首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pronounced strategy shifts along ontogeny have been observed in several tree species, mainly because of the trend to maximize growth during the seedling stage, which constitutes the most vulnerable part of the tree’s life cycle. Our aim here was to analyze the ontogenetic changes in crown characteristics and light capture patterns in three Quercus species: the evergreens Quercus ilex and Quercus suber and the deciduous Quercus faginea co-occurring in a Mediterranean open woodland. The seedlings were distributed in the large clearings among the adults and received full sunlight. We constructed three-dimensional models of the aerial parts of seedlings and mature trees of the three species, using the YplantQMC program. Large differences between growth stages were observed for all variables. The seedlings exhibited smaller branch sizes and crown densities than those observed in the adult trees. Leaf angles to horizontal also tended to increase during ontogeny, whereas leaf dispersion and the observed distances between leaves tended to decrease. The amount of photosynthetic radiation absorbed per unit leaf area throughout the growing season was lower in adult specimens than in young specimens. Changes in absorption efficiency during ontogeny were more intense for the species with longer leaf life span at maturity. We conclude that more intense ontogenetic shifts in species with longer leaf life span reflect the priority change from the maximization of short-term productivity at the seedling stage to maximizing leaf longevity during the adult stage.  相似文献   

2.
Background and Aims Autumn leaf senescence marks the end of the growing season in temperate ecosystems. Its timing influences a number of ecosystem processes, including carbon, water and nutrient cycling. Climate change is altering leaf senescence phenology and, as those changes continue, it will affect individual woody plants, species and ecosystems. In contrast to spring leaf out times, however, leaf senescence times remain relatively understudied. Variation in the phenology of leaf senescence among species and locations is still poorly understood.Methods Leaf senescence phenology of 1360 deciduous plant species at six temperate botanical gardens in Asia, North America and Europe was recorded in 2012 and 2013. This large data set was used to explore ecological and phylogenetic factors associated with variation in leaf senescence.Key Results Leaf senescence dates among species varied by 3 months on average across the six locations. Plant species tended to undergo leaf senescence in the same order in the autumns of both years at each location, but the order of senescence was only weakly correlated across sites. Leaf senescence times were not related to spring leaf out times, were not evolutionarily conserved and were only minimally influenced by growth habit, wood anatomy and percentage colour change or leaf drop. These weak patterns of leaf senescence timing contrast with much stronger leaf out patterns from a previous study.Conclusions The results suggest that, in contrast to the broader temperature effects that determine leaf out times, leaf senescence times are probably determined by a larger or different suite of local environmental effects, including temperature, soil moisture, frost and wind. Determining the importance of these factors for a wide range of species represents the next challenge for understanding how climate change is affecting the end of the growing season and associated ecosystem processes.  相似文献   

3.
Osada  Noriyuki 《Plant Ecology》2020,221(10):939-950
Plant Ecology - Spring leaf phenology has been intensively studied in temperate deciduous broad-leaved tree species, but the phenology of evergreen broad-leaved tree species has seldom been focused...  相似文献   

4.
5.
  • Phototropic leaf movement of plants is an effective mechanism for adapting to light conditions. Light is the major driver of plant photosynthesis. Leaf N is also an important limiting factor on leaf photosynthetic potential. Cotton (Gossypium hirsutum L.) exhibits diaheliotropic leaf movement. Here, we compared the long‐term photosynthetic acclimation of fixed leaves (restrained) and free leaves (allowed free movement) in cotton.
  • The fixed leaves and free leaves were used for determination of PAR, leaf chlorophyll concentration, leaf N content and leaf gas exchange. The measurements were conducted under clear sky conditions at 0, 7, 15 and 30 days after treatment (DAT).
  • The results showed that leaf N allocation and partitioning among different components of the photosynthetic apparatus were significantly affected by diaheliotropic leaf movement. Diaheliotropic leaf movement significantly increased light interception per unit leaf area, which in turn affected leaf mass per area (LMA), leaf N content (NA) and leaf N allocation to photosynthesis (NP). In addition, cotton leaves optimised leaf N allocation to the photosynthetic apparatus by adjusting leaf mass per area and NA in response to optimal light interception.
  • In the presence of diaheliotropic leaf movement, cotton leaves optimised their structural tissue and photosynthetic characteristics, such as LMA, NA and leaf N allocation to photosynthesis, so that leaf photosynthetic capacity was maximised to improve the photosynthetic use efficiency of light and N under high light conditions.
  相似文献   

6.
Processes involved in leaf photosynthetic acclimation to light and throughout the growing season were investigated in two hardwood species (Acer saccharum and Betula alleghaniensis), which differed in their level of shade-tolerance. For both species, variation in traits related to (i) leaf morphology (LMA, leaf mass:area ratio), (ii) leaf N content (NA, leaf nitrogen content on an area basis and NM, N concentration in leaf dry mass), (iii) leaf N partitioning among photosynthetic functions (Pr, N allocated to Rubisco, and Pb, N allocated to bioenergetics), and (iv) leaf photosynthetic capacity (Vcmax, maximal carboxylation rates, and Jmax, maximal light-driven electron flow) were assessed at three different times during the growing season (early, mid- and late summer) and under four contrasting light regimes (40, 17, 6 and 2% of full sunlight). For both species, light-driven variation in most traits was greater than their seasonally driven variation. Furthermore, results showed for both species the pre-eminence of LMA changes in the light-driven acclimation of NA. Importance of NM to variation in NA was restricted to seasonal acclimation, especially for the less shade-tolerant species, B. alleghaniensis. Similarly, for both species, light-driven acclimation of leaf photosynthetic capacities was tightly related to variation in NA, which was related to LMA changes. However, variation in Pr and Pb better explained seasonally driven variation in Vcmax and Jmax, specifically under lower light levels, where NA was low. Thus, the great variability observed for leaf activity in response to contrasting light environments was related to efficient morphological adjustments, regardless of species level of shade-tolerance. Finally, physiological adjustments were mainly involved in fine-scale changes observed during seasonally driven acclimation of leaves, when LMA was constrained to a slight range of variation.  相似文献   

7.
8.
Variation in evergreen and deciduous species leaf phenology in Assam, India   总被引:1,自引:0,他引:1  
In the present study phenological activities such as leaf and shoot growth, leaf pool size and leaf fall were observed for 3 years (March 2007–March 2010) in 19 tree species (13 evergreen and 6 deciduous species) in a wet tropical forest in Assam, India. The study area receives total annual average rainfall of 2,318 mm of which most rain fall (>70 %) occurs during June–September. Both the plant groups varied significantly on most of the shoot and leaf phenology parameters. In general, growth in deciduous species initiated before the evergreen species and showed a rapid shoot growth, leaf recruitment and leaf expansion compared to evergreen species. Leaf recruitment period was significantly different between evergreen (4.2 months) and deciduous species (6.8 months). Shoot elongation rate was also significantly different for evergreen and deciduous species (0.09 vs. 0.14 cm day?1 shoot?1). Leaf number per shoot was greater for deciduous species than for evergreen species (34 vs. 16 leaves). The average leaf life span of evergreen species (328 ± 32 days) was significantly greater than that of deciduous species (205 ± 16 days). The leaf fall in deciduous species was concentrated during the winter season (Nov–Feb), whereas evergreens retained their leaves until the next growing season. Although the climate of the study area supports evergreen forests, the strategies of the deciduous species such as faster leaf recruitment rate, longer leaf recruitment time, faster shoot elongation rate during favorable growing season and short leaf life span perhaps allows them to coexist with evergreen species that have the liberty to photosynthesize round the year. Variations in phenological strategies perhaps help to reduce the competition among evergreen and deciduous species for resources in these forests and enable the coexistence of both the groups.  相似文献   

9.
The assimilation of carbon by plant communities (gross primary production [GPP]) is a central concern in plant ecology as well as for our understanding of global climate change. As an alternative to traditional methods involving destructive harvests or time-consuming measurements, we present a simple, general model for GPP as the product of the lifetime carbon gain by a single leaf, the daily leaf production rate, and the length of the favorable period for photosynthesis. To test the model, we estimated leaf lifetime carbon gain for 26 species using the concept of mean labor time for leaves (the part of each day the leaf functions to full capacity), average potential photosynthetic capacity over the leaf lifetime, and functional leaf longevity (leaf longevity discounted for periods within a year wholly unfavorable for photosynthesis). We found that the lifetime carbon gain of leaves was rather constant across species. Moreover, when foliar biomass was regressed against functional leaf longevity, aseasonal and seasonal forests fell on a single line, suggesting that the leaf production rate during favorable periods is not substantially different among forests in the world. The gross production of forest ecosystems then can be predicted to a first approximation simply by the annual duration of the period favorable for photosynthetic activity in any given region.  相似文献   

10.
Light is a key resource for plant growth and is of particular importance in forest ecosystems, because of the strong vertical structure leading to successive light interception from canopy to forest floor. Tree species differ in the quantity and heterogeneity of light they transmit. We expect decreases in both the quantity and spatial heterogeneity of light transmittance in mixed stands relative to monocultures, due to complementarity effects and niche filling. We tested the degree to which tree species identity and diversity affected, via differences in tree and shrub cover, the spatiotemporal variation in light availability before, during, and after leaf expansion. Plots with different combinations of three tree species with contrasting light transmittance were selected to obtain a diversity gradient from monocultures to three species mixtures. Light transmittance to the forest floor was measured with hemispherical photography. Increased tree diversity led to increased canopy packing and decreased spatial light heterogeneity at the forest floor in all of the time periods. During leaf expansion, light transmittance did differ between the different tree species and timing of leaf expansion might thus be an important source of variation in light regimes for understory plant species. Although light transmittance at the canopy level after leaf expansion was not measured directly, it most likely differed between tree species and decreased in mixtures due to canopy packing. A complementary shrub layer led, however, to similar light levels at the forest floor in all species combinations in our plots. Synthesis. We find that a complementary shrub layer exploits the higher light availability in particular tree species combinations. Resources at the forest floor are thus ultimately determined by the combined effect of the tree and shrub layer. Mixing species led to less heterogeneity in the amount of light, reducing abiotic niche variability.  相似文献   

11.
BACKGROUND AND AIMS: Plants have complex mechanisms of aerial biomass exposition, which depend on bud composition, the period of the year in which shoot extension occurs, branching pattern, foliage persistence, herbivory and environmental conditions. METHODS: The influence of water availability and temperature on shoot growth, the bud composition, the leaf phenology, and the relationship between partial leaf fall and branching were evaluated over 3 years in Cerrado woody species Bauhinia rufa (BR), Leandra lacunosa (LL) and Miconia albicans (MA). KEY RESULTS: Deciduous BR preformed organs in buds and leaves flush synchronously at the transition from the dry to the wet season. The expansion time of leaves is <1 month. Main shoots (first-order axis, A1 shoots) extended over 30 d and they did not branch. BR budding and foliage unfolds were brought about independently of inter-annual rainfall variations. By contrast, in LL and MA evergreen species, the shoot extension rate and the neoformation of aerial organs depended on rainfall. Leaf emergence was continuous for 2-6 months and lamina expansion took place over 1-4 months. The leaf life span was 5-20 months and the main A1 shoot extension happened over 122-177 d. Both evergreen species allocated biomass to shoots, leaves or flowers continuously during the year, branching in the middle of the wet season to form second-order (A2 shoots) and third-order (A3 shoots) axis in LL and A2 shoots in MA. Partial shed of A1 shoot leaves would facilitate a higher branching intensity A2 shoot production in LL than in MA. MA presented a longer leaf life span, produced a lower percentage of A2 shoots but had a higher meristem persistence on A1 and A2 shoots than LL. CONCLUSIONS: It was possible to identify different patterns of aerial growth in Cerrado woody species defined by shoot-linked traits such as branching pattern, bud composition, meristem persistence and leaf phenology. These related traits must be considered over and above leaf deciduousness for searching functional guilds in a Cerrado woody community. For the first time a relationship between bud composition, shoot growth and leaf production pattern is found in savanna woody plants.  相似文献   

12.
Question: Do thick‐twigged/large‐leaf species have an advantage in leaf display over their counterparts, and what are the effects of leaf habit and leaf form on the leaf‐stem relationship in plant twigs of temperature broadleaf woody species? Location: Gongga Mountain, southwest China. Methods: (1) We investigated stem cross‐sectional area and stem mass, leaf area and leaf/lamina mass of plant twigs (terminal branches of current‐year shoots) of 89 species belonging to 55 genera in 31 families. (2) Data were analyzed to determine leaf‐stem scaling relationships using both the Model type II regression method and the phylogenetically independent comparative (PIC) method. Results: (1) Significant, positive allometric relationships were found between twig cross‐sectional area and total leaf area supported by the twig, and between the cross‐sectional area and individual leaf area, suggesting that species with large leaves and thick twigs could support a disproportionately greater leaf area for a given twig cross‐sectional area. (2) However, the scaling relationships between twig stem mass and total leaf area and between stem mass and total lamina mass were approximately isometric, which indicates that the efficiency of deploying leaf area and lamina mass was independent of leaf size and twig size. The results of PIC were consistent with these correlations. (3) The evergreen species were usually smaller in total leaf area for a given twig stem investment in terms of both cross‐sectional area and stem mass, compared to deciduous species. Leaf mass per area (LMA) was negatively associated with the stem efficiency in deploying leaf area. (4) Compound leaf species could usually support a larger leaf area for a given twig stem mass and were usually larger in both leaf size and twig size than simple leaf species. Conclusions: Generally, thick‐twigged/large‐leaf species do not have an advantage over their counterparts in deploying photosynthetic compartments for a given twig stem investment. Leaf habit and leaf form types can modify leaf‐stem scaling relationships, possibly because of contrasting leaf properties. The leaf size‐twig size spectrum is related to the LMA‐leaf life span dimension of plant life history strategies.  相似文献   

13.
Contrary to the generally advanced spring leaf unfolding under global warming, the effects of the climate warming on autumn leaf senescence are highly variable with advanced, delayed, and unchanged patterns being all reported. Using one million records of leaf phenology from four dominant temperate species in Europe, we investigated the temperature sensitivities of spring leaf unfolding and autumn leaf senescence (ST, advanced or delayed days per degree Celsius). The ST of spring phenology in all of the four examined species showed an increase and decrease during 1951–1980 and 1981–2013, respectively. The decrease in the ST during 1981–2013 appears to be caused by reduced accumulation of chilling units. As with spring phenology, the ST of leaf senescence of early successional and exotic species started to decline since 1980. In contrast, for late successional species, the ST of autumn senescence showed an increase for the entire study period from 1951 to 2013. Moreover, the impacts of rising temperature associated with global warming on spring leaf unfolding were stronger than those on autumn leaf senescence. The timing of leaf senescence was positively correlated with the timing of leaf unfolding during 1951–1980. However, as climate warming continued, the differences in the responses between spring and autumn phenology gradually increased, so that the correlation was no more significant during 1981–2013. Our results further suggest that since 2000, due to the decreased temperature sensitivity of leaf unfolding the length of the growing season has not increased any more. These finding needs to be addressed in vegetation models used for assessing the effects of climate change.  相似文献   

14.
Phenological events, such as the initiation and the end of seasonal growth, are thought to be under strong evolutionary control because of their influence on tree fitness. Although numerous studies highlighted genetic differentiation in phenology among populations from contrasting climates, it remains unclear whether local adaptation could restrict phenological plasticity in response to current warming. Seedling populations of seven deciduous tree species from high and low elevations in the Swiss Alps were investigated in eight common gardens located along two elevational gradients from 400 to 1,700 m. We addressed the following questions: are there genetic differentiations in phenology between populations from low and high elevations, and are populations from the upper elevational limit of a species’ distribution able to respond to increasing temperature to the same extent as low-elevation populations? Genetic variation of leaf unfolding date between seedlings from low and high populations was detected in six out of seven tree species. Except for beech, populations from high elevations tended to flush later than populations from low elevations, emphasizing that phenology is likely to be under evolutionary pressure. Furthermore, seedlings from high elevation exhibited lower phenological plasticity to temperature than low-elevation provenances. This difference in phenological plasticity may reflect the opposing selective forces involved (i.e. a trade-off between maximizing growing season length and avoiding frost damages). Nevertheless, environmental effects were much stronger than genetic effects, suggesting a high phenological plasticity to enable tree populations to track ongoing climate change, which includes the risk of tracking unusually warm springs followed by frost.  相似文献   

15.
Question: How do broadleaf tree species affect humus characteristics, herb layer composition and species diversity through their leaf litter quality and canopy structure? Location: Mixed broadleaf forests in Brandenburg, NE Germany. Methods: We studied the herb and tree layer composition in 129 undisturbed stands using a 10‐degree cover‐abundance and percentage scale, respectively. The main floristic gradients were extracted by non‐metric multidimensional scaling. Effects of tree species on the herb layer were analysed with partial Spearman rank correlation. We assessed affinities for specific tree species using indicator species analysis. Results: Both beech and oak influenced herb layer composition mainly through their litter quality, which resulted in deep Ol and Of horizons, respectively. The less dense canopy of oak, in contrast to the dense beech canopy, enhanced species diversity in favour of indifferent herb species (species not closely tied to forests). Lime was correlated with a distinct floristic gradient, but a direct effect on the herb layer cannot be proven with the available data. Effects of hornbeam were less pronounced. Conclusions: The relationship between the tree and herb layer must be partly attributed to pH differences. However, tree species effects on humus characteristics and on light flux to the ground were largely responsible as well. The results suggest that tree species can influence herb layer composition and diversity, but the missing correlation with lime and hornbeam raise questions requiring further detailed investigation.  相似文献   

16.
17.
While changes in spring phenological events due to global warming have been widely documented, changes in autumn phenology, and therefore in growing season length, are less studied and poorly understood. However, it may be helpful to assess the potential lengthening of the growing season under climate warming in order to determine its further impact on forest productivity and C balance. The present study aimed to: (1) characterise the sensitivity of leaf phenological events to temperature, and (2) quantify the relative contributions of leaf unfolding and senescence to the extension of canopy duration with increasing temperature, in four deciduous tree species (Acer pseudoplatanus, Fagus sylvatica, Fraxinus excelsior and Quercus petraea). For 3 consecutive years, we monitored the spring and autumn phenology of 41 populations at elevations ranging from 100 to 1,600 m. Overall, we found significant altitudinal trends in leaf phenology and species-specific differences in temperature sensitivity. With increasing temperature, we recorded an advance in flushing from 1.9 ± 0.3 to 6.6 ± 0.4 days °C−1 (mean ± SD) and a 0 to 5.6 ± 0.6 days °C−1 delay in leaf senescence. Together both changes resulted in a 6.9 ± 1.0 to 13.0 ± 0.7 days °C−1 lengthening of canopy duration depending on species. For three of the four studied species, advances in flushing were the main factor responsible for lengthening canopy duration with increasing temperature, leading to a potentially larger gain in solar radiation than delays in leaf senescence. In contrast, for beech, we found a higher sensitivity to temperature in leaf senescence than in flushing, resulting in an equivalent contribution in solar radiation gain. These results suggest that climate warming will alter the C uptake period and forest productivity by lengthening canopy duration. Moreover, the between-species differences in phenological responses to temperature evidenced here could affect biotic interactions under climate warming.  相似文献   

18.
19.
Plants usually respond to the changes of growth irradiance by a combination of the physiological modifications in their preexisting leaves and the production of new leaves. However, those with a determinate growth habit produce certain number of leaves in a growing season and cannot produce new leaves when light condition changes. We used an epiphytic orchid with only one leaf produced every growing season to examine whether and how determinate growth species adapt to changing environments after their preexisting leaves mature. Leaf photosynthesis and anatomy of Pleione aurita were investigated at full expansion and at 40 days after the fully expanded leaves were transferred from high to low light or from low to high light. Leaves show large physiological and morphological plasticity to light gradients at full expansion and the transferred leaves exhibited multiple physiological modifications, including reallocation of nitrogen between light harvesting and carbon fixation, and enhancement of thermal dissipation in their new environments, to optimize carbon assimilation and avoid photoinhibition. Irrespective of the various changes either to shade or sun, the sole preexisting leaf could not fully acclimate to new light environments due to the mesophyll thickness constraint. This leads to the consequence that only plants exposed to high light throughout the experiment had a positive annual biomass gain. Our results highlighted the importance of new leaf production in the carbon accumulation during photosynthetic light acclimation, and contribute new insights of epiphytes physiological responses to their highly dynamic arboreal habitat.  相似文献   

20.
Litter nutrient dynamics contribute significantly to biogeochemical cycling in forest ecosystems. We examined how site environment and initial substrate quality influence decomposition and nitrogen (N) dynamics of multiple litter types. A 2.5-year decomposition study was installed in the Oregon Coast Range and West Cascades using 15N-labeled litter from Acer macrophyllum, Picea sitchensis, and Pseudotsuga menziesii. Mass loss for leaf litter was similar between the two sites, while root and twig litter exhibited greater mass loss in the Coast Range. Mass loss was greatest from leaves and roots, and species differences in mass loss were more prominent in the Coast Range. All litter types and species mineralized N early in the decomposition process; only A. macrophyllum leaves exhibited a net N immobilization phase. There were no site differences with respect to litter N dynamics despite differences in site N availability, and litter N mineralization patterns were species-specific. For multiple litter × species combinations, the difference between gross and net N mineralization was significant, and gross mineralization was 7–20 % greater than net mineralization. The mineralization results suggest that initial litter chemistry may be an important driver of litter N dynamics. Our study demonstrates that greater amounts of N are cycling through these systems than may be quantified by only measuring net mineralization and challenges current leaf-based biogeochemical theory regarding patterns of N immobilization and mineralization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号