首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An apparently identical deletion of 4.977 bp in length (position 8,483-13,459) was detectable in the mitochondrial DNA from skeletal muscle, heart muscle, kidney, and liver of a patient with Kearns-Sayre syndrome. The proportion of deleted genome varied from 60% for the skeletal muscle to 15% for heart muscle and kidney, and was below 5% in the liver. The mtDNA heteroplasmy of the liver was only detectable after amplification by PCR. In skeletal and heart muscle histochemical and immunocytochemical findings concerning cytochrome c oxidase were in good correlation with the proportion of deleted mitochondrial DNA.  相似文献   

2.
Kearns-Sayre syndrome is one of the neurological diseases caused by a defect in the energy-producing system of mitochondria. Keams-Sayre is known to be associated with a deletion in the mitochondrial genome and is usually detected in muscle biopsies of the patients. In this study, we report the molecular lesion of mitochondrial DNA (mtDNA) in four Thai patients admitted to hospital with encephalomyopathies. The 3.5-kb deletion of mtDNA was detected by Southern analysis, mapped by amplification with five primer pairs covering almost the total mitochondrial genome, and confirmed by PCR primer shift analysis. The deleted position was localized to nt 10208/13765 or nt 10204/13761 spanning the coding area of subunits 3 (ND3), 4L (ND4L), 4 (ND4), and 5 (ND5) of respiratory chain enzyme complex I and the tRNA genes for histidine, serine, leucine, and arginine. The sequence flanking the deletion was a 4-bp repeat of TCCC. All four patients have exactly the same 3558-bp mtDNA deletion; this is the only deleted position in their mtDNA but is different from those reported in the literature. The deletion seems to be found only in Thai patients, although they present with different clinical manifestations and none of them is not related.  相似文献   

3.
In patients with mitochondrial disease a continuously increasing number of mitochondrial DNA (mtDNA) mutations and polymorphisms have been identified. Most pathogenic mtDNA mutations are heteroplasmic, resulting in heteroduplexes after PCR amplification of mtDNA. To detect these heteroduplexes, we used the technique of denaturing high performance liquid chromatography (DHPLC). The complete mitochondrial genome was amplified in 13 fragments of 1–2 kb, digested in fragments of 90–600 bp and resolved at their optimal melting temperature. The sensitivity of the DHPLC system was high with a lowest detection of 0.5% for the A8344G mutation. The muscle mtDNA from six patients with mitochondrial disease was screened and three mutations were identified. The first patient with a limb-girdle-type myopathy carried an A3302G substitution in the tRNALeu(UUR) gene (70% heteroplasmy), the second patient with mitochondrial myopathy and cardiomyopathy carried a T3271C mutation in the tRNALeu(UUR) gene (80% heteroplasmy) and the third patient with Leigh syndrome carried a T9176C mutation in the ATPase6 gene (93% heteroplasmy). We conclude that DHPLC analysis is a sensitive and specific method to detect heteroplasmic mtDNA mutations. The entire automatic procedure can be completed within 2 days and can also be applied to exclude mtDNA involvement, providing a basis for subsequent investigation of nuclear genes.  相似文献   

4.
We describe an accurate procedure for a rapid diagnosis of heteroplasmic mtDNA deletions based on the polymerase chain reaction (PCR). For a selective amplification of deleted mtDNA across the breakpoints of the deletion, we used seven combinations of primers surrounding the most common deleted region between the two origins of mtDNA replication. This procedure was performed on muscle biopsies of twenty patients harboring a single mtDNA deletion and one patient with multiple mtDNA deletions. The results were compared with Southern-blotting analysis. We conclude that this PCR procedure is a sensitive and convenient screening method for the detection of mtDNA deletions. (Mol Cell Biochem 174: 221–225, 1997)  相似文献   

5.
We used a strategy based on long PCR (polymerase chain reaction) for detection and characterization of mitochondrial DNA (mtDNA) rearrangements in two patients with clinical signs suggesting Pearson syndrome and Kearns-Sayre syndrome (KSS), respectively, and one patient with myopathic symptoms of unidentified origin. Mitochondrial DNA rearrangements were detected by amplification of the complete mitochondrial genome (16.6 kb) using long PCR with primers located in essential regions of the mitochondrial genome and quantified by three-primer PCR. Long PCR with deletion-specific primers was used for identification and quantitative estimation of the different forms of rearranged molecules, such as deletions and duplications. We detected significant amounts of a common 7.4-kb deletion flanked by a 12-bp direct repeat in all tissues tested from the patient with Pearson syndrome. In skeletal muscle from the patient with clinical signs of KSS we found significant amounts of a novel 3.7-kb rearrangement flanked by a 4-bp inverted repeat that was present in the form of deletions as well as duplications. In the patient suffering from myopathic symptoms of unidentified origin we did not detect rearranged mtDNA in blood but found low levels of two rearranged mtDNA populations in skeletal muscle, a previously described 7-kb deletion flanked by a 7-bp direct repeat and a novel 6.6-kb deletion with no repeat. These two populations, however, were unlikely to be the cause of the myopathic symptoms as they were present at low levels (10–40 ppm). Using a strategy based on screening with long PCR we were able to detect and characterize high as well as low levels of mtDNA rearrangements in three patients. Received: 10 March 1997 / Accepted: 20 May 1997  相似文献   

6.
Defects of mitochondrial DNA (mtDNA) are an important cause of disease and play a role in the ageing process. There are multiple copies of the mitochondrial genome in a single cell. In many patients with acquired or inherited mtDNA mutations, there exists a mixture of mutated and wild type genomes (termed heteroplasmy) within individual cells. As a biochemical and clinical defect is only observed when there are high levels of mutated mtDNA, a crucial investigation is to determine the level of heteroplasmic mutations within tissues and individual cells. We have developed an assay to determine the relative amount of deleted mtDNA using real-time fluorescence PCR. This assay detects the vast majority of deleted molecules, thus eliminating the need to develop specific probes. We have demonstrated an excellent correlation with other techniques (Southern blotting and three- primer competitive PCR), and have shown this technique to be sensitive to quantify the level of deleted mtDNA molecules in individual cells. Finally, we have used this assay to investigate patients with mitochondrial disease and shown in individual skeletal muscle fibres that there exist different patterns of abnormalities between patients with single or multiple mtDNA deletions. We believe that this technique has significant advantages over other methods to quantify deleted mtDNA and, employed alongside our method to sequence the mitochondrial genome from single cells, will further our understanding of the role of mtDNA mutations in human disease and ageing.  相似文献   

7.
The advent of long PCR (XL-PCR) has proven to be a major advance in PCR technology and is currently being utilised to investigate numerous biological systems. The analysis of mixed DNA populations is a particularly useful application for XL-PCR. For example, XL-PCR has been used to investigate the occurrence of heterogeneous mitochondrial DNA (mtDNA) rearrangement mutations. With XL-PCR it became possible to amplify the entire length of the mtDNA chromosome and detect any mtDNA deletion or insertion mutations based on a measurable change in overall sequence length. In the present communication, XL-PCR and conventional short-length PCR were used to amplify mitochondrial DNA sequences from several human vastus lateralis skeletal muscle samples. The experiments demonstrated that there was minimal preferential amplification of shorter DNA sequences with XL-PCR and was significantly less than the preferential amplification of shorter sequences observed with conventional PCR. Also, XL-PCR amplification of the complete mtDNA sequence from control DNA containing a single mtDNA template (leucocyte extracts) showed that the generation of PCR artefacts was not a predisposed failing of the system but was dependant on the standard rules that govern the set up and optimisation of any PCR reaction. In optimised systems, XL-PCR artefacts were not generated and a single PCR product was always recovered.  相似文献   

8.
A patient is described who has features of Pearson syndrome and who presented in the neonatal period with a hypoplastic anemia. He later developed hepatic, renal, and exocrine pancreatic dysfunction. At the age of 5 years he developed visual impairment, tremor, ataxia, proximal muscle weakness, external ophthalmoplegia, and a pigmentary retinopathy (Kearns-Sayre syndrome). Muscle biopsy confirmed the diagnosis of mitochondrial myopathy. Analysis of mtDNA from leukocytes and muscle showed mtDNA heteroplasmy in both tissues, with one population of mtDNA deleted by 4.9 kb. The deleted region was bridged by a 13-nucleotide sequence occurring as a direct repeat in normal mtDNA. Both Pearson syndrome and Kearns-Sayre syndrome have been noted to be associated with deletions of mtDNA; they have not previously been described in the same patient. These observations indicate that the two disorders have the same molecular basis; the different phenotypes are probably determined by the initial proportion of deleted mtDNAs and modified by selection against them in different tissues.  相似文献   

9.
Two sisters in the first year of life presented with a proximal tubulopathy of unknown etiology. They subsequently developed a pluritissular disorder including diabetes mellitus, skin abnormalities, mitochondrial myopathy with ragged-red fibers, and cerebellar ataxia. Their mother had ptosis, ophthalmoplegia, and muscle weakness. Analysis of the mitochondrial respiratory chain showed a complex III deficiency in both skeletal muscle and lymphocytes of the second girl. Southern blot analysis provided evidence for a heteroplasmic partial duplication of the mtDNA (26 kb), involving one full-length and one partly deleted mitochondrial genome and with one single abnormal junction between the genes for ATPase 6 and cytochrome b. Using PCR amplification of lymphocyte DNA, we were able to detect minute amounts of duplicated molecules in the mother, which provided evidence for maternal inheritance of the partial duplication. While maternal transmission of point mutations have been reported in Leber disease, retinitis pigmentosa, and MERRF disease, this observation is, to our knowledge, the first example of a maternally inherited duplication of the mitochondrial genome in man.  相似文献   

10.
 Myoblast cultures were established from muscle biopsies of two patients harboring heteroplasmic mitochondrial (mt) DNA deletions. The accumulation kinetics of the deleted mtDNA was followed during myoblast to myotube differentiation. The percent- age of deleted mtDNA was determined by quantitative PCR in myoblasts, myotubes, and muscle biopsies. The deleted form accounted for 65% of the mtDNA present in a muscle biopsy from a patient harboring a 5.6-kb deletion. The percentage of deleted mtDNA was 1.2% in myoblasts and increased progressively after differentiation, up to 12% at 21 days after the commitment time. In a second patient harboring a 2.8-kb deletion, the percentage of deleted mtDNA increased much more slowly: from 0.07% in myoblasts to 0.21% after 22 days of differentiation, as compared with 45% in the muscle biopsy. Thus, a three- and ten-fold increase, respectively, in the fraction of deleted mtDNA occurred during the differentiation of myoblasts to myotubes from the two patients. The faster accumulation of deleted mtDNA in the first patient’s cells was linked to an earlier myoblast to myotube differentiation, suggesting that the level of deleted mtDNA is inversely related to the rate of cell proliferation. Received: 16 April 1996/Accepted: 29 July 1996  相似文献   

11.
肥厚型心肌病患者心肌mtDNA大片段缺失的探讨   总被引:1,自引:0,他引:1  
应用Long PCR及Primer Shift Long PCR 技术对3例肥厚型心肌病(HCM)患者和10例正常引产胎儿的13份心肌标本予以线粒体 DNA缺失检测,结果在1例HCM患者心肌线粒体DNA中发现约5.0kb缺失,而在正常引产胎儿的标本未见该缺失,提示HCM的发生可能与mtDNA缺失相关。 Astract Using long PCR and primer shift long PCR techniques, we analyzed the mitochondrial DNA (mtDNA) isolated from the heart muscles of 3 hypertrophic cardiomyopathy (HCM) patients and 10 normal abortive fetuses. Almost 5.0kb deletion was found in the heart mtDNA of one HCM patient, while no deletion was detected in that of 10 fetuses. It is concluded that HCM may correlate with mtDNA deletion.  相似文献   

12.
Multiple mitochondrial DNA deletions in an elderly human individual.   总被引:15,自引:0,他引:15  
We have used the polymerase chain reaction (PCR) to study deletions in the mitochondrial DNA (mtDNA) of an elderly human individual. An extended set of PCR primers has been utilised to identify 10 mitochondrial DNA deletions in a 69-year-old female subject with no known mitochondrial disease. The particular deletions visualised as PCR products depended on the primer pairs used, such that the more distantly separated PCR primers enabled visualisation of larger deletions. Some deletions were common to the heart, brain and skeletal muscle, whereas others were apparently specific to individual tissues. DNA sequencing analysis of PCR products showed that short direct repeat sequences (5 to 13 bp) flanked all deletion breakpoints; in most cases one copy of the repeat was deleted. It is proposed that the accumulation of such multiple deletions is a general phenomenon during the ageing process.  相似文献   

13.
The 4977bp deletion of mitochondrial DNA (mtDNA) is known to accumulate with increasing age in post mitotic tissues. Recently, studies came out detecting this specific alteration also in fast replicating cells, e.g. in blood or skin tissue, often in correlation to specific diseases or -- specifically in skin -- external stressors such as UV radiation. In this study, we investigated mitochondrial mutagenesis in 69 patients with a chronic alcoholic disease and 46 age matched controls with a moderate drinking behavior. Two different fragments, specific for total and for deleted mtDNA (dmtDNA) were amplified in a duplex-PCR. A subsequent fragment analysis was performed and for relative quantification, the quotient of the peak areas of amplification products specific for deleted and total mtDNA was determined. Additionally, a real time PCR was performed to quantify mtDNA copy number. The relative amount of 4977bp deleted mtDNA in alcoholics was significantly increased compared to controls. On the other hand, no difference regarding the mtDNA/nuclear DNA ratio in both investigated groups was detected. Additionally, no age dependence could be found nor in alcoholics, neither in the control group. These findings indicate that mtDNA mutagenesis in blood can be influenced by stressors such as alcohol. Ethanol seems to be a significant factor to alter mitochondrial DNA in blood and might be an additional contributor for the cellular aging process.  相似文献   

14.
We studied several affected and one nonaffected individuals belonging to three unrelated pedigrees. The pathological trait was an autosomal dominant mitochondrial myopathy due to large-scale multiple deletions of the mitochondrial genome. Clinically, symptomatic patients had progressive external ophthalmoplegia, muscle weakness and wasting, sensorineural hypoacusia, and, in some cases, vestibular areflexia and tremor. The muscle biopsies of all patients examined showed ragged-red fibers, neurogenic changes, and a partially decreased histochemical reaction to cytochrome c oxidase. Multiple mtDNA heteroplasmy was detected in the patients by both Southern blot analysis and PCR amplification, whereas the unaffected individual had the normal homoplasmic hybridization pattern. These findings confirm and add further details to the existence of a new human disease--defined clinically as a mitochondrial myopathy, genetically as a Mendelian autosomal dominant trait, and molecularly by the accumulation of multiple, large-scale deletions of the mitochondrial genome--that is due to impaired nuclear control during mtDNA replication.  相似文献   

15.
We have investigated the daughter of a woman with Kearns-Sayre syndrome. The woman had a high percentage of deleted mtDNA in muscle, but no deleted mtDNA was detected in fibroblasts, bone marrow, and peripheral blood cells by Southern blot analysis. With PCR, analytical sensitivity was significantly increased, and deleted mtDNA was detected in all examined tissues from this patient. The patient had healthy parents and nine healthy siblings. No deleted mtDNA was detected in blood from the mother of the patient. The patient had an uneventful pregnancy and delivered at term. Deleted mtDNA could not be detected in placenta by Southern blot analysis. With PCR, deleted mtDNA was detected in the majority of placental specimens. This finding may, however, be due to contamination with maternal DNA. The patient's daughter was healthy at age 5 mo, and morphologic examination of muscle was normal. No transmission of deleted mtDNA to the daughter could be detected by Southern blot and PCR analysis of peripheral blood cells, bone marrow, fibroblasts, and muscle. The presence of deleted mtDNA was excluded at a fractional level of less than 1:100,000 in all examined tissues from the daughter.  相似文献   

16.
Wang ZC  Wang XM  Jiao BH  Jin YX  Miao MY  Zhu KJ  Ni QG 《IUBMB life》2003,55(3):133-137
A new PCR based method was developed to detect deleted mitochondrial DNA (mtDNA). Peripheral blood cell DNA was obtained from a victim who was accidently exposed to a 60Co radiation source in 1990. Using the DNA as template, first PCR was performed to generate multiple products including true deletions and artifacts. The full length product was recovered and used as template of secondary PCR. The suspicious deletion product of mtDNA could be confirmed only if it was yielded by first PCR. Using either original primers or their nested primers, the suspicious deletion product was amplified and authenticated as a true deletion product. The template was recovered and determined to be a deletion by sequencing directly. The results show that a new mtDNA deletion, which spans 889 bp from nt 11688 to nt 12576, was detected in the peripheral blood cells of the victim. It indicates that this new PCR-based method was more efficient at detecting small populations of mtDNA deletion than other routine methods. MtDNA deletion was found in the victim, suggesting the relationship between the deletion and phenotypes of the disease.  相似文献   

17.
Deleted mitochondrial DNA (mtDNA) was accumulated in the parkinsonian striatum, but the same deleted mtDNA was also detectable in the control striatum when cycles of polymerase chain reaction were increased. To discriminate between these pathological and physiological conditions, we quantitatively analyzed the proportion of deleted mtDNA to normal mtDNA by measuring the incorporation of alpha-[32P]deoxycytosine triphosphate into mtDNA fragments by using a laser image analyzer. To estimate the molar ratio of the deleted mtDNA to normal mtDNA, the radioactivity was normalized by each fragment size. By plotting logarithms of normalized radioactivities against PCR amplification cycles, straight lines were obtained with different slopes. By extrapolation of the line to the zero amplification, the proportion of mutant mtDNA to normal mtDNA in the original sample from the parkinsonian striatum was estimated to be ca. 5%, which was at least ten times higher than the proportion of ca. 0.3% in the control striatum. These results indicate that phenotype of the mutant mtDNA as Parkinson's disease is expressed when the proportion of deleted mtDNA to normal mtDNA exceeds a threshold of ten times higher value than in the normal subject.  相似文献   

18.
Mitochondrial DNA (mtDNA) continues to play a pivotal role in phylogeographic, phylogenetic, and population genetic studies. PCR amplification with mitochondrial primers often yields ambiguous sequences, in part because of the co-amplification of nuclear copies of mitochondrial genes (numts) and true mitochondrial heteroplasmy arising from mutations, hybridization with paternal leakage, gene duplications, and recombination. Failing to detect numts or to distinguish the origin of such homologous sequences results in the incorrect interpretation of data. However, few studies obtain purified mtDNA to confirm the mitochondrial origin of the first reference sequences for a species. Here, we demonstrate the importance and ease of obtaining semi-pure mtDNA from wildlife tissues, preserved under various typical field conditions, and investigate the success of 3 commercial extraction kits, cesium-chloride gradient mtDNA purification, long-template PCR amplification, cloning, and more species-specific degenerate primers. Using more detailed avian examples, we illustrate that unfertilized or undeveloped eggs provide the purest sources of mtDNA; that kits provide an alternative to cesium-chloride gradient methods; and that long-template PCR, cloning, and degenerate primers cannot be used to produce reliable mitochondrial reference sequences, but can be powerful tools when used in conjunction with purified mtDNA stocks to distinguish numts from true heteroplasmy.  相似文献   

19.
Quantitation of wild-type and deleted mitochondrial DNA (mtDNA) coexisting within the same cell (a.k.a., heteroplasmy) is important in mitochondrial disease and aging. We report the development of a multiplex three-primer PCR assay that is capable of absolute quantitation of wild-type and deleted mtDNA simultaneously. Molecular beacons were designed to hybridize with either type of mtDNA molecule, allowing real-time detection during PCR amplification. The assay is specific and can detect down to six copies of mtDNA, making it suitable for single-cell analyses. The relative standard deviation in the threshold cycle number is approximately 0.6%. Heteroplasmy was quantitated in individual cytoplasmic hybrid cells (cybrids), containing a large mtDNA deletion, and bulk cell samples. Individual cybrid cells contained 100-2600 copies of wild-type mtDNA and 950-4700 copies of deleted mtDNA, and the percentage of heteroplasmy ranged from 43+/-16 to 95+/-16%. The average amount of total mtDNA was 3800+/-1600 copies/cybrid cell, and the average percentage of heteroplasmy correlated well with the bulk cell sample. The single-cell analysis also revealed that heteroplasmy in individual cells is highly heterogeneous. This assay will be useful for monitoring clonal expansions of mtDNA deletions and investigating the role of heteroplasmy in cell-to-cell heterogeneity in cellular models of mitochondrial disease and aging.  相似文献   

20.
Single, large-scale deletions of mitochondrial DNA (mtDNA) are a common finding in the molecular investigation of patients with suspected mitochondrial disorders and are typically detected by Southern blot analysis of muscle DNA that has been linearized by a single cutter enzyme (BamHI or PvuII). We describe our investigations of a 47-year-old woman with exercise intolerance, myalgia, and ptosis who underwent a muscle biopsy for a suspected mitochondrial genetic abnormality. Southern blot analysis after digestion of muscle DNA with BamHI revealed the apparent presence of two mtDNA species, indicative of a heteroplasmic deletion of 2.0-2.5 kb in length involving approximately 50% of all molecules. Contrary to this observation, longrange polymerase chain reaction (PCR) amplified only wild-type mtDNA. Sequence analysis revealed that the patient harbored two previously recognized control region polymorphisms, a homoplasmic 16390G>A variant that introduces a new BamHI site and a heteroplasmic 16390G>A change that abolishes this site, thus explaining the initial false-positive testing for a heteroplasmic mtDNA deletion. Our findings highlight the potential problems associated with the diagnosis of mitochondrial genetic disease and emphasize the need to confirm positive cases of mtDNA deletions using more than one enzyme or an independent method such as long-range PCR amplification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号