首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this study was to investigate the low-back loading during common patient-handling tasks. Ten female health care workers without formal training in patient handling performed nine patient-handling tasks including turning, lifting and repositioning a male stroke patient. The low-back loading was quantified by net moment, compression, and shear forces at the L4/L5 joint, measured muscle activity (EMG) in erector spinae muscles and rate of perceived exertion (RPE; Borg scale). The experiments were videotaped with a 50Hz video system using five cameras, and the ground and bedside reaction forces of the health care worker were recorded by means of force platforms and force transducers on the bed. The biomechanical load was calculated using a dynamic 3D seven-segment model of the lower part of the body, and the forces at the L4/L5 joint were estimated by a 14 muscles cross-sectional model of the low back (optimisation procedure). Compression force and torque showed high task dependency whereas the EMG data and the RPE values were more dependent on the subject. The peak compression during two tasks involving lifting the patient (4132/4433N) was significantly higher than all other tasks. Four tasks involving repositioning the patient in the bed (3179/3091/2932/3094N) did not differ, but showed higher peak compression than two tasks turning the patient in the bed (1618/2197N). Thus, in this study the patient-handling tasks could be classified into three groups-characterised by lifting, repositioning or turning-with different levels of peak net torque and compression at the L4/L5 joint.  相似文献   

2.
Validation of a biodynamic model of pushing and pulling.   总被引:2,自引:0,他引:2  
Pushing and pulling during manual material handling can increase the compressive forces on the lumbar disc region while creating high shear forces at the shoe-floor interface. A sagittal plane dynamic model derived from previous biomechanical models was developed to predict L5/S1 compressive force and required coefficients of friction during dynamic cart pushing and pulling. Before these predictions could be interpreted, however, it was necessary to validate model predictions against independently measured values of comparable quantities. This experiment used subjects of disparate stature and body mass, while task factors such as cart resistance and walking speed were varied. Predicted ground reaction forces were compared with those measured by a force platform, with correlations up to 0.67. Predicted erector spinae and rectus abdominus muscle forces were compared with muscle forces derived from RMS-EMGs of the respective muscle groups, using a static force build-up regression relationship to transform the dynamic RMS-EMGs to trunk muscle forces. Although correlations were low, this was attributed in part to the use of surface EMG on subjects of widely varied body mass. The biodynamic model holds promise as a tool for analysis of actual industrial pushing and pulling tasks, when carefully applied.  相似文献   

3.
Simple video-based methods previously proposed for field research to estimate L5/S1 net moments during real-world manual materials handling rely on polynomial interpolation on the joint angles from key frames extracted from video recordings; however, polynomial interpolations may not converge as the number of interpolation points increases. Therefore, we compared L5/S1 net moments calculated from continuous kinematic measurements to those calculated from both polynomial and cubic spline interpolation on body segments angles during lifting tasks. For small number of interpolation points (<6) the error in the predicted moment from both the spline and polynomial fits decreased with the increase in the number of interpolation points; however, above 6 interpolation points error for the polynomial fits started to increase while the error from the spline fit continued to decrease. These results suggest that cubic spline interpolation on body segments angles provides a more robust basis for calculating L5/S1 net moment from a few key video frames.  相似文献   

4.
Ground reaction forces (GRFs) are often used in inverse dynamics analyses to determine joint loading. These GRFs are usually measured using force plates (FPs). As an alternative, instrumented force shoes (FSs) can be used, which have the advantage over FPs that they do not constrain foot placement. This study tested the FS system in one normal weight subject (77 kg) performing 19 different lifting, pushing and pulling and walking tasks. Kinematics were measured with an optoelectronic system and the GRFs and the positions of the centre of pressure (CoP) were synchronously measured with FPs and FSs. Differences between the outcomes of the two measurement systems (i.e. CoP and GRFs) and the resulting ankle and L5/S1 joint moments were determined at the instant of the peak GRF (DaPF). For most lifting and pushing and pulling tasks, the difference between the FP and FS measurements remained small: GRF DaPF remained below 3% body weight, CoP DaPF remained below 10 mm, ankle moment DaPF remained below 7% of the peak total ankle moment that occurred during normal walking and L5/S1 moment DaPF remained below 7% of the peak total L5/S1 moment that occurred during normal symmetric lifting. More substantial differences were only found in the maximal pushing tasks. For the walking tasks, peak vertical GRFs were somewhat underestimated. However, differences in ankle and L5/S1 moments remained small, i.e. DaPF below 7% of the peak total moment that occurred during normal walking.  相似文献   

5.
Translational vertebral motion during functional tasks manifests itself in dynamic loci for center of rotation (COR). A shift of COR affects moment arms of muscles and ligaments; consequently, muscle and joint forces are altered. Based on posture- and level-specific trends of COR migration revealed by in vivo dynamic radiography during functional activities, it was postulated that the instantaneous COR location for a particular joint is optimized in order to minimize the joint reaction forces. A musculoskeletal multi-body model was employed to investigate the hypotheses that (1) a posterior COR in upright standing and (2) an anterior COR in forward flexed posture leads to optimized lumbar joint loads. Moreover, it was hypothesized that (3) lower lumbar levels benefit from a more superiorly located COR.The COR in the model was varied from its initial position in posterior-anterior and inferior-superior direction up to ±6 mm in steps of 2 mm. Movement from upright standing to 45° forward bending and backwards was simulated for all configurations. Joint reaction forces were computed at levels L2L3 to L5S1. Results clearly confirmed hypotheses (1) and (2) and provided evidence for the validity of hypothesis (3), hence offering a biomechanical rationale behind the migration paths of CORs observed during functional flexion/extension movement. Average sensitivity of joint force magnitudes to an anterior shift of COR was +6 N/mm in upright and −21 N/mm in 30° forward flexed posture, while sensitivity to a superior shift in upright standing was +7 N/mm and −8 N/mm in 30° flexion. The relation between COR loci and joint loading in upright and flexed postures could be mainly attributed to altered muscle moment arms and consequences on muscle exertion. These findings are considered relevant for the interpretation of COR migration data, the development of numerical models, and could have an implication on clinical diagnosis and treatment or the development of spinal implants.  相似文献   

6.
This report gives an account of the work during six months of a community nurse team attached to the doctors working from a new health centre. The team consisted of two community nurses, who had both health visiting and Queen''s nursing qualifications, and a State-enrolled nurse. The community nurses, in addition to undertaking all the health visiting for the population at risk, assessed the social and nursing needs of patients at the request of the general practitioners and ensured that these needs were met. When necessary they undertook practical nursing tasks in the home and in the health centre, but most of the bedside nursing in the home was done by the State-enrolled nurse.The needs of the population at risk were such that only one State-enrolled nurse could usefully be employed, and this proved to be a considerable disadvantage. Despite this, the experimental work pattern held advantages to patients, doctors, and nurses, and is potentially capable of providing a satisfying and economic division of responsibilities, with different tasks being carried out by the individual most appropriately qualified.  相似文献   

7.
In our laboratory, we have developed a prototype of a personal lift augmentation device (PLAD) that can be worn by workers during manual handling tasks involving lifting or lowering or static holding in symmetric and asymmetric postures. Our concept was to develop a human-speed on-body assistive device that would reduce the required lumbar moment by 20-30% without negative consequences on other joints or lifting kinematics. This paper provides mathematical proof using simplified free body diagrams and two-dimensional moment balance equations. Empirical proof is also provided based on lifting trials with nine male subjects who executed sagittal plane lifts using three lifting styles (stoop, squat, free) and three different loads (5, 15, and 25kg) under two conditions (PLAD, No-PLAD). Nine Fastrak sensors and six in-line strap force sensors were used to estimate the reduction of compressive and shear forces on L4/L5 as well as estimate the forces transferred to the shoulders and knees. Depending on lifting technique, the PLAD applied an added 23-36Nm of torque to assist the back muscles during lifting tasks. The peak pelvic girdle contact forces were estimated and their magnitudes ranged from 221.3+/-11.2N for stoop lifting, 324.3+/-17.2N for freestyle lifts to 468.47+/-23.2N for squat lifting. The PLAD was able to reduce the compression and shear forces about 23-29% and 7.9-8.5%, respectively.  相似文献   

8.
This work describes a dynamic model of the low back that incorporates extensive anatomical detail of the musculo-ligamentous-skeletal system to predict the load time histories of individual tissues. The dynamic reaction moment about L4/L5 was determined during lateral bending from a linked-segment model. This reaction moment was partitioned into restorative components provided by the disc, ligament strain, and active-muscle contraction using a second model of the spine that incorporated a detailed representation of the anatomy. Muscle contraction forces were estimated using both information from surface electromyograms, collected from 12 sites, and consideration of the modulating effects of muscle length, cross-sectional area and passive elasticity. This modelling technique is sensitive to the different ways in which individuals recruit their musculature to satisfy moment constraints. Time histories of muscle forces are provided. High muscle loads are consistent with the common clinical observation of muscle strain often produced by load handling. Furthermore, the coactivation measured in muscles on both sides of the trunk suggests that muscles are recruited to satisfy the lateral bending reaction torque in addition to performing other mechanical roles such as spine stabilization. If an estimate of the intervertebral joint compression is desired for assessment of lateral bends in industry, then a single equivalent lateral muscle with a moment arm of approximately 3.0-4.0 cm would conservatively capture the effects of muscle co-contraction quantified in this study.  相似文献   

9.
Whilst anterior cruciate ligament injury commonly occurs during change of direction (CoD) tasks, there is little research on how athletes execute CoD after anterior cruciate ligament reconstruction (ACLR). The aims of this study were to determine between-limb and between-test differences in performance (time) and joint kinematics and kinetics during planned and unplanned CoD. One hundred and fifty-six male subjects carried out 90° maximal effort, planned and unplanned CoD tests in a 3D motion capture laboratory 9 months after ACLR. Statistical parametric mapping (2 × 2 ANOVA; limb × test) was used to identify differences in CoD time and biomechanical measures between limbs and between tests. There was no interaction effect but a main effect for limb and task. There was no between-limb difference in the time to complete both CoD tests. Between-limb differences were found for internal knee valgus moment, knee internal rotation and flexion angle, knee extension and external rotation moment and ankle external rotation moment with lower values on the ACLR side (effect size 0.72–0.5). Between test differences were found with less contralateral pelvis rotation, distance from centre of mass to the ankle in frontal plane, posterior ground reaction force and greater hip abduction during the unplanned CoD (effect size 0.75–0.5). Findings demonstrated that kinematic and kinetic differences between limbs are evident during both CoD tests 9 months after surgery, despite no statistical differences in performance time. Biomechanical differences between tests were found in variables, which have previously been associated with ACL injury mechanism during unplanned CoD.  相似文献   

10.
ObjectivesFootwear-generated biomechanical manipulations (e.g., wedge insoles) have been shown to reduce the magnitude of adduction moment about the knee. The theory behind wedged insoles is that a more laterally shifted location of the center of pressure reduces the distance between the ground reaction force and the center of the knee joint, thereby reducing adduction moment during gait. However, the relationship between the center of pressure and the knee adduction moment has not been studied previously. The aim of this study was to examine the association between the location of the center of pressure and the relative magnitude of the knee adduction moment during gait in healthy men.MethodsA novel foot-worn biomechanical device which allows controlled manipulation of the center of pressure location was utilized. Twelve healthy men underwent successive gait analysis testing in a controlled setting and with the device set to convey three different para-sagittal locations of the center of pressure: neutral, medial offset and lateral offset.ResultsThe knee adduction moment during the stance phase significantly correlated with the shift of the center of pressure from the functional neutral sagittal axis in the coronal plane (i.e., from medial to lateral). The moment was reduced with the lateral sagittal axis configuration and augmented with the medial sagittal axis configuration.ConclusionsThe study results confirm the hypothesis of a direct correlation between the coronal location of the center of pressure and the magnitude of the knee adduction moment.  相似文献   

11.
OpenSim offers a valuable approach to investigating otherwise difficult to assess yet important biomechanical parameters such as joint reaction forces. Although the range of available models in the public repository is continually increasing, there currently exists no OpenSim model for the computation of intervertebral joint reactions during flexion and lifting tasks. The current work combines and improves elements of existing models to develop an enhanced model of the upper body and lumbar spine. Models of the upper body with extremities, neck and head were combined with an improved version of a lumbar spine from the model repository. Translational motion was enabled for each lumbar vertebrae with six controllable degrees of freedom. Motion segment stiffness was implemented at lumbar levels and mass properties were assigned throughout the model. Moreover, body coordinate frames of the spine were modified to allow straightforward variation of sagittal alignment and to simplify interpretation of results. Evaluation of model predictions for level L1–L2, L3–L4 and L4–L5 in various postures of forward flexion and moderate lifting (8 kg) revealed an agreement within 10% to experimental studies and model-based computational analyses. However, in an extended posture or during lifting of heavier loads (20 kg), computed joint reactions differed substantially from reported in vivo measures using instrumented implants. We conclude that agreement between the model and available experimental data was good in view of limitations of both the model and the validation datasets. The presented model is useful in that it permits computation of realistic lumbar spine joint reaction forces during flexion and moderate lifting tasks. The model and corresponding documentation are now available in the online OpenSim repository.  相似文献   

12.
A biomechanical model of the lumbosacral joint during lifting activities   总被引:5,自引:0,他引:5  
A biomechanical model of the lumbosacral region was constructed for the purpose of systematically studying the combined stresses and strains on the local ligaments, muscles and disc tissue during sagittal plane two-handed lifting. The model was validated in two ways. The first validation was a comparison of experimental study results with model predictions. In general predictions compared very reasonably with observed values of several authors with the exception of strain predictions on the articular ligaments. Second, a sensitivity analysis was performed over a wide range of lifting tasks. The predicted stress/strain values followed anticipated patterns and were of reasonable magnitudes. On the basis of the results of the sensitivity analysis it was concluded that typical lifting tasks can lead to excessive disc compressive forces, muscle moment generation requirements, and possibly lumbodorsal fascia strains. Conversely, annulus rupture of a healthy disc due to overstrain appears very unlikely.  相似文献   

13.
Handling of impact forces in inverse dynamics   总被引:3,自引:0,他引:3  
In the standard inverse dynamic method, joint moments are assessed from ground reaction force data and position data, where segmental accelerations are calculated by numerical differentiation of position data after low-pass filtering. This method falls short in analyzing the impact phase, e.g. landing after a jump, by underestimating the contribution of the segmental accelerations to the joint moment assessment. This study tried to improve the inverse dynamics method for the assessment of knee moment by evaluating different cutoff frequencies in low-pass filtering of position data on the calculation of knee moment. Next to this, the effect of an inclusion of direct measurement of segmental acceleration using accelerometers to the inverse dynamics was evaluated. Evidence was obtained that during impact, the contribution of the ground reaction force to the sagittal knee moment was neutralized by the moments generated by very high segmental accelerations. Because the accelerometer-based method did not result in the expected improvement of the knee moment assessment during activities with high impacts, it is proposed to filter the ground reaction force with the same cutoff frequency as the calculated accelerations. When this precaution is not taken, the impact peaks in the moments can be considered as artifacts. On the basis of these findings, we recommend in the search to biomechanical explanations of chronic overuse injuries, like jumper's knee, not to consider the relation with impact peak force and impact peak moment.  相似文献   

14.
Previous work had identified six biomechanical functions that need to be executed by each limb in order to produce a variety of pedaling tasks. The functions can be organized into three antagonistic pairs: an Ext/Flex pair that accelerates the foot into extension or flexion with respect to the pelvis, an Ant/Post pair that accelerates the foot anteriorly or posteriorly with respect to the pelvis, and a Plant/Dorsi pair that accelerates the foot into plantarflexion or dorsiflexion. Previous analyses of experimental data have inferred that muscles perform the same function during different pedaling tasks (e.g. forward versus backward pedaling) because the EMG timing was similar, but they did not present rigorous biomechanical analyses to assess whether a muscle performed the same biomechanical function, and if so, to what degree. Therefore, the objective of this study was to determine how individual muscles contribute to these biomechanical functions during two different motor tasks, forward and backward pedaling, through a theoretical analysis of experimental data. To achieve this objective, forward and backward pedaling simulations were generated and a mechanical energy analysis was used to examine how muscles generate, absorb or transfer energy to perform the pedaling tasks. The results showed that the muscles contributed to the same primary Biomechanical functions in both pedaling directions and that synergistic performance of certain functions effectively accelerated the crank. The gluteus maximus worked synergistically with the soleus, the hip flexors worked synergistically with the tibialis anterior, and the vasti and hamstrings functioned independently to accelerate the crank. The rectus femoris used complex biomechanical mechanisms including negative muscle work to accelerate the crank. The negative muscle work was used to transfer energy generated elsewhere (primarily from other muscles) to the pedal reaction force in order to accelerate the crank. Consistent with experimental data, a phase shift was required from those muscles contributing to the Ant/Post functions as a result of the different limb kinematics between forward and backward pedaling, although they performed the same biomechanical function. The pedaling simulations proved necessary to interpret the experimental data and identify motor control mechanisms used to accomplish specific motor tasks, as the mechanisms were often complex and not always intuitively obvious.  相似文献   

15.
Hand coordination can allow humans to have dexterous control with many degrees of freedom to perform various tasks in daily living. An important contributing factor to this important ability is the complex biomechanical architecture of the human hand. However, drawing a clear functional link between biomechanical architecture and hand coordination is challenging. It is not understood which biomechanical characteristics are responsible for hand coordination and what specific effect each biomechanical characteristic has. To explore this link, we first inspected the characteristics of hand coordination during daily tasks through a statistical analysis of the kinematic data, which were collected from thirty right-handed subjects during a multitude of grasping tasks. Then, the functional link between biomechanical architecture and hand coordination was drawn by establishing the clear corresponding causality between the tendinous connective characteristics of the human hand and the coordinated characteristics during daily grasping activities. The explicit functional link indicates that the biomechanical characteristic of tendinous connective architecture between muscles and articulations is the proper design by the Creator to perform a multitude of daily tasks in a comfortable way. The clear link between the structure and the function of the human hand also suggests that the design of a multifunctional robotic hand should be able to better imitate such basic architecture.  相似文献   

16.
A dynamic biomechanical evaluation of lifting maximum acceptable loads   总被引:2,自引:0,他引:2  
A biomechanical evaluation of the job-related stresses imposed upon a worker is a potential means of reducing the high incidence rates of manual material handling injuries in industry. A biomechanical model consisting of seven rigid links joined at six articulations has been developed for this purpose. Using data from cinematographic analysis of lifting motions the model calculates: (1) body position from articulation angles, (2) angular velocities and accelerations, (3) inertial moments and forces, and (4) reactive moments and forces at each articulation, including the L5/S1 joint. Results indicated effects of the common task variables. Larger load and box sizes increased the rise times and peak values of both vertical ground reaction forces and predicted L5/S1 compressive forces. However, boxes with handles resulted in higher L5/S1 compressive forces than for boxes without handles. Also, in lifting the larger boxes the subjects did not sufficiently compensate with reduced box weights in order to maintain uniform L5/S1 compressive forces. Smoothed and rectified EMG of erector spinae muscles correlated significantly with L5/S1 compressive forces, while predicted and measured vertical ground reaction forces also correlated significantly, indicating the validity of the model as a tool for predicting job physical stresses.  相似文献   

17.
It is believed that nurses risk the development of back pain as a consequence of sudden loadings during tasks in which they are handling patients. Forward dynamics simulations of sudden loads (applied to the arms) during dynamic lifting tasks were performed on a two-dimensional whole-body model. Loads were in the range of -80 kg to 80 kg, with the initial load being 20 kg. Loading the arm downwards with less than that which equals a mass of 20 kg did not change the compressive forces on the spine when compared to a normal lifting motion with a 20 kg mass in the hands. However when larger loads (40 kg to 80 kg extra in the hands) were simulated, the compressive forces exceeded 13,000 N (above 3400 N is generally considered a risk factor). Loading upwards led to a decrease in the compressive forces but to a larger backwards velocity at the end of the movement. In the present study, it was possible to simulate a fast lifting motion. The results showed that when loading the arms downwards with a force that equals 40 kg or more, the spine was severely compressed. When loading in the opposite direction (unloading), the spine was not compressed more than during a normal lifting motion. In practical terms, this indicates that if a nursing aide tries to catch a patient who is falling, large compressive forces are applied to the spine.  相似文献   

18.
The biomechanical effect of tensioning the lumbar fasciae (LF) on the stability of the spine during sagittal plane motion was analysed using a validated finite element model of the normal lumbosacral spine (L4-S1). To apply the tension in the LF along the direction of the fibres, a local coordinate was allocated using dummy rigid beam elements that originated from the spinous process. Up to 10 Nm of flexion and 7.5 Nm of extension moment was applied with and without 20 N of lateral tension in the LF. A follower load of 400 N was additionally applied along the curvature of the spine. To identify how the magnitude of LF tension related to the stability of the spine, the tensioning on the fasciae was increased up to 40 N with an interval of 10 N under 7.5 Nm of flexion/extension moment. A fascial tension of 20 N produced a 59% decrease in angular motion at 2.5 Nm of flexion moment while there was a 12.3% decrease at 10 Nm in the L5-S1 segment. Its decrement was 53 and 9.6% at 2.5 Nm and 10 Nm, respectively, in the L4-L5 segment. Anterior translation was reduced by 12.1 and 39.0% at the L4-L5 and L5-S1 segments under 10 Nm of flexion moment, respectively. The flexion stiffness shows an almost linear increment with the increase in fascial tension. The results of this study showed that the effect of the LF on the stability of the spine is significant.  相似文献   

19.
Osteoarthritis (OA) is a chronic disorder resulting in degenerative changes to the knee joint. Three-dimensional gait analysis provides a unique method of measuring knee dynamics during activities of daily living such as walking. The purpose of this study was to identify biomechanical features characterizing the gait of patients with mild-to-moderate knee OA and to determine if the biomechanical differences become more pronounced as the locomotor system is stressed by walking faster. Principal component analysis was used to compare the gait patterns of a moderate knee OA group (n=41) and a control group (n=43). The subjects walked at their self-selected speed as well as at 150% of that speed. The two subject groups did not differ in knee joint angles, stride length, and stride time or walking speed. Differences in the magnitude and shape of the knee joint moment waveforms were found between the two groups. The OA group had larger adduction moment magnitudes during stance and this higher magnitude was sustained for a longer portion of the gait cycle. The OA group also had a reduced flexion moment and a reduced external rotation moment during early stance. Increasing speed was associated with an increase in the magnitude of all joint moments. The fast walks did not, however, increase or bring out any biomechanical differences between the OA and control groups that did not exist at the self-selected walks.  相似文献   

20.
Observation of complex whole body movements suggests that the nervous system coordinates multiple operational subsystems using some type of hierarchical control. When comparing two forward translating tasks performed with and without backward angular impulse, we have learned that both trunk-leg coordination and reaction force-time characteristics are significantly different between tasks. This led us to hypothesize that differences in trunk-leg coordination and reaction force generation would induce between-task differences in the control of the lower extremity joints during impulse generation phase of the tasks. Eight highly skilled performers executed a series of forward jumps with and without backward rotation (reverse somersault and reverse timer, respectively). Sagittal plane kinematics, reaction forces, and electromyograms of lower extremity muscles were acquired during the take-off phase of both tasks. Lower extremity joint kinetics were calculated using inverse dynamics. The results demonstrated between-task differences in the relative angles between the lower extremity segments and the net joint forces/reaction force and the joint angular velocity profiles. Significantly less knee extensor net joint moments and net joint moment work and greater hip extensor net joint moments and net joint moment work were observed during the push interval of the reverse somersault as compared to the reverse timer. Between-task differences in lower extremity joint kinetics were regulated by selectively activating the bi-articular muscles crossing the knee and hip. These results indicate that between-task differences in the control of the center of mass relative to the reaction force alters control and dynamics of the multijoint lower extremity subsystem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号