogen (N), and acidity in mineral soils from an experiment with replicated monocultures of 14 tree species. To identify how trees affected these soil properties, we evaluated correlations among species-level characteristics (e.g. nutrient concentrations in leaf litter, wood, and roots), stand-level properties (e.g. nutrient fluxes through leaf litterfall, nutrient pools in stemwood), and components of soil C, N, and cation cycles. Total extractable acidity (aciditytot) was correlated positively with mineral soil C stocks (R 2  = 0.72, P < 0.001), such that a nearly two-fold increase in aciditytot was associated with a more than two-fold increase of organic C. We attribute this correlation to effects of tree species on soil acidification and subsequent mineral weathering reactions, which make hydrolyzing cations available for stabilization of soil organic matter. The effects of tree species on soil acidity were better understood by measuring multiple components of soil acidity, including pH, the abundance of hydrolyzing cations in soil solutions and on cation exchange sites, and aciditytot. Soil pH and aciditytot were correlated with proton-producing components of the soil N cycle (e.g. nitrification), which were positively correlated with species-level variability in fine root N concentrations. Soluble components of soil acidity, such as aluminum in saturated paste extracts, were more strongly related to plant traits associated with calcium cycling, including leaf and root calcium concentrations. Our results suggest conceptual models of plant impacts on soil biogeochemistry should be revised to account for underappreciated plant traits and biogeochemical processes.  相似文献   

14.
Based on a five-year study of pollen production and release in two different natural populations of Mesua ferrea from Indo-Burma region of Northeast India, we determined that pollen output follows a spatio-temporal pattern. Pollen productivity determinations considered various sources of variability, including the number of flowers per branch, flowers per tree, anthers per tree and pollen grains per tree. Each of these parameters revealed significant year-to-year and population effects. Anthesis follows a forenoon pattern, whereas anther dehiscence pursues the diurnal pattern. The former was significantly correlated with the timing of floral visitation and pollen deposition on stigmas. The latter, however, had significant relationship with the deposition of pollen grains on microscopic slides. The Apis and Xylocopa bees are the efficient pollinators to achieve the reproductive success in M. ferrea. Annual production of pollen per tree varied from averages of 1.07 ± 0.10 × 1010 and 3.24 ± 0.16 × 1010 in years of low production, with alternate high years, producing 3.85 ± 0.34 × 1010 and 8.22 ± 0.76 × 1010 pollen grains per tree.  相似文献   

15.
Nitrogen and water addition reduce leaf longevity of steppe species   总被引:1,自引:0,他引:1  
Ren H  Xu Z  Huang J  Clark C  Chen S  Han X 《Annals of botany》2011,107(1):145-155

Background and aims

Changes in supplies of resources will modify plant functional traits. However, few experimental studies have addressed the effects of nitrogen and water variations, either singly or in combination, on functional traits.

Methods

A 2-year field experiment was conducted to test the effects of nitrogen and water addition on leaf longevity and other functional traits of the two dominant (Agropyron cristatum and Stipa krylovii) and three most common species (Cleistogenes squarrosa, Melilotoides ruthenica and Potentilla tanacetifolia) in a temperate steppe in northern China.

Key Results

Additional nitrogen and water increased leaf nitrogen content and net photosynthetic rate, and changed other measured functional traits. Leaf longevity decreased significantly with both nitrogen addition (–6 days in 2007 and –5·4 days in 2008; both P < 0·001) and watering (–13 days in 2007 and –9·9 days in 2008; both P < 0·001), and significant differences in leaf longevity were also found among species. Nitrogen and water interacted to affect leaf longevity and other functional traits. Soil water content explained approx. 70 % of the shifts in leaf longevity. Biomass at both species and community level increased under water and nitrogen addition because of the increase in leaf biomass production per individual plant.

Conclusions

The results suggest that additional nitrogen and water supplies reduce plant leaf longevity. Soil water availability might play a fundamental role in determining leaf longevity and other leaf functional traits, and its effects can be modified by soil nitrogen availability in semi-arid areas. The different responses of species to resource alterations may cause different global change ramifications under future climate change scenarios.  相似文献   

16.
Rumex nepalensis, one of several plant species distributed across wide elevation gradient in Himalayas, was studied for difference in seed traits, phenology and photosynthetic characteristics in four populations from 800 m (sub-tropical population: SP), 1300 m (sub-temperate population: STP), 2200 m (temperate population: TP) and 4000 m (alpine population: AP) elevations above mean sea level. Seeds of AP were larger in size and germinated faster at 15 °C than at 25 °C compared to those from lower elevations. Seed raised four populations of the species studied under ex situ conditions of greenhouse showed that AP emerged late but was able to complete its post flowering phenophases much earlier, such that its life cycle was reduced by 14 days compared to SP. Ex-situ and in situ studies in the native habitat for all populations showed AP and SP to differed significantly in most of the photosynthetic traits, thus indicating the two populations to be genetically different. Further studies are required to understand how different genotypes of R. nepalensis would respond to atmospheric warming.  相似文献   

17.
Above-ground biomass (AGB) is an important indicator of grassland ecosystem performance. Easily measured plant functional traits (PFTs) may provide useful predictors of the response of plants to grazing. Understanding the response of PFTs to grazing and the relationship between PFTs and AGB is very important for effectively predicting the response of ecosystems to grazing and rangeland management. A grazing experiment was conducted in Gangcha County, Qinghai Province, in the northeastern part of the Qinghai–Tibet Plateau in 2012 and 2013. We investigated the response of PFTs in three dominant species (Elymus nutans, Kobresia humilis, and Stipa purpurea) to grazing, using six stocking rates. Plant height (PH), plant weight, leaf area, and leaf dry biomass of these three dominant species had significantly negative relationships with stocking rate. Leaf thickness (LT) of these three species usually showed a unimodal response to grazing. Specific leaf area generally showed a quadratic relationship with grazing intensity. No consistent effects of grazing were observed on nitrogen content per unit mass (N mass) and nitrogen content per unit area (N area). PH, leaf area, and leaf dry mass (LDM) were positively associated with AGB, but LT, N mass, and N area had no statistically significant association with AGB. We thus conclude that PH, leaf area, and LDM best predict the effects of grazing on AGB. Finally, 2.87 sheep/ha is recommended as the optimal stocking rate in this region to maintain the health of this grassland ecosystem and to allow for sustainable development.  相似文献   

18.
Ma L  Huang W  Guo C  Wang R  Xiao C 《PloS one》2012,7(4):e35165

Background

Global climatic change is generally expected to stimulate net primary production, and consequently increase soil carbon (C) input. The enhanced C input together with potentially increased precipitation may affect soil microbial processes and plant growth.

Methodology/Principal Findings

To examine the effects of C and water additions on soil microbial properties and plant growth, we conducted an experiment lasting two years in a temperate steppe of northeastern China. We found that soil C and water additions significantly affected microbial properties and stimulated plant growth. Carbon addition significantly increased soil microbial biomass and activity but had a limited effect on microbial community structure. Water addition significantly increased soil microbial activity in the first year but the response to water decreased in the second year. The water-induced changes of microbial activity could be ascribed to decreased soil nitrogen (N) availability and to the shift in soil microbial community structure. However, no water effect on soil microbial activity was visible under C addition during the two years, likely because C addition alleviated nutrient limitation of soil microbes. In addition, C and water additions interacted to affect plant functional group composition. Water addition significantly increased the ratio of grass to forb biomass in C addition plots but showed only minor effects under ambient C levels. Our results suggest that soil microbial activity and plant growth are limited by nutrient (C and N) and water availability, and highlight the importance of nutrient availability in modulating the responses of soil microbes and plants to potentially increased precipitation in the temperate steppe.

Conclusions/Significance

Increased soil C input and precipitation would show significant effects on soil microbial properties and plant growth in the temperate steppe. These findings will improve our understanding of the responses of soil microbes and plants to the indirect and direct climate change effects.  相似文献   

19.
Nitrogen (N) addition has been well documented to decrease plant biodiversity across various terrestrial ecosystems. However, such generalizations about the impacts of N addition on soil microbial communities are lacking. This study was conducted to examine the impacts of N addition (urea-N fertilizer) on soil microbial communities in a semi-arid temperate steppe in northern China. Soil microbial biomass carbon (C), biomass N (MBN), net N mineralization and nitrification, and bacterial and fungal community level physiological profiles (CLPP) along an N addition gradient (0–64 g N m?2 year?1) were measured. Three years of N addition caused gradual or step increases in soil NH4-N, NO3-N, net N mineralization and nitrification in the early growing season. The reductions in microbial biomass under high N addition levels (32 and 64 g N m?2 year?1) are partly attributed to the deleterious effects of soil pH. An N optimum between 16 and 32 g N m?2 year?1 in microbial biomass and functional diversity exists in the temperate steppe in northern China. Similar N loading thresholds may also occur in other ecosystems, which help to interpret the contrasting observations of microbial responses to N addition.  相似文献   

20.
Variations in floral traits and floral structures influence plant mating systems. Hibiscus trionum produces large, showy flowers typical of an outcrossing species, yet flowers are autonomously self-pollinated. In this study, we measured floral morphology, breeding system and outcrossing rate estimated by ISSR markers. Results indicate that two types of flowers were observed in H. trionum, and the type I with bigger petals appears to be much more visible to pollinators, demonstrated by than type II flowers with smaller petals. The flowers with hand pollination were closed 1 h earlier than intact flowers, whether they were type I or II. The relationship between the amount of pollen deposited on the stigma and the number of seeds per capsule was highly significant, and 80 or more pollens per flower can make the mean number of seeds (mean = 37) in H. trionum. Delayed selfing in H. trionum did not provide a large contribution to seed production, since reproductive assurance were only 0.025. However, successful reproduction of 72.5% flowers in the absence of pollinators suggested that selfing provides reproductive assurance during seasons, in which pollinators were limiting. The multilocus outcrossing rates in different populations varied from 0.982 to 1.200, with a mean of 1.116. Our data provide an empirical demonstration of a predominantly outcrossing species with potential delayed selfing when pollinators are absent or scarce.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号