首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 41 毫秒
1.
In rats fed a normal (22% protein) diet, injection of clenbuterol (1 mg/kg/d for 21 d) did not affect energy intake, energy expenditure or weight gain, but reduced energetic efficiency, and fat and energy gains and increased body protein content. Presenting a low-protein (8%) diet reduced energy intake, gain and efficiency, body protein content and the mass of the gastrocnemius muscle when compared to rats fed the control diet. Injection of the protein-deficient rats with clenbuterol (1 mg/kg/d for 21 d) caused hypophagia and reduced body weight and energy gains, energy expenditure and total body fat. However, the total body content of protein was not significantly reduced and the percentage of body protein in this protein deficient, clenbuterol-treated group was greater than that of untreated rats on both the high- and low-protein diets. The ratio of body protein to fat following clenbuterol treatment was increased by over 50% in both normal and protein-deficient rats. The results show that in protein deficient animals, clenbuterol treatment may help conserve body protein at the expense of fat, resulting in a smaller, but leaner body mass.  相似文献   

2.
Clenbuterol is a relatively selective beta2-adrenergic partial agonist that has bronchodilator activity. This drug has been investigated as a potential countermeasure to microgravity- or disuse-induced skeletal muscle atrophy because of presumed anabolic effects. The purpose of this study was to: 1) analyze the anabolic effect of clenbuterol's (-)-R and (+)-S enantiomers (0.2 mg/kg) on muscles (cardiac and skeletal) and other organs; and 2) compare responses of enantiomers to the racemate (0.4 mg/kg and 1.0 mg/kg). Male Sprague Dawley rats were treated with: a) racemic clenbuterol (rac-clenbuterol, 0.4 or 1.0 mg/kg); b) enantiomers [clenbuterol (-)-R or (+)-S]; or c) vehicle (1.0 mL/kg buffered saline). Anabolic activity was determined by measuring tissue mass and protein content. HPLC teicoplanin chiral stationary phase was used to directly resolve racemic clenbuterol to its individual enantiomers. In skeletal muscle, both enantiomers had equal anabolic activity, and the effects were muscle- and anatomic region-specific in magnitude. Although the enantiomers did not affect the ventricular mass to body weight ratio, clenbuterol (+)-S induced a small but significant increase in ventricular mass. Both clenbuterol enantiomers produced significant increases in skeletal muscle mass, while being less active in producing cardiac ventricular muscle hypertrophy than the racemic mixture.  相似文献   

3.
The mechanism by which human immunodeficiency virus (HIV)-1 infection in humans leads to the erosion of lean body mass is poorly defined. Therefore, the purpose of the present study was to determine whether transgenic (Tg) rats that constitutively overexpress HIV-1 viral proteins exhibit muscle wasting and to elucidate putative mechanisms. Over 7 mo, Tg rats gained less body weight than pair-fed controls exclusively as a result of a proportional reduction in lean, not fat, mass. Fast- and slow-twitch muscle atrophy in Tg rats did not result from a reduction in the in vivo-determined rate of protein synthesis. In contrast, urinary excretion of 3-methylhistidine, as well as the content of atrogin-1 and the 14-kDa actin fragment, was elevated in gastrocnemius of Tg rats, suggesting increased muscle proteolysis. Similarly, Tg rats had reduced cardiac mass, which was independent of a change in protein synthesis. This decreased cardiac mass was associated with a reduction in stroke volume, but cardiac output was maintained by a compensatory increase in heart rate. The HIV-induced muscle atrophy was associated with increased whole body energy expenditure, which was not due to an elevated body temperature or secondary bacterial infection. Furthermore, the atrophic response could not be attributed to the development of insulin resistance, decreased levels of circulating amino acids, or increased tissue cytokines. However, skeletal muscle and, to a lesser extent, circulating insulin-like growth factor I was reduced in Tg rats. Although hepatic injury was implicated by increased plasma levels of aspartate and alanine aminotransferases, hepatic protein synthesis was not different between control and Tg rats. Hence, HIV-1 Tg rats develop atrophy of cardiac and skeletal muscle, the latter of which results primarily from an increased protein degradation and may be related to the marked reduction in muscle insulin-like growth factor I.  相似文献   

4.
The aim of this study was to determine the contribution of beta-adrenoceptor activation in the reconstruction of the structural and functional organization of denervated skeletal muscle. beta-agonists, clenbuterol (1.2 mg/kg body weight) and isoproterenol (2 mg/kg body weight), administration (daily oral administration; maximum 7 days) to normal innervated rats as well as denervated animals caused muscle hypertrophy. An increase in mean fiber diameter confirmed this stimulated growth both in normal innervated and denervated rat gastrocnemius muscle. Examination of muscle nuclei from treated but normal innervated rat gastrocnemius exhibited features like large size, active nucleoplasm and an increase in their number per fiber cross section and per mm mean fiber length indicating towards an elevated biosynthetic activity in tissue in the presence of beta adrenoceptor agonists. Administration of drugs to normal innervated animals resulted in an emergence of central muscle nuclei. The hyperactive and enlarged muscle nuclei ultimately organized themselves into unusually elongated nuclear streaks. beta agonist treatment to denervated rats resulted in amelioration of atrophic state of tissue characterized by hypertrophy of muscle fibers thus lending to a restoration of structural organization of tissue. Bizarre shapes of nuclei in denervated muscle tend to recover to that characteristic to normal innervated muscle in presence of clenbuterol and isoproterenol hydrochloride. All observations were confirmed by administering butoxamine, a beta-adrenoceptor antagonist along with beta-agonists. The results suggests that both clenbuterol and isoproterenol hydrochloride are capable of mimicking normal innervation functions in skeletal muscle and thus play important role in the structural and functional reorganization of tissue. Amelioration of denervation atrophy in rat gastrocnemius in the presence of beta-agonists supports this.  相似文献   

5.
Chronic treatment of rats with the 2-adrenergic agonists clenbuterol and fenoterol over 16–19 d raised energy intake, expenditure, and body weight gain but did not affect fat or energy deposition, and body protein gain was increased by 50 and 18%, respectively. Both drugs increased the protein content and mitochondrial GDP-binding capacity of brown adipose tissue. Clenbuterol did not affect plasma insulin, growth hormone, or triiodothyronine levels, although insulin levels were reduced by fenoterol. Both drugs caused hypertrophy of skeletal muscle (gastrocnemius), and muscle protein synthesis in vivo (fractional rate) was elevated by 34 and 26% in clenbuterol and fenoteroltreated rats, respectively.  相似文献   

6.
In mice, the myostatin (Mstn) null mutation and treatment with clenbuterol both increase muscle growth and decrease fat mass. Our objective was to determine whether mechanistic overlap exists by administering clenbuterol to Mstn null mice. Male Mstn null and wild-type mice of similar genetic backgrounds received either 0 (control) or 20 p.p.m. clenbuterol in tap water free choice for 14 days. Several traits were measured to estimate muscle and fat growth. The Mstn null mutation resulted in increased body and empty carcass weight, increased muscle weights and decreased fat pad weights. Fat content was reduced and protein content was increased in the empty carcasses of Mstn null mice. Similarly, treatment with clenbuterol resulted in increased body and empty carcass weight, increased muscle weights and reduced fat pad weights. Fat content of empty carcasses and viscera was reduced and protein content of empty carcasses was increased with clenbuterol treatment. A significant interaction of genotype and clenbuterol treatment would indicate an altered responsiveness of Mstn null mice to clenbuterol. However, only the weight of gastrocnemius muscles exhibited a significant (P = 0.01) interaction of genotype and clenbuterol treatment, indicating that Mstn null mice were less responsive to clenbuterol compared with wild-type mice. Thus, for all other traits, the impact of Mstn null mutation and clenbuterol treatment was completely additive. These data suggest that disruption of Mstn function does not alter the response of mice to β-adrenergic agonists.  相似文献   

7.
The effect of T3 (3,3',5-tri-iodothyronine) on protein turnover in skeletal and cardiac muscle was measured in intact rats by means of a 6 h [14C]tyrosine-infusion technique. Treatment with 25-30 micrograms of T3/100 g body wt. daily for 4-7 days increased the fractional rate of protein synthesis in skeletal muscle. Since the fractional growth rate of the muscle was decreased or unchanged, T3 treatment increased the rate of muscle protein breakdown. These findings suggest that increased protein degradation is an important factor in decreasing skeletal-muscle mass in hyperthyroidism. In contrast with skeletal muscle, T3 treatment for 7 days caused an equivalent increase in the rate of cardiac muscle growth and protein synthesis. This suggests that hyperthyroidism does not increase protein breakdown in heart muscle as it does in skeletal muscle. The failure of T3 to increase proteolysis in heart muscle may be due to a different action on the cardiac myocyte or to systemic effects of T3 which increase cardiac work.  相似文献   

8.
Androgen reduces fat mass, although the underlying mechanisms are unknown. Here, we examined the effect of testosterone on heat production and mitochondrial biogenesis. Testosterone-treated mice exhibited elevated heat production. Treatment with testosterone increased the expression level of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC1α), ATP5B and Cox4 in skeletal muscle, but not that in brown adipose tissue and liver. mRNA levels of genes involved in mitochondrial biogenesis were elevated in skeletal muscle isolated from testosterone-treated male mice, but were down-regulated in androgen receptor deficient mice. These results demonstrated that the testosterone-induced increase in energy expenditure is derived from elevated mitochondrial biogenesis in skeletal muscle.  相似文献   

9.
Skeletal muscle Akt activity stimulates muscle growth and imparts resistance to obesity, glucose intolerance and fatty liver disease. We recently found that ursolic acid increases skeletal muscle Akt activity and stimulates muscle growth in non-obese mice. Here, we tested the hypothesis that ursolic acid might increase skeletal muscle Akt activity in a mouse model of diet-induced obesity. We studied mice that consumed a high fat diet lacking or containing ursolic acid. In skeletal muscle, ursolic acid increased Akt activity, as well as downstream mRNAs that promote glucose utilization (hexokinase-II), blood vessel recruitment (Vegfa) and autocrine/paracrine IGF-I signaling (Igf1). As a result, ursolic acid increased skeletal muscle mass, fast and slow muscle fiber size, grip strength and exercise capacity. Interestingly, ursolic acid also increased brown fat, a tissue that shares developmental origins with skeletal muscle. Consistent with increased skeletal muscle and brown fat, ursolic acid increased energy expenditure, leading to reduced obesity, improved glucose tolerance and decreased hepatic steatosis. These data support a model in which ursolic acid reduces obesity, glucose intolerance and fatty liver disease by increasing skeletal muscle and brown fat, and suggest ursolic acid as a potential therapeutic approach for obesity and obesity-related illness.  相似文献   

10.
High-protein diets have been shown to promote weight loss, to improve glucose homeostasis and to increase energy expenditure and fat oxidation. We aimed to study whether leucine supplementation is able to mimic the alleviating effects of high-protein diets on metabolic syndrome parameters in mice fed high-fat diet.Male C57BL/6 mice were fed for 20 weeks with semisynthetic high-fat diets (20% w/w of fat) containing either an adequate (10% protein, AP) or high (50% protein, HP) amount of whey protein, or an AP diet supplemented with l-leucine corresponding to the leucine content of the HP diet (6% leucine, AP+L). Body weight and composition, energy expenditure, glucose tolerance, hepatic triacylglycerols (TG), plasma parameters as well as expression levels of mRNA and proteins in different tissues were measured. HP feeding resulted in decreased body weight, body fat and hepatic TG accumulation, as well as increased insulin sensitivity compared to AP. This was linked to an increased total and resting energy expenditure (REE), decreased feed energy efficiency, increased skeletal muscle (SM) protein synthesis, reduced hepatic lipogenesis and increased white fat lipolysis. Leucine supplementation had effects that were intermediate between HP and AP with regard to body composition, liver TG content, insulin sensitivity, REE and feed energy efficiency, and similar effects as HP on SM protein synthesis. However, neither HP nor AP+L showed an activation of the mammalian target of rapamycin pathway in SM. Leucine supplementation had no effect on liver lipogenesis and white fat lipolysis compared to AP. It is concluded that the essential amino acid leucine is able to mimic part but not all beneficial metabolic effects of HP diets.  相似文献   

11.
12.
In humans, beta-adrenergic stimulation increases energy and fat metabolism. In the case of beta1-adrenergic stimulation, it is fueled by an increased lipolysis. We examined the effect of beta2-adrenergic stimulation, with and without a blocker of lipolysis, on thermogenesis and substrate oxidation. Furthermore, the effect of beta1-and beta2-adrenergic stimulation on uncoupling protein 3 (UCP3) mRNA expression was studied. Nine lean males received a 3-h infusion of dobutamine (DOB, beta1) or salbutamol (SAL, beta2). Also, we combined SAL with acipimox to block lipolysis (SAL+ACI). Energy and substrate metabolism were measured continuously, blood was sampled every 30 min, and muscle biopsies were taken before and after infusion. Energy expenditure significantly increased approximately 13% in all conditions. Fat oxidation increased 47 +/- 7% in the DOB group and 19 +/- 7% in the SAL group but remained unchanged in the SAL+ACI condition. Glucose oxidation decreased 40 +/- 9% upon DOB, remained unchanged during SAL, and increased 27 +/- 11% upon SAL+ACI. Plasma free fatty acid (FFA) levels were increased by SAL (57 +/- 11%) and DOB (47 +/- 16%), whereas SAL+ACI caused about fourfold lower FFA levels compared with basal levels. No change in UCP3 was found after DOB or SAL, whereas SAL+ACI downregulated skeletal muscle UCP3 mRNA levels 38 +/- 13%. In conclusion, beta2-adrenergic stimulation directly increased energy expenditure independently of plasma FFA levels. Furthermore, this is the first study to demonstrate a downregulation of skeletal muscle UCP3 mRNA expression after the lowering of plasma FFA concentrations in humans, despite an increase in energy expenditure upon beta2-adrenergic stimulation.  相似文献   

13.
The mechanism(s) responsible for beta2-adrenergic receptor-mediated skeletal muscle and cardiac hypertrophy remains undefined. This study examined whether calcium influx through L-type calcium channels contributed to the development of cardiac and skeletal muscle (plantaris; gastrocnemius; soleus) hypertrophy during an 8-day treatment with the beta2-adrenergic receptor agonist clenbuterol. Concurrent blockade of L-type calcium channels with nifedipine did not reverse the hypertrophic action of clenbuterol. Moreover, nifedipine treatment alone resulted in both cardiac and soleus muscle hypertrophy (6% and 7%, respectively), and this effect was additive to the clenbuterol-mediated hypertrophy in the heart and soleus muscles. The hypertrophic effects of nifedipine were not associated with increases in total beta-adrenergic receptor density, nor did nifedipine reverse clenbuterol-mediated beta-adrenergic receptor downregulation in either the left ventricle or soleus muscle. Both nifedipine and clenbuterol-induced hypertrophy increased total protein content of the soleus and left ventricle, with no change in protein concentration. In conclusion, our results support the hypothesis that beta2-adrenergic receptor agonist-induced muscle hypertrophy is mediated by mechanisms other than calcium influx through L-type calcium channels.  相似文献   

14.
Female dystrophic mice (mdx on C57 Black background) gained weight more rapidly than age-matched controls and had a higher body fat content (% body weight), a slightly lower protein content and a reduced mass of muscle. Chronic treatment (21 d) of the mice with the 2-agonist clenbuterol stimulated weight gain in both genotypes without affecting energy intake. Clenbuterol increased the mass of the gastrocnemius and soleus muscle by 13% and 29% in normal and dystrophic mice, respectively, and raised body protein but depressed body fat. Body water and energy content were unaffected by clenbuterol, but the ratio of protein to fat in the carcasses was enhanced by 17% in normal and 56% in dystrophic mice following clenbuterol treatment. Thus, the 2-agonist restored the body composition of dystrophic mice to normal and enhanced the protein to fat ratio in both these and normal mice.  相似文献   

15.
In men, as testosterone levels decrease, fat mass increases and muscle mass decreases. Increased fat mass in men, in particular central obesity, is a major risk factor for type 2 diabetes, cardiovascular disease, and all-cause mortality. Testosterone treatment has been shown to decrease fat mass and increase fat-free mass. We hypothesize that androgens act directly via the DNA binding-dependent actions of the androgen receptor (AR) to regulate genes controlling fat mass and metabolism. The aim of this study was to determine the effect of a global DNA binding-dependent (DBD) AR knockout (DBD-ARKO) on the metabolic phenotype in male mice by measuring body mass, fat mass, food intake, voluntary physical activity, resting energy expenditure, substrate oxidation rates, serum glucose, insulin, lipid, and hormone levels, and metabolic gene expression levels and second messenger protein levels. DBD-ARKO males have increased adiposity despite a decreased total body mass compared with wild-type (WT) males. DBD-ARKO males showed reduced voluntary activity, decreased food intake, increased serum leptin and adiponectin levels, an altered lipid metabolism gene profile, and increased phosphorylated CREB levels compared with WT males. This study demonstrates that androgens acting via the DNA binding-dependent actions of the AR regulate fat mass and metabolism in males and that the increased adiposity in DBD-ARKO male mice is associated with decreased voluntary activity, hyperleptinemia and hyperadiponectinemia and not with insulin resistance, increased food intake, or decreased resting energy expenditure.  相似文献   

16.
Prolonged treatment with the beta(2)-adrenoceptor agonist clenbuterol (1-2 mg. kg body mass(-1). day (-1)) is known to induce the hypertrophy of fast-contracting fibers and the conversion of slow- to fast-contracting fibers. We investigated the effects of administering a lower dose of clenbuterol (250 microgram. kg body mass(-1). day (-1)) on skeletal muscle myosin heavy chain (MyHC) protein isoform content and adenine nucleotide (ATP, ADP, and AMP) concentrations. Male Wistar rats were administered clenbuterol (n = 8) or saline (n = 6) subcutaneously for 8 wk, after which the extensor digitorum longus (EDL) and soleus muscles were removed. We demonstrated an increase of type IIa MyHC protein content in the soleus from approximately 0.5% in controls to approximately 18% after clenbuterol treatment (P < 0.05), which was accompanied by an increase in the total adenine nucleotide pool (TAN; approximately 19%, P < 0.05) and energy charge [E-C = (ATP + 0.5 ADP)/(ATP + ADP + AMP); approximately 4%; P < 0.05]. In the EDL, a reduction in the content of the less prevalent type I MyHC protein from approximately 3% in controls to 0% after clenbuterol treatment (P < 0.05) occurred without any alterations in TAN and E-C. These findings demonstrate that the phenotypic changes previously observed in slow muscle after clenbuterol administration at 1-2 mg. kg body mass(-1). day(-1) are also observed at a substantially lower dose and are paralleled by concomitant changes in cellular energy metabolism.  相似文献   

17.
Triacylglyceride stored in cytosolic lipid droplets (LDs) constitutes a major energy reservoir in most eukaryotes. The regulated turnover of triacylglyceride in LDs provides fatty acids for mitochondrial β-oxidation and ATP generation in physiological states of high demand for energy. The mechanisms for the formation of LDs in conditions of energy excess are not entirely understood. Fat storage-inducing transmembrane protein 2 (FIT2/FITM2) is the anciently conserved member of the fat storage-inducing transmembrane family of proteins implicated to be important in the formation of LDs, but its role in energy metabolism has not been tested. Here, we report that expression of FIT2 in mouse skeletal muscle had profound effects on muscle energy metabolism. Mice with skeletal muscle-specific overexpression of FIT2 (CKF2) had significantly increased intramyocellular triacylglyceride and complete protection from high fat diet-induced weight gain due to increased energy expenditure. Mass spectrometry-based metabolite profiling suggested that CKF2 skeletal muscle had increased oxidation of branched chain amino acids but decreased oxidation of fatty acids. Glucose was primarily utilized in CKF2 muscle for synthesis of the glycerol backbone of triacylglyceride and not for glycogen production. CKF2 muscle was ATP-deficient and had activated AMP kinase. Together, these studies indicate that FIT2 expression in skeletal muscle plays an unexpected function in regulating muscle energy metabolism and indicates an important role for lipid droplet formation in this process.  相似文献   

18.
Mutations in the myostatin gene are associated with hypermuscularity, suggesting that myostatin inhibits skeletal muscle growth. We postulated that increased tissue-specific expression of myostatin protein in skeletal muscle would induce muscle loss. To investigate this hypothesis, we generated transgenic mice that overexpress myostatin protein selectively in the skeletal muscle, with or without ancillary expression in the heart, utilizing cDNA constructs in which a wild-type (MCK/Mst) or mutated muscle creatine kinase (MCK-3E/Mst) promoter was placed upstream of mouse myostatin cDNA. Transgenic mice harboring these MCK promoters linked to enhanced green fluorescent protein (EGFP) expressed the reporter protein only in skeletal and cardiac muscles (MCK) or in skeletal muscle alone (MCK-3E). Seven-week-old animals were genotyped by PCR of tail DNA or by Southern blot analysis of liver DNA. Myostatin mRNA and protein, measured by RT-PCR and Western blot, respectively, were significantly higher in gastrocnemius, quadriceps, and tibialis anterior of MCK/Mst-transgenic mice compared with wild-type mice. Male MCK/Mst-transgenic mice had 18-24% lower hind- and forelimb muscle weight and 18% reduction in quadriceps and gastrocnemius fiber cross-sectional area and myonuclear number (immunohistochemistry) than wild-type male mice. Male transgenic mice with mutated MCK-3E promoter showed similar effects on muscle mass. However, female transgenic mice with either type of MCK promoter did not differ from wild-type controls in either body weight or skeletal muscle mass. In conclusion, increased expression of myostatin in skeletal muscle is associated with lower muscle mass and decreased fiber size and myonuclear number, decreased cardiac muscle mass, and increased fat mass in male mice, consistent with its role as an inhibitor of skeletal muscle mass. The mechanism of gender specificity remains to be clarified.  相似文献   

19.
We evaluated the effect of skeletal muscle mitochondrial uncoupling on energy and glucose metabolism under different diets. For 3 mo, transgenic HSA-mUCP1 mice with ectopic expression of uncoupling protein 1 in skeletal muscle and wild-type littermates were fed semisynthetic diets with varying macronutrient ratios (energy % carbohydrate-protein-fat): HCLF (41:42:17), HCHF (41:16:43); LCHF (11:45:44). Body composition, energy metabolism, and insulin resistance were assessed by NMR, indirect calorimetry, and insulin tolerance test, respectively. Gene expression in different organs was determined by real-time PCR. In wild type, both high-fat diets led to an increase in body weight and fat. HSA-mUCP1 mice considerably increased body fat on HCHF but stayed lean on the other diets. Irrespective of differences in body fat content, HSA-mUCP1 mice showed higher insulin sensitivity and decreased plasma insulin and liver triglycerides. Respiratory quotient and gene expression indicated overall increased carbohydrate oxidation of HSA-mUCP1 but a preferential channeling of fatty acids into muscle rather than liver with high-fat diets. Evidence for increased lipogenesis in white fat of HSA-mUCP1 mice suggests increased energy dissipating substrate cycling. Retinol binding protein 4 expression in white fat was increased in HSA-mUCP1 mice despite increased insulin sensitivity, excluding a causal role in the development of insulin resistance. We conclude that skeletal muscle mitochondrial uncoupling does not protect from the development of obesity in all circumstances. Rather it can lead to a "healthy" obese phenotype by preserving insulin sensitivity and a high metabolic flexibility, thus protecting from the development of obesity associated disturbances of glucose homeostasis.  相似文献   

20.
The effects of intracranial transforming growth factor (TGF)-beta3 on spontaneous motor activity and energy metabolism were examined in rats. After injection of TGF-beta3 into the cisterna magna of the rat, spontaneous motor activity decreased significantly for 1 h. The intracranial injection of TGF-beta3 produced an immediate decrease in respiratory exchange ratio (RER). No significant changes were observed in energy expenditure. TGF-beta3 induced a significant increase in total fat oxidation and a decrease in total carbohydrate oxidation. Furthermore, the serum substrates associated with fat metabolism were significantly altered in rats injected with TGF-beta3. Both lipoprotein lipase activity in skeletal muscle and the concentration of serum ketone bodies increased, suggesting that the increase in fat oxidation caused by TGF-beta3 may have occurred in the liver and muscle. Intracranial injection of TGF-beta3 appeared to evoke a switch in the energy substrates accessed in energy expenditure. These results suggest that the release of TGF-beta3 in the brain by exercise is a signal for regulating energy consumption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号