首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 922 毫秒
1.
Intestinal enterocytes contain two homologous fatty acid-binding proteins, intestinal fatty acid-binding protein (I-FABP)2 and liver fatty acid-binding protein (L-FABP). Since the functional basis for this multiplicity is not known, the fatty acid-binding specificity of recombinant forms of both rat I-FABP and rat L-FABP was examined. A systematic comparative analysis of the 18 carbon chain length fatty acid binding parameters, using both radiolabeled (stearic, oleic, and linoleic) and fluorescent (trans-parinaric and cis-parinaric) fatty acids, was undertaken. Results obtained with a classical Lipidex-1000 binding assay, which requires separation of bound from free fatty acid, were confirmed with a fluorescent fatty acid-binding assay not requiring separation of bound and unbound ligand. Depending on the nature of the fatty acid ligand, I-FABP bound fatty acid had dissociation constants between 0.2 and 3.1 microM and a consistent 1:1 molar ratio. The dissociation constants for L-FABP bound fatty acids ranged between 0.9 and 2.6 microM and the protein bound up to 2 mol fatty acid per mole of protein. Both fatty acid-binding proteins exhibited relatively higher affinity for unsaturated fatty acids as compared to saturated fatty acids of the same chain length. cis-Parinaric acid or trans-parinaric acid (each containing four double bonds) bound to L-FABP and I-FABP were displaced in a competitive manner by non-fluorescent fatty acid. Hill plots of the binding of cis- and trans- parinaric acid to L-FABP showed that the binding affinities of the two sites were very similar and did not exhibit cooperativity. The lack of fluorescence self-quenching upon binding 2 mol of either trans- or cis-parinaric acid/mol L-FABP is consistent with the presence of two binding sites with dissimilar orientation in the L-FABP. Thus, the difference in binding capacity between I-FABP and L-FABP predicts a structurally different binding site or sites.  相似文献   

2.
Enterocytes in the small intestinal mucosa contain abundant quantities of two homologous cytosolic proteins known as intestinal and liver fatty acid-binding proteins (I- and L-FABP, respectively). To elucidate structure-function relationships for these proteins, the interactions between 13C-enriched palmitate and oleate and Escherichia coli-expressed rat I- and L-FABP were systematically compared using 13C NMR spectroscopy. NMR spectra of samples containing fatty acids (FA) and I-FABP at different molar ratios (all at pH 7.2 and 37 degrees C) exhibited a single carboxyl resonance corresponding to FA bound to I-FABP (181.4 ppm, peak I) and an additional carboxyl resonance corresponding to unbound FA in a bilayer phase (179.6 ppm). Peak I reached a maximum intensity corresponding to 1 mol of bound FA/mol of I-FABP under all sample conditions examined. NMR spectra for samples containing FA and L-FABP also exhibited a single carboxyl resonance corresponding to FA bound to L-FABP but at a different chemical shift value (182.2 ppm, peak L). Its maximum intensity varied depending on the physical state of the unbound FA (liquid crystalline or crystalline), the FA used (palmitate or oleate), and the sample pH. In the presence of a liquid crystalline (bilayer) phase, up to 1 (oleate) or 2 (palmitate) mol of FA were bound/mol of L-FABP, but in the presence of a crystalline phase (1:1 acid-soap), up to 3 mol of palmitate were bound/mol of L-FABP (all at pH 7.2). Peak I exhibited little or no ionization shift over a wide pH range (pH 3.0-11.0), and its chemical shift was unaffected by the ionization of Lys and His residues. Hence, the carboxylate group of FA bound to I-FABP was solvent inaccessible and most likely involved in an ion-pair electrostatic interaction with the delta-guanidinium moiety of an Arg residue. In contrast, peak L exhibited an ionization shift and an estimated apparent pKa value similar to that obtained for monomeric FA in water, suggesting that the carboxylate groups of FA bound to L-FABP were solvent accessible and located at or near the protein solvent interface. With decreasing pH, FA dissociated from L-FABP but not I-FABP, as monitored by NMR peak intensities. Concurrently, a large decrease in circular dichroism molar ellipticity was observed with L-FABP but not I-FABP. In conclusion, I-FABP and L-FABP are distinct with regards to their FA-binding stoichiometries, binding mechanisms, and sensitivity to pH.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
Fatty acid binding proteins (FABPs) are small cytosolic proteins with virtually identical backbone structures that facilitate the solubility and intracellular transport of fatty acids. At least eight different types of FABP occur, each with a specific tissue distribution and possibly with a distinct function. To define the functional characteristics of all eight human FABPs, viz. heart (H), brain (B), myelin (M), adipocyte (A), epidermal (E), intestinal (I), liver (L) and ileal lipid-binding protein (I-LBP), we studied their ligand specificity, their conformational stability and their immunological crossreactivity. Additionally, binding of bile acids to I-LBP was studied. The FABP types showed differences in fatty acid binding affinity. Generally, the affinity for palmitic acid was lower than for oleic and arachidonic acid. All FABP types, except E-FABP, I-FABP and I-LBP interacted with 1-anilinonaphtalene-8-sulphonic acid (ANS). Only L-FABP, I-FABP and M-FABP showed binding of 11-((5-dimethylaminonaphtalene-1-sulfonyl)amino)undecanoic acid (DAUDA). I-LBP showed increasing binding of bile acids in the order taurine-conjugated>glycine-conjugated>unconjugated bile acids. A hydroxylgroup of bile acids at position 7 decreased and at position 12 increased the binding affinity to I-LBP. The fatty acid-binding affinity and the conformation of FABP types were differentially affected in the presence of urea. Our results demonstrate significant differences in ligand binding, conformational stability and surface properties between different FABP types which may point to a specific function in certain cells and tissues. The preference of I-LBP (but not L-FABP) for conjugated bile acids is in accordance with a specific role in bile acid reabsorption in the ileum.  相似文献   

4.
Binding and proximity relationships of fatty acids with recombinant rat liver fatty acid-binding protein (L-FABP) and intestinal fatty acid-binding protein (I-FABP) were studied with absorption and fluorescence spectroscopy. Protein aromatic amino acids were examined in the absence and presence of bound fatty acid. Second derivative absorbance spectroscopy of the apo- and holoproteins suggested that fatty acid binding altered the conformation of L-FABP, but not of I-FABP. Fatty acid binding also blocked the accessibility of L-FABP tyrosine and I-FABP tryptophan to Stern-Volmer quenching by acrylamide, indicating that these amino acids were present in the fatty acid-binding pocket. Forster energy transfer from I-FABP tryptophan to bound cis-parinaric acid resulted in quenching of tryptophan lifetime and appearance of sensitized lifetime of bound cis-parinaric acid. The calculated donor-acceptor distances were 16.9 +/- 0.6 and 19.2 +/- 0.3 A for I-FABP and L-FABP, respectively. Absorbance spectral shifts and ratios of fluorescence excitation maxima indicated that the parinaric acid microenvironment in the fatty acid-binding site of I-FABP was much less polar than that of L-FABP. Parinaric acids displayed similar rotational correlation time and limiting anisotropy when bound to I-FABP and to L-FABP. These results are consistent with a close proximity of bound fatty acids to the tyrosine and tryptophan residues and with immobilization of the polyene fatty acids in the fatty acid-binding site(s) of L-FABP and I-FABP. The two proteins differ in that only L-FABP has two fatty acid-binding sites and appears to undergo significant conformational change upon fatty acid binding.  相似文献   

5.
Rat intestinal fatty acid-binding protein (I-FABP) is an abundant cytoplasmic protein which is synthesized in the small intestinal lining cell where it is thought to participate in the absorption and intracellular metabolism of fatty acids. Each mole of this 132-residue polypeptide binds 1 mol of long chain fatty acid in a noncovalent fashion. Because of its small size and single ligand-binding site, I-FABP represents an attractive model for defining the molecular details of long chain fatty acid-protein interactions. The structure of Escherichia coli-derived rat I-FABP has now been solved to 2.5 A resolution using three isomorphous heavy atom derivatives. The protein consists of 10 anti-parallel beta-strands present as two orthogonal beta-sheets. Together a "clam shell-like" structure is formed with an opening located between two beta-strands and an interior that is lined with the side chains of nonpolar amino acids. The bound fatty acid ligand is located in the interior of the protein and has a bent conformation, possibly reflecting the presence of several gauche bonds in the hydrocarbon tail. Our present interpretation of the electron density map suggests that the fatty acid is oriented with its carboxylate group facing the guanidinium group of Arg127, whereas the end of its hydrocarbon tail is in close proximity to Val106. The indole side chain of Trp83 forms the molecular framework around which the principal bend of the hydrocarbon chain occurs.  相似文献   

6.
A 14 kDa polypeptide in rat ileal cytosol has been identified as the major intestinal cytosolic bile acid-binding protein (I-BABP) by photoaffinity labeling with the radiolabeled 7,7-azo derivative of taurocholate (7,7-azo-TC). To further characterize I-BABP, the protein was purified by lysylglycocholate Sepharose 4B affinity and DE-52 anion-exchange chromatography. The purified I-BABP contained a single 14 kDa band on SDS-PAGE. The 14 kDa protein showed a 26-fold increase in binding affinity for [3H]7,7-azo-TC compared to cytosolic protein. Immunoblotting of protein fractions separated by affinity chromatography showed that neither liver fatty acid binding protein (L-FABP) nor intestinal fatty acid binding protein (I-FABP) bind to the affinity column and that the 14 kDa protein which bound to the column and was subsequently eluted with detergent did not cross-react with anti-L-FABP or anti-I-FABP. The 14 kDa protein labeled with [3H]7,7-azo-TC was radioimmunoprecipitated from cytosol by rabbit antiserum raised against purified I-BABP. I-BABP was shown to have a blocked N-terminus; however, its mixed internal sequence generated from cyanogen bromide-cleaved protein and amino acid composition indicated that it was related to (although clearly distinct from) both I-FABP and L-FABP. These studies have isolated a 14 kDa bile acid-binding protein from rat ileal cytosol which is immunologically and biochemically distinct from I-FABP and L-FABP.  相似文献   

7.
In a previous study we had demonstrated that a 15-kDa protein present in carp intestinal brush-border membrane vesicles (BBMV) was able to bind the endocytosis tracer horseradish peroxidase (HRP) with high specificity. Here we show that this protein corresponds to a peripheral membrane protein, identified by partial amino acid sequence analysis as the intestinal fatty acid-binding protein (I-FABP), a member of the small cytosolic fatty acid binding protein family (FABPs). The presence of I-FABP and its HRP-binding activity was demonstrated both in the cytosolic and membrane-associated fractions of intestinal mucosa by Western and ligand blot analyses, respectively. Also, both fractions displayed significant capacity to bind [(3)H]palmitic acid, a known ligand for I-FABP. Immunohistochemical analysis showed that I-FABP localizes both in the cytosol and in the brush-border membranes of epithelial cells. Taken together the unusual extra-cellular localization of I-FABP as well as its ability to interact with HRP suggests a novel function for this protein in the intestinal mucosa.  相似文献   

8.
Intestinal enterocytes contain high concentrations of two cytosolic fatty acid-binding proteins (FABP), liver FABP (L-FABP) and intestinal FABP (I-FABP), which are hypothesized to play a role in cellular fatty acid trafficking. The mechanism(s) by which fatty acids move from membranes to each of these proteins is not known. Here we demonstrate that fluorescent anthroyloxy fatty acid analogues (AOFA) are transferred from phospholipid vesicles to L-FABP versus I-FABP by different mechanisms. For L-FABP a diffusion-mediated transfer process is demonstrated. The AOFA transfer rate from phosphatidylcholine-containing vesicles (POPC) to L-FABP is similar to that observed with another diffusional process, namely inter-membrane AOFA transfer. Furthermore, the AOFA transfer rate was modulated by buffer ionic strength and AOFA solubility, while the transfer rate remained relatively unchanged by the presence of anionic phospholipids in vesicles. In contrast, the data for I-FABP suggest that a transient collisional interaction of I-FABP with the phospholipid membrane occurs during AOFA extraction from the vesicles by the protein. In particular, the presence of the anionic phospholipid cardiolipin in donor vesicles increased the rate of AOFA transfer to I-FABP by 15-fold compared with transfer to POPC vesicles. The effects of ionic strength on transfer suggest that the interaction of I-FABP with cardiolipin-containing vesicles is likely to contain an electrostatic component. Finally, based on the regulation of AOFA transfer to I-FABP compared with transfer from I-FABP, it is hypothesized that apo- and holo-I-FABPs adopt conformations which may differentially promote I-FABP-membrane interactions.In summary, the results suggest that I-FABP, but not L-FABP, can directly extract fatty acids from membranes, supporting the concept that I-FABP may increase the cytosolic flux of fatty acids via intermembrane transfer.  相似文献   

9.
Intestinal fatty acid-binding protein (I-FABP) is a small protein that binds long-chain dietary fatty acids in the cytosol of the columnar absorptive epithelial cells (enterocytes) of the intestine. The binding cavity of I-FABP is much larger than is necessary to bind a fatty acid molecule, which suggests that the protein may be able to bind other hydrophobic and amphipathic ligands such as lipophilic drugs. Herein we describe the binding of three structurally diverse lipophilic drugs, bezafibrate, ibuprofen (both R- and S-isomers) and nitrazepam to I-FABP. The rank order of affinity for I-FABP determined for these compounds was found to be R-ibuprofen approximately bezafibrate > S-ibuprofen > nitrazepam. The binding affinities were not directly related to aqueous solubility or partition coefficient of the compounds; however, the freely water-soluble drug diltiazem showed no affinity for I-FABP. Drug-I-FABP interaction interfaces were defined by analysis of chemical shift perturbations in NMR spectra, which revealed that the drugs bound within the central fatty acid binding cavity. Each drug participated in a different set of interactions within the cavity; however, a number of common contacts were observed with residues also involved in fatty acid binding. These data suggest that the binding of non-fatty acid lipophilic drugs to I-FABP may increase the cytosolic solubility of these compounds and thereby facilitate drug transport from the intestinal lumen across the enterocyte to sites of distribution and metabolism.  相似文献   

10.
Wang Q  Li H  Liu S  Wang G  Wang Y 《Animal biotechnology》2005,16(2):191-201
Fatty acid-binding proteins (FABPs) are members of a superfamily of lipid-binding proteins, occurring intracellularly in invertebrates and vertebrates. This study was designed to clone and characterize the genes of heart fatty acid-binding protein and intestine fatty acid-binding protein in the chicken. PCR primers were designed according to the chicken EST sequences to amplify cDNA of H-FABP and I-FABP genes from chicken heart and intestinal tissues. Analysis of sequence showed that the cDNA of the chicken H-FABP gene is 75 to 77% homologues to human, mouse, and pig H-FABP genes, and the chicken I-FABP gene is 71 to 72% homologues to human, mouse, and pig I-FABP genes. In addition, Northern blot analysis indicated that of the two genes, similar to the copartner of the mammal, H-FABP gene was expressed in a wide variety of tissues, and I-FABP gene was expressed only in intestinal tissues. The expression levels of the chicken H-FABP mRNA in heart and I-FABP mRNA in intestine had significant differences between the broilers from fat line and Bai'er layers at six weeks of age. The results of this study provided basic molecular information for studying the role of two FABPs in the regulation of fatty acid metabolism in avian species.  相似文献   

11.
The mammalian fatty acid-binding proteins (FABP) are localized in many distinct cell types. They bind long chain fatty acidsin vitro, however, their functions and mechanisms of actionin vivo remain unknown. The present studies have sought to understand the relationships among these proteins, and to address the possible role of FABP in cellular fatty acid traffic. A series of anthroyloxy-labeled fluorescent fatty acids have been used to examine the physicochemical properties of the fatty acid-binding sites of different members of the FABP family. The fatty acid probes have also been used to study the rate and mechanism of fatty acid transfer from different FABP types to phospholipid membranes. The results of these studies show a number of interesting and potentially important differences between FABP family members. An examination of adipocyte and heart FABP (A- and H-FABP) shows that their fatty acid-binding sites are less hydrophobic than the liver FABP (L-FABP) site, and that the bound ligand experiences less motional constraint within the A- and H-FABP binding sites than within the L-FABP binding site. In keeping with these differences in structural properties, it was found that anthroyloxy-fatty acid transfer from A- and H-FABP to membranes is markedly faster than from L-FABP. Moreover, the mechanism of fatty acid transfer was found to be similar for the highly homologous logous A- and H-FABP, whereby transfer to phospholipid membranes appears to occur via transient collisional interactions between the FABP and membranes. Transfer of fatty acids from L-FABP, in contrast, occurs via an aqueous phase diffusion mechanism. Other studies utilized fluorescent fatty acid and monoacylglycerol derivatives to compare how the two FABP which are present in high abundance in the proximal small intestine interact with the two major products of dietary triacylglycerol hydrolysis. The results showed that whereas L-FABP binds both fatty acid and monoacylglycerol derivatives, intestinal FABP (I-FABP) appears to bind fatty acid but not monoacylglycerol. In summary, studies with fluorescent ligands have demonstrated unique properties for different FABP family members. A number of these differences appear to correlate with the degree of primary sequence homology between the proteins, and suggest functional diversity within the FABP family.Abbreviations FABP Fatty Acid-Binding Protein - L-FABP Liver FABP - H-FABP Heart FABP - A-FABP Adipocyte FABP - I-FABP Intestinal FABP - AOffa n-(9-anthroyloxy)fatty acid - MG Monoacylglycerol - NBD-PE N-(7-nitro-2,1,3-benzoxadiazol-4-yl)phosphatidylethanolamine  相似文献   

12.
We detected the presence of a fatty acid-binding protein (FABP) in rat kidney cytosols. This protein was eluted and purified 9.3-fold by sequential gel filtration and anion-exchange chromatography. Homogeneity was shown by a single band on polyacrylamide gel with a molecular weight of about 15,500. It had an optimum binding pH of 7.4. The binding of palmitate to the protein was saturable. Examination of fatty acid binding revealed the presence of a single class of fatty acid-binding sites. The apparent dissociation constant was 1.0 microM and the maximal binding capacity was 48 nmol/mg of protein. This protein showed similar binding characteristics for palmitate, oleate, and arachidonate. Rabbit antibody to this cytosolic FABP gave a single precipitin line with the antigen and selectively inhibited [14C]palmitate binding to the protein.  相似文献   

13.
While low levels of unesterified long chain fatty acids (LCFAs) are normal metabolic intermediates of dietary and endogenous fat, LCFAs are also potent regulators of key receptors/enzymes and at high levels become toxic detergents within the cell. Elevated levels of LCFAs are associated with diabetes, obesity and metabolic syndrome. Consequently, mammals evolved fatty acid-binding proteins (FABPs) that bind/sequester these potentially toxic free fatty acids in the cytosol and present them for rapid removal in oxidative (mitochondria, peroxisomes) or storage (endoplasmic reticulum, lipid droplets) organelles. Mammals have a large (15-member) family of FABPs with multiple members occurring within a single cell type. The first described FABP, liver-FABP (L-FABP or FABP1), is expressed in very high levels (2–5% of cytosolic protein) in liver as well as in intestine and kidney. Since L-FABP facilitates uptake and metabolism of LCFAs in vitro and in cultured cells, it was expected that abnormal function or loss of L-FABP would reduce hepatic LCFA uptake/oxidation and thereby increase LCFAs available for oxidation in muscle and/or storage in adipose. This prediction was confirmed in vitro with isolated liver slices and cultured primary hepatocytes from L-FABP gene-ablated mice. Despite unaltered food consumption when fed a control diet ad libitum, the L-FABP null mice exhibited age- and sex-dependent weight gain and increased fat tissue mass. The obese phenotype was exacerbated in L-FABP null mice pair fed a high-fat diet. Taken together with other findings, these data suggest that L-FABP could have an important role in preventing age- or diet-induced obesity.  相似文献   

14.
Two paralogous groups of fatty acid-binding proteins (FABPs) have been described in vertebrate liver: liver FABP (L-FABP) type, extensively characterized in mammals, and liver basic FABP (Lb-FABP) found in fish, amphibians, reptiles, and birds. We describe here the toad Lb-FABP complete amino acid sequence, its X-ray structure to 2.5 A resolution, ligand-binding properties, and mechanism of fatty acid transfer to phospholipid membranes. Alignment of the amino acid sequence of toad Lb-FABP with known L-FABPs and Lb-FABPs shows that it is more closely related to the other Lb-FABPs. Toad Lb-FABP conserves the 12 characteristic residues present in all Lb-FABPs and absent in L-FABPs and presents the canonical fold characteristic of all the members of this protein family. Eight out of the 12 conserved residues point to the lipid-binding cavity of the molecule. In contrast, most of the 25 L-FABP conserved residues are in clusters on the surface of the molecule. The helix-turn-helix motif shows both a negative and positive electrostatic potential surface as in rat L-FABP, and in contrast with the other FABP types. The mechanism of anthroyloxy-labeled fatty acids transfer from Lb-FABP to phospholipid membranes occurs by a diffusion-mediated process, as previously shown for L-FABP, but the rate of transfer is 1 order of magnitude faster. Toad Lb-FABP can bind two cis-parinaric acid molecules but only one trans-parinaric acid molecule while L-FABP binds two molecules of both parinaric acid isomers. Although toad Lb-FABP shares with L-FABP a broad ligand-binding specificity, the relative affinity is different.  相似文献   

15.
A fatty acid-binding protein from the nematode Ascaridia galli was characterized. The gene was isolated and recombinantly expressed in Escherichia coli. According to the deduced amino acid sequence A. galli fatty acid-binding protein (AgFABP) belongs to the family of nematode polyprotein allergens, as shown by Western blotting and PCR analysis with genomic DNA and cDNA. Both native and recombinant proteins bind fatty acids and retinoids with high affinity. The fluorescent fatty acid analogue 11-[(5-dimethylaminonaphthalene-1-sulfonyl)amino] undecanoic acid (DAUDA) shows substantial changes in its emission spectrum when bound to AgFABP; this binding is reversed by fatty acids such as oleate. Moreover, changes of the intrinsic fluorescence of retinol and retinoic acid confirm retinoid binding activity of AgFABP. Fluorescence titration experiments with DAUDA indicate stoichiometric binding to a single binding site per monomer unit with affinities (Kd) of 1.6 and 1.8 x 10(-7) m for native and the recombinant protein, respectively. The apparent binding affinities of the nonfluorescent ligands were calculated in displacement experiments with DAUDA and values in the same range were obtained for myristic, palmitic, oleic, linoleic, arachidonic and retinoic acid. Additionally, the binding affinity of AgFABP for oleate and palmitate was determined by direct and indirect radiochemical analysis and the values obtained were similar to those from the fluorescent experiments. Both proteins show a preference for the binding of long-chain saturated and unsaturated fatty acids, but not for short chain (C3-C12) and branched fatty acids, cholesterol and tryptophan.  相似文献   

16.
Fatty acid-binding protein from bovine liver but not from bovine heart binds hematin in a saturable manner with high affinity. This property is not confined to a particular isoform as both, pI 6.0- and pI 7.0 L-FABP, bind hematin similarly. In competition experiments hematin and oleic acid could replace each other demonstrating that they share at least parts of the same binding site. Common structural features, i.e. the presence of carboxylic groups and of hydrophobic carbon chains led to the hypothesis that both ligands interact similarly with L-FABP. This was supported by the decrease of binding affinity for either ligand upon modification with phenylglyoxal. Modification in the presence of fatty acid revealed the protection of one of the two arginines of L-FABP. By peptide mapping and Edman degradation Arg122 was identified as the counterpart of the fatty acids carboxylic group.  相似文献   

17.
.16 +/- 0.062% of the fatty acid-binding protein purified from 50 mM N-ethylmaleimide-treated rat liver (L-FABP) was determined as a form S-thiolated by glutathione (L-FABP-SSG). L-FABP-SSG, which was prepared in vitro through thiol-disulfide exchange reaction, showed more acidic pI (approximately 5.0) than the pI (approximately 7.0) of reduced L-FABP. S-thiolation of L-FABP by glutathione decreased the affinity of the protein for unsaturated fatty acids without changing the equimolar maximum binding. The changes in Kd were from 0.63 +/- 0.054 microM to 1.03 +/- 0.14 microM for oleic acid, from 0.63 +/- 0.028 microM to 0.97 +/- 0.12 microM for linoleic acid and from 0.85 +/- 0.050 microM to 1.45 +/- 0.024 microM for arachidonic acid. This modification did not alter the affinity nor the maximum binding for saturated fatty acids, which were determined to be Kd of approximately 1.0 microM for palmitic acid and approximately 0.9 microM for stearic acids, and equimolar maximum binding for both fatty acids. The binding affinity of L-FABP for unsaturated fatty acid may be regulated by redox state of the liver.  相似文献   

18.
Fatty acid-binding proteins (FABP) are abundant cytosolic proteins whose level is responsive to nutritional, endocrine, and a variety of pathological states. Although FABPs have been investigatedin vitro for several decades, little is known of their physiological function. Liver L-FABP binds both fatty acids and cholesterol. Competitive binding analysis and molecular modeling studies of L-FABP indicate the presence of two ligand binding pockets that accomodate one fatty acid each. One fatty acid binding site is identical to the cholesterol binding site. To test whether these observations obtainedin vitro were physiologically relevant, the cDNA encoding L-FABP was transfected into L-cells, a cell line with very low endogenous FABP and sterol carrier proteins. Uptake of both ligands did not differ between control cells and low expression clones. In contrast, both fatty acid uptake and cholesterol uptake were stimulated in the high expression cells. In high expression cells, uptake of fluorescent cis-parinaric acid was enhanced more than that of trans-parinaric acid. This is consistent with the preferential binding of cis-fatty acids to L-FABP but in contrast to the preferential binding of trans-parinaric acid to the L-cell plasma membrane fatty acid transporter (PMFABP). These data show that the level of cytosolic fatty acids in intact cells can regulate both the extent and specificity of fatty acid uptake. Last, sphingomyelinase treatment of L-cells released cholesterol from the plasma membrane to the cytoplasm and stimulated microsomal acyl-CoA: cholesteryl acyl transferase (ACAT). This process was accelerated in high expression cells. These observations show for the first time in intact cells that L-FABP, a protein most prevalent in liver and intestine where much fat absorption takes place, may have a role in fatty acid and cholesterol absorption.Abbreviations FABP fatty acid-binding protein - L-FABP liver fatty acid-binding protein - I-FABP intestinal fatty acid-binding protein - H-FABP heart fatty acid-binding protein - A-FABP adipocyte fatty acid-binding protein - PMFABP plasma membrane fatty acid-binding protein - SCP-2 sterol carrier protein-2 - Dehydroergosterol (DHE) d-5,7,9(11),22-ergostatetraene-3b-ol - cis-parinaric acid-9Z, 11E, 13E, 15Z-octatetraenoic acid - trans parinaric acid, 9E, 11E, 13E, 14E-octatetraenoic acid - BSA bovine serum albumin - KRH Krebs-Ringer-Henseleit buffer  相似文献   

19.
The structure of rat intestinal fatty acid binding protein (I-FABP) with bound oleate (C18:1) has been refined with x-ray diffraction data to a resolution of 1.75 A. The protein contains 10 anti-parallel beta strands composed of 99 residues and 2 short helices of 14 residues. Oleate is located in the interior of the protein in a bent conformation with C1-C12 more ordered than C13-C18. Two of the eight ordered waters in I-FABP:oleate are part of a hydrogen bond network that includes the carboxylate of oleate, the guanidinium group of Arg106, the nitrogen of the indole group of Trp82, and the side chain of Gln115. Most of the methylenes of bound oleate reside in a crevice formed by hydrophobic and aromatic side chains. Tyr70 and Tyr117 envelop the acyl chain from C3 to C8 forming contacts with both the convex and concave faces of its van der Waals surface. The hydroxyls of each phenolic side chain hydrogen bond to ordered water molecules. Two ordered waters make van der Waals contact with the concave face of the bound fatty acid. The omega-terminal methyl of oleate is oriented so that it points toward the center of the benzene of Phe55 allowing it to form van der Waals interactions with its component methylenes. Comparison of the structure of I-FABP:oleate with a recently refined 1.19-A model of apoI-FABP and an earlier 2.0-A model of I-FABP:palmitate revealed a remarkable degree of similarity in the positions of their main chain and side chain atoms and in the conformations of the bound oleate and palmitate. The principal differences were confined to a few discrete regions of the protein. The helical domain, the type I turn between beta strands C and D, and the ring of Phe55 together form a solvent-accessible portal to the interior of the protein. They are repositioned in I-FABP:oleate (and I-FABP:palmitate) so that the binding cavity is even more accessible to solvent and its volume is increased. The side chain of Phe55 which shows discrete disorder in the apoprotein functions as an omega-terminal "sensing device": moving progressively outward toward the surface as the chain length of the bound fatty acid increases by 2 methylenes. Tyr70 and Tyr117 which also show discrete disorder in the apoprotein structure due to rotation around their C alpha-C beta bonds, are stabilized in a single, well ordered position in the holoproteins.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
Although intestinal (I) and liver (L) fatty acid binding proteins (FABP) have been widely studied, the physiological significance of the presence of the two FABP forms (I- and L-FABP) in absorptive cells remains unknown as do the differences related to their distribution along the crypt-villus axis, regional expression, ontogeny and regulation in the human intestine. Our morphological experiments supported the expression of I- and L-FABP as early as 13 weeks of gestation. Whereas cytoplasmic immunofluorescence staining of L-FABP was barely detectable in the lower half of the villus and in the crypt epithelial cells, I-FABP was visualized in epithelial cells of the crypt-villus axis in all intestinal segments until the adult period in which the staining was maximized in the upper part of the villus. Immunoelectron microscopy revealed more intense labeling of L-FABP compared with I-FABP, accompanied with a heterogeneous distribution in the cytoplasm, microvilli and basolateral membranes. By western blot analysis, I- and L-FABP at 15 weeks of gestation appeared predominant in jejunum compared with duodenum, ileum, proximal and distal colon. Exploration of the maturation aspect documented a rise in L-FABP in adult tissues. Permanent transfections of Caco-2 cells with I-FABP cDNA resulted in decreased lipid export, apolipoprotein (apo) biogenesis and chylomicron secretion. Additionally, supplementation of Caco-2 with insulin, hydrocortisone and epidermal growth factor differentially modulated the expression of I- and L-FABP, apo B-48 and microsomal triglyceride transfer protein (MTP), emphasizing that these key proteins do not exhibit a parallel modulation. Overall, our findings indicate that the two FABPs display differences in localization, regulation and developmental pattern.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号