首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In all mammalian females, follicular growth and maturation are essentially dependent on the pituitary gonadotropins, FSH and LH. These glycoprotein hormones have many similarities, but their action, based on high affinity binding to specific membrane receptors, are quite different. The purpose of this study was to perform a sensitive localization of FSH and LH in secretory granules of gonadotrophs using highly specific antisera. This morphological study included light microscopy (PAP) and electron microscopy (immunogold single and double labeling) procedures. Histologically, approximatively 11.5% of cells were positive for LH, whereas only 5.4% of cells were positive for FSH. With the electron microscope, single labeling allowed identification of morphologically distinct LH-containing cells and FSH-containing cells. Double immunostaining confirmed that no cells contained both hormones. The finding that FSH and LH are produced in separate pituitary cells is in agreement with recent studies that have suggested a specific role and regulatory process for gonadotropins in the bovine species.  相似文献   

2.
In fish, FSH is generally important for early gonadal development and vitellogenesis. As in mammals, FSH is a heterodimer composed of an alpha subunit that is noncovalently associated with the hormone-specific beta subunit. The objective of the present study was to express glycosylated, properly folded, and biologically active tilapia FSH (tFSH) using the Pichia pastoris expression system. Using this material, we aimed to develop a specific ELISA and to enable the study of FSH response to GnRH. The methylotrophic yeast P. pastoris was used to coexpress recombinant genes formed by fusion of mating factor alpha leader and tilapia fshb and cga coding sequences. Western blot analysis of tilapia pituitary FSH, resolved by SDS-PAGE, yielded a band of 15 kDa, while recombinant tFSH beta (rtFSH beta) and rtFSH beta alpha had molecular masses of 17-18 kDa and 26-30 kDa, respectively. Recombinant tFSH beta alpha was found to bear only N-linked carbohydrates. Recombinant tFSH beta alpha significantly enhanced 11-ketotestosterone (11-KT) and estradiol secretion from tilapia testes and ovaries, respectively, in a dose-dependent manner (similar to tilapia pituitary extract, affinity-purified pituitary FSH, and porcine FSH). Using antibodies raised against rtFSH beta, FSH-containing cells were localized adjacent to hypothalamic nerve fibers ramifying in the proximal pars distalis (PPD), while LH cells were localized in a more peripheral region of the PPD. Moreover, FSH is under the control of hypothalamic decapeptide GnRH, an effect that was abolished through the use of specific bioneutralizing antisera, anti-rtFSH beta. It also reduced basal secretion of 11-KT.  相似文献   

3.
M Schwenk  R Jackisch  W Knepel 《Life sciences》1987,41(21):2403-2409
Dynorphin and other proenkephalin B-derived peptides exist in the rat adenohypophysis in high concentrations and may have important roles in endocrine function. At the cellular level, dynorphin peptides are colocalized with the gonadotropins in at least a subpopulation of gonadotrophs. In this study dynorphin-containing particles were compared with secretory granules containing luteinizing hormone (LH) and follicle-stimulating hormone (FSH) by means of differential centrifugation and sucrose density gradient centrifugation. When anterior pituitary homogenate of male rats was subjected to differential centrifugation, about 70% of both dynorphin- and LH-containing particles sedimented at 30,000 x g. LH granules and dynorphin-containing particles comigrated in continuous sucrose density gradients both under nonequilibrium conditions as well as when equilibrium was attained. FSH storage granules were found to sediment in slightly denser fractions, with substantial overlap. Hence, dynorphin-containing particles and gonadotropin-containing granules exhibit similar characteristics. These hormones may, therefore, be colocalized also at the subcellular level or stored in separate but similar vesicles.  相似文献   

4.
The morphological characteristics and percentage of the cellular associations between gonadotrophs (LH- and FSH-secreting cells) and other cellular types were studied in pituitary pars distalis of adult male viscachas (Lagostomus maximus maximus) by double immunohistochemistry using specific antibodies to LH, FSH, PRL, GH, ACTH, TSH and S-100 protein (by folliculostellate cells; FSC), during long and short photoperiods. Bihormonal gonadotrophs were observed in ventro-medial and dorsal regions, interspersed between monohormonal gonadotrophs, and their number increased in short photoperiod. LH- and FSH-gonadotrophs were found around lactotrophs, enclosed by somatotrophs in the dorsal region, and associated with irregular corticotrophs. Gonadotrophs and thyrotrophs were associated along blood vessels and follicular structures. The cytoplasmic prolongations of FSC were in contact with both gonadotrophs. The percentage of LH–FSH, LH–ACTH, LH–FSC, FSH–LH, FSH–PRL, FSH–GH, FSH–ACTH, FSH–TSH and FSH–FSC associations decreased, whereas LH–PRL increased in short as compared to long photoperiod. The most abundant associations were LH–GH and LH–TSH during long photoperiod, but LH–GH and LH–PRL during short photoperiod. FSH–GH and FSH–PRL were the most numerous associations, and LH–FSC and FSH–FSC were the less abundant ones in both photoperiods. These results provide the morphological evidence for specific cellular associations between gonadotrophs and other cellular types of viscacha pituitary.  相似文献   

5.
Two distinct cDNAs encoding beta subunits of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) were cloned from the cDNA library constructed for the pituitary of the red-bellied newt, Cynops pyrrhogaster, and sequenced. The newt FSHbeta and LHbeta cDNAs encode polypeptides of 129 and 131 amino acids, including signal peptides of 20 and 19 amino acids, respectively. The number and position of cysteine and N-glycosylation in each of the beta subunits of FSH and LH, which are considered essential for assembly of the alpha subunit, are well conserved between the newt and other tetrapods. The high homology (41.6%) between the beta subunits of newt FSH and LH imply less specificity of FSH and LH in gonadal function. One cDNA encoding the common polypeptide chain alpha subunit of FSH and LH was also isolated from the newt pituitary gland. The mRNAs of FSHbeta, LHbeta, and the alpha subunit were expressed only in the pituitary gland among various newt tissues. Double-staining with in situ hybridization and immunohistochemistry revealed coexpression of FSHbeta and LHbeta in the same newt pituitary cells. Ovariectomy induced a significant increase in FSHbeta mRNA levels, but there was no significant change in LHbeta or alpha subunit mRNA levels compared with those in control animals. Taken together, these data suggest that two kinds of gonadotropins, namely FSH and LH, are expressed in the same gonadotropin-producing cells in the pars distalis of the newt as well as in other tetrapods and that the expression of FSHbeta is negatively regulated by the ovaries.  相似文献   

6.
Changes in the frequency of GnRH and LH pulses have been shown to occur between the luteal and preovulatory periods in the ovine estrous cycle. We examined the effect of these different frequencies of GnRH pulses on pituitary concentrations of LH and FSH subunit mRNAs. Eighteen ovariectomized ewes were implanted with progesterone to eliminate endogenous GnRH release during the nonbreeding season. These animals then received 3 ng/kg body weight GnRH in frequencies of once every 4, 1, or 0.5 h for 4 days. These frequencies represent those observed during the luteal and follicular phases, and the preovulatory LH and FSH surge of the ovine estrous cycle, respectively. On day 4, the ewes were killed and their anterior pituitary glands were removed for measurements of pituitary LH, FSH, and their subunit mRNAs. Pituitary content of LH and FSH, as assessed by RIA, did not change (P greater than 0.10) in response to the three different GnRH pulse frequencies. However, subunit mRNA concentrations, assessed by solution hybridization assays and expressed as femtomoles per mg total RNA, did change as a result of different GnRH frequencies. alpha mRNA concentrations were higher (P less than 0.05) when the GnRH pulse frequency was 1/0.5 h and 1 h, whereas LH beta and FSH beta mRNA concentrations were maximal (P less than 0.05) only at a pulse frequency of 1/h. Additionally, pituitary LH and FSH secretory response to GnRH on day 4 was maximal (P = 0.05) when the pulse infusion was 1/h.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Summary Rapid freeze-substitution fixation was employed in immunocytochemical studies on the localization of LH and FSH in the typical gonadotrophs of the anterior pituitary in the untreated male rat; a modification of a recently described ferritin antibody method (Inoue et al. 1982) was used in these studies. It was shown that rapid freeze-substitution fixation provides good preservation not only of the ultrastructure but also of the antigenicity. Both LH and FSH were clearly demonstrated in the same gonadotrophic cells, but the subcellular localization of these gonadotrophins differed: (i) LH was mainly located in small secretory granules, 250–300 nm in diameter; (ii) FSH was mainly present in large secretory granules, up to 500 nm in diameter. In the pituitary gland of the adult male rat, all gonadotrophs that react to antibodies against gonadotrophins are characterized by small and large secretory granules. Other types of cells of the anterior pituitary containing either small secretory granules or resembling corticotrophs with secretory granules assembled at cell periphery did not react to either anti-LH beta or anti-FSH beta serum.For light microscopy, the peroxidase antibody method was used. All of the gonadotrophin-positive cells contain both LH and FSH. None of the pituitary cells reacted to antibody against only one gonadotrophin. However, some cells are LH-rich while other cells are FSH-rich.  相似文献   

8.
9.
Summary Chromogranins (Cg)/secretogranins (Sg) are representative acidic glycoproteins in secretory granules of many endocrine cells where they are co-stored and co-released with resident amines or peptides. The exact distribution of these proteins in the rat anterior pituitary is unknown. Therefore, pituitaries from untreated male rats were investigated by light- and electron-microscopical immunocytochemistry for the cellular and subcellular localization of CgA, CgB, and SgII. Endocrine cells, identified light-microscopically as gonadotrophs in adjacent semithin sections immunostained for follicle-stimulating hormone (FSH) and luteinizing hormone (LH), concomitantly were immunoreactive for CgA, CgB, and SgII. Ultrastructurally, gonadotrophs exhibited two types of secretory granules which varied in their immunoreactivities for gonadotropins and Cg/Sg. Large-sized (500 nm), moderately electron-dense granules showed antigenicities for FSH, LH, and CgA. Smaller-sized (200 nm), electron-dense granules were immunoreactive exclusively for LH and SgII. The distinct localization of CgA and SgII to morphologically and hormonally different secretory granules indicates the existence of two regulated secretory pathways in rat pituitary gonadotrophs. Hence, these proteins are considered as valuable tools to analyze the intracellular trafficking during granule biogenesis and the possible different regulation of FSH and LH secretion.  相似文献   

10.
We applied double post-embedding immunocytochemical methods using specific antibodies against bullfrog (Rana catesbeiana) luteinizing hormone (LH) and follicle-stimulating hormone (FSH) with immunogold staining (5- and 20-nm particles) to determine the subcellular localization of both gonadotropins and to observe their immunostaining patterns in anterior pituitary of the frog Rana pipiens. Results showed that individual gonadotrophs may store either one or both gonadotropins in a given secretory granule and in large globules (lysosomes?). Most gonadotrophs (50-88%) contain both hormones; 12-50% contain only FSH, and only a few (0-7%) contain LH alone. Individual secretory granules, even in cells that contain both hormones, may contain only one or both gonadotropin molecules. Evaluation of the percentage of monohormonal and multihormonal secretory granules revealed that multihormonal secretory granules were the most numerous and that LH monohormonal secretory granules were the least numerous. These results indicate that cellular storage of gonadotropin in amphibian pituitary is similar to that described for mammals, where a single cell type containing both gonadotropins predominates. Variability in hormone content both of cells and of granules in all individuals is consistent with the hypothesis that frog pituitary possesses a single multipotential gonadotroph.  相似文献   

11.
Chromogranins (Cg)/secretogranins (Sg) are representative acidic glycoproteins in secretory granules of many endocrine cells where they are co-stored and co-released with resident amines or peptides. The exact distribution of these proteins in the rat anterior pituitary is unknown. Therefore, pituitaries from untreated male rats were investigated by light- and electron-microscopical immunocytochemistry for the cellular and subcellular localization of CgA, CgB, and SgII. Endocrine cells, identified light-microscopically as gonadotrophs in adjacent semithin sections immunostained for follicle-stimulating hormone (FSH) and luteinizing hormone (LH), concomitantly were immunoreactive for CgA, CgB, and SgII. Ultrastructurally, gonadotrophs exhibited two types of secretory granules which varied in their immunoreactivities for gonadotropins and Cg/Sg. Large-sized (500 nm), moderately electron-dense granules showed antigenicities for FSH, LH, and CgA. Smaller-sized (200 nm), electron-dense granules were immunoreactive exclusively for LH and SgII. The distinct localization of CgA and SgII to morphologically and hormonally different secretory granules indicates the existence of two regulated secretory pathways in rat pituitary gonadotrophs. Hence, these proteins are considered as valuable tools to analyze the intracellular trafficking during granule biogenesis and the possible different regulation of FSH and LH secretion.  相似文献   

12.
K Barnes  A J Kenny 《Peptides》1988,9(1):55-63
Endopeptidase-24.11, an ectoenzyme with a key role in metabolizing peptides at cell surfaces, is present in the adenohypophysis. A specific polyclonal antibody to the endopeptidase has been used to explore its localization in cryostat sections of pig pituitary glands by an immunoperoxidase method. Immunoreactivity was symmetrically but not uniformly distributed over the anterior lobe, with the highest intensity a zone just beneath the capsule along the anterior surface. In detail, the staining was observed to be in the cell membrane, but in some cells a small area of intense paranuclear staining was also observed. Serial 5 micron sections were immunostained alternately for endopeptidase-24.11 and for pituitary proteohormone. Luteinizing hormone (LH), follicular stimulating hormone (FSH), thyrotropin, adrenocorticotropin, prolactin and growth hormone were studied in this way. It was possible to identify groups of cells in adjacent sections and a good correlation was observed for endopeptidase-24.11-immunoreactivity with that for LH and FSH. The association of the endopeptidase with gonadotrophs was confirmed by double labelling. No evidence of colocalization was observed with the other proteohormone antibodies. We conclude that among the cells of the adenohypophysis only the gonadotrophs express endopeptidase-24.11 and discuss the possible significance of this observation in regard to the termination of peptide signals, such as that of luteinizing hormone-releasing hormone (LHRH) acting at this site.  相似文献   

13.
LH, FSH, and chorionic gonadotropin (CG) are comprised of a common alpha subunit and a hormone-specific beta subunit. Using Madin-Darby canine kidney (MDCK) epithelial cells to examine the polarized secretion of human CG/LH, we previously reported that CG and LH were detected in the apical and basolateral compartments, respectively, and the carboxyl terminal end of the CGbeta subunit contains a strong apical signal. Here we show that the carboxyl seven amino acids in the LHbeta subunit contribute to the basolateral secretion of LH, and an LH chimera bearing the CGbeta apical signal is redirected from the basolateral to the apical compartments. Because LH and FSH are synthesized in the same cell, we also compared the secretion polarity of LH with FSH. MDCK cells expressing the FSH dimer displayed an almost equal distribution of protein into the apical and basolateral compartments. Given that the LHbeta and CGbeta carboxy terminal sequences, which differ from that in the FSHbeta subunit, occupy a pivotal role in their polarized behavior, the results support the hypothesis that pituitary exit of LH and FSH occur via different secretion pathways, and are released spatially from the pituitary via different circulatory routes.  相似文献   

14.
Little is known about the neuroendocrine control of fertility in the horse. In this species, unusual features characterize the normal estrous cycle such as a prolonged preovulatory LH surge during the follicular phase and a distinctive FSH surge during the midluteal phase. This study investigated the distribution and hormonal identity of gonadotrophs in the pars distalis (PD) and pars tuberalis (PT) of the equine pituitary gland as possible morphological bases for the referred unusual endocrine characteristics. In addition, the proportion of gonadotrophs in relation to other pituitary cell types during both the estrous cycle and anestrus were investigated. Pituitary glands were collected from sexually active (n = 5) and seasonally anestrous (n = 5) mares in November, and single or double immunofluorescent staining was carried out on 6-microm sections using monoclonal antibodies to the LHbeta or FSHbeta subunits and a polyclonal antibody to ovine LHbeta. Gonadotrophs were densely distributed around the pars intermedia in the PD and in the caudal ventral region of the PT. In addition to isolated cells, clusters of gonadotrophs were found surrounding the capillaries. No significant differences were detected in the number of gonadotrophs between sexually active and anestrous mares in either the PD or PT. In the PD, gonadotrophs represented 22.7 +/- 5. 8% and 19.1 +/- 2.1% of the total cell density in sexually active and anestrous animals, respectively (P: > 0.05). However, in the PT, gonadotrophs accounted for a higher proportion of the total cell population in sexually active (6 +/- 0.1%) than in anestrous (1.2 +/- 0.05%) mares (P: < 0.02). Double immunofluorescence revealed that the majority of gonadotrophs were bihormonal (i.e., positive for LH and FSH); however, in the sexually active mare, a larger proportion of gonadotrophs (22.5 +/- 3.6%) were monohormonal for either LH or FSH, when compared to anestrous animals (9.7 +/- 1.2%; P: < 0.02). Based on these findings we conclude that: 1) although the relative distribution of gonadotrophs is similar to those reported for other species, a significantly larger proportion of gonadotroph cells is present in the equine pituitary gland; 2) gonadotroph density does not appear to differ between sexually active and anestrous mares in the PD; 3) a larger proportion of gonadotrophs is apparent in the PT of sexually active animals; and 4) although a large incidence of bihormonal gonadotrophs is present in the horse, specific LH or FSH cells differentiate predominantly during the sexually active phase.  相似文献   

15.
Luteinizing hormone (LH), follicle-stimulating hormone (FSH) and thyroid-stimulating hormone (TSH) from pituitary and chorionic gonadotropin (CG) from placenta are a family of closely related glycoproteins. Each hormone is a heterodimer, consisting of an alpha- and a beta-subunit. Within an animal species, the alpha-subunits of all four glyco-protein hormones have an identical amino acid sequence, whereas each beta-subunit is distinct and confers hormone-specific features to the heterodimer. LH and FSH are synthesized within the same cell, the gonadotroph of the anterior pituitary, but are predominantly stored in separate secretory granules. We have characterized the asparagine-linked oligosaccharides on bovine, ovine and human LH, FSH and TSH. The various pituitary hormones were found to contain unique sulfated oligosaccharides with the terminal sequence SO4-4GalNAc beta 1----4GlcNAc beta 1----2Man alpha, sialylated oligosaccharides with the terminal sequence SA alpha Gal beta GlcNAc beta Man alpha, or both sulfated and sialylated structures. Despite synthesis of LH and FSH in the same pituitary cell, sulfated oligosaccharides predominate on LH while sialylated oligosaccharides predominate on FSH for all three animal species. We have examined the reactions leading to synthesis of the sulfated oligosaccharides to determine which steps are hormone specific. The sulfotransferase is oligosaccharide specific, requiring only the sequence GalNAc beta 1----4GlcNAc beta 1----2Man alpha. In contrast, the GalNAc-transferase appears to be protein specific, accounting for the preferential addition of GalNAc to LH, TSH, and free (uncombined) alpha-subunits compared with FSH and other pituitary glycoproteins. The predominance of sulfated oligosaccharide structures on LH may account for sorting of LH and FSH into separate secretory granules. Differences in sulfation and sialylation of LH, FSH and TSH may also play a role in the regulation of hormone bioactivity.  相似文献   

16.
Gonad development in fish, as in mammals, is regulated by two gonadotropins (GTHs), FSH and LH. The function of LH in fish has been clearly established; however, the function(s) of FSH is less certain. The lack of specific and sensitive assays to quantify FSH and its alpha and beta subunits has hindered studies to assess physiological function. In this study, gel filtration chromatography, ion exchange chromatography, and HPLC were employed to purify FSH and its subunits from pituitary glands of rainbow trout (Oncorhynchus mykiss), and the identities of the isolates were confirmed by amino acid analysis. Polyclonal antibodies were raised against the free GTHalpha2 and free FSHbeta subunits to develop specific RIAs. The sensitivities of the intact FSH, GTHalpha2, and FSHbeta assays were 1 ng/ml, 0.2 ng/ml, and 0.1 ng/ml, respectively, and the cross-reaction of these molecules with each other and with intact LH in the heterologous assays was <10.4% throughout. Pituitary and plasma samples diluted in parallel with the standards in all three assays and spiked sample recoveries were >90% throughout. Measurement of plasma and pituitary concentrations of intact FSH in female rainbow trout confirmed the established seasonal profiles. Concentrations of free GTHalpha2 subunit were elevated both in the plasma and in the pituitary in females at ovulation (maximum concentrations: 34.93 +/- 6.3 ng/ml in plasma; 37.63 +/- 5.79 microg/pituitary). In both the plasma and the pituitary, free FSHbeta subunit was present throughout the reproductive cycle but at very low concentrations when compared with both free GTHalpha2 and intact FSH. The presence of free GTHalpha2 subunit in the plasma similarly occurs in mammals, but its functional significance in fish has yet to be established.  相似文献   

17.

Expression of the diabetes (db/db) mutation in C57BL/KsJ mice results in functional suppression of the female pituitary-gonadal axis accompanied by premature utero-ovarian cytolipoatrophy. Cellular gluco- and lipo-metabolic disturbances promoted by the db/db systemic hyperglycemic-hyperinsulinemic state suppress pituitary gonadotropin release in response to gonadotropin-releasing hormone and gonadal steroid stimulation and results in a hypogonadal-infertility syndrome. Adult female C57BL/KsJ control (+/+ and +/? genotypes) and db/db littermates were monitored for associations in systemic and cellular alterations in luteinizing hormone (LH), follicle-stimulating hormone (FSH), gonadal steroid (binding) levels, and pituitary glucometabolic indices associated with db/db-enhanced lipid imbibition and cytostructural disruption. Obesity, hyperglycemia, and hyperinsulinemia characterized all db/db mutants relative to controls. Serum and pituitary progesterone and estradiol concentrations were suppressed in db/db mutants, in association with serum LH and FSH levels, but not with pituitary LH and FSH concentrations, which were comparable between groups. Pituitary insulin receptor binding and glucose utilization rates were suppressed in db/db groups relative to +/? indices. Structural and cytochemical analysis of anterior (AP), intermediate (IL), and neuro-(NP) hypophyseal lobes demonstrated prominent hypercytolipidemia in db/db mutants relative to controls. Prominent cytolipidemia was localized within well-granulated basophilic gonadotrophs and within IL and NP pituicytes. Vasolipidemia and interstitial cytoadiposity were prominent throughout all db/db pituitary lobes. Thus, disturbances associated with pituitary hypercytolipidemia are functional components of the expressed diabetes-associated hypogonadal syndrome in db/db mutants. Progressive alterations in hypophyseal cytoarchitecture are correlated with suppression of pituitary metabolic and endocrine indices, alterations that contribute to functional disruption of the pituitary-hypogonadal axis in C57BL/KsJ-db/db mice.

  相似文献   

18.
Changes in the concentrations of LH subunit messenger ribonucleic acids (mRNAs) and in the LH content of the anterior pituitary of beef cattle were studied during the estrous cycle. Japanese beef cows were classified according to the expected day of the estrous cycle: stage I (early-luteal phase, days 1-4; day 1=day of ovulation), stage II (early-mid-luteal phase, days 5-10), stage III (late-mid-luteal phase, days 11-17) and stage IV (follicular phase, days 18-20), according to the morphology of the ovaries. The anterior pituitaries of the cows were collected and the levels of alpha and LHbeta subunit mRNAs were determined by slot-blot analyses. The LH content of the anterior pituitary was measured by radioimmunoassay. The level of alpha subunit mRNA in the pituitary of cows was highest in stage I and decreased significantly by stage II (P<0.05); thereafter it tended to increase. The level of LHbeta subunit mRNA did not change significantly during the estrous cycle. The LH content of the pituitary of cows was low in stage I and tended to increase by stage II, then to decrease from stage II to III, and to increase significantly from stage III to IV (P<0.05). These results suggest that the highest levels of gene expressions of alpha subunit in the anterior pituitary occur in the early-luteal phase of beef cows, while the LH content is increased most in the follicular phase. The enhanced gene expressions of common alpha subunit in the early-luteal phase could be important in replenishing the bovine anterior pituitary with LH, which is depleted of hormone by the LH surge or the enhanced pulsatile release.  相似文献   

19.
Bovine cDNA clones containing coding sequences for growth hormone, prolactin, alpha subunit, and luteinizing hormone beta (LH beta) have been used to quantitate their respective mRNA concentrations in anterior pituitary glands isolated from ovariectomized ewes, or from ovariectomized ewes treated for three weeks with estradiol. Concentrations of mRNAs for prolactin or growth hormone remained unchanged in either physiological state. In contrast, treatment with estradiol resulted in a 98% decrease of mRNA for LH beta, relative to untreated animals. This change in mRNA was associated with a similar decrease in the concentrations of pituitary and serum LH. Administration of estradiol also led to a reduction (86%) of alpha subunit mRNA. These results suggest that estrogen regulates the expression of the genes encoding both the alpha and LH beta subunit prior to translation. Furthermore, the pronounced effect of estradiol on the concentrations of mRNAs for alpha subunit and LH beta suggest that the assembly of mature glycoprotein hormones may not be limited solely by the rate of accumulation of the beta subunit.  相似文献   

20.
The expression of a common alpha-subunit mRNA of glycoprotein hormones was examined in the pituitary of chick embryos at various stages of development by in situ hybridization with a digoxigenin-labeled quail alpha-subunit cRNA probe. As a comparison with the expression of alpha-subunit mRNA, the onset of luteinizing hormone (LH) immunoreactivity was examined by immunohistochemical staining with a chicken LH antiserum. Both alpha-subunit mRNA and LH immunoreactivity began to appear in the basal-posterior region of the Rathke's pouch at embryonic day (E) 3.5. At E4.5 when the cephalic and caudal lobes of the pars distalis could be distinguished in the Rathke's pouch, intense signal for alpha-subunit mRNA was restricted to the cephalic lobe, consisting of a high columnar epithelium. At E6, gonadotrophs that were ovoid in shape, expressed intense signal for alpha-subunit mRNA, and revealed intense immunoreactivity for LH, were first detected in the cephalic lobe. At this stage, alpha-subunit mRNA expression became weak in the undifferentiated columnar cells of the cephalic lobe. At E8, the pars tuberalis primordium located close to the median eminence was formed at the lateral-apical end of the cephalic lobe. The primordium expressed intense signal for alpha-subunit mRNA. Gonadotrophs showing immunoreactivity for LH were densely distributed throughout the cephalic and caudal lobes in 8-day-old embryos. The pars tuberalis primordium expressing alpha-subunit mRNA progressively extended along the median eminence with embryonal age and reached the rostoral end by E14. Thus, both primordia of the pars distalis and pars tuberalis expressed intense signal for the common alpha-subunit mRNA. This subunit may play a role in the cytodifferentiation of the adenohypophysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号