首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
E.S. Canellakis  G. Akoyunoglou 《BBA》1976,440(1):163-175
Spinach chloroplasts exposed to iodide can be washed free of the bulk of the iodide. In the presence of lactoperoxidase and H2O2, iodide can be introduced into chloroplasts in high amounts and in non diffusible forms. The resultant particles, which have been named iodochloroplasts, extrude their iodide upon stimulation by light. The form and the amount of extruded iodide bears a definite relationship to the amount of incident light. A flash of marginally effective light is additive to the next such flash even after a lapse of 10 min of darkness. These and other properties of iodochloroplasts may make them of great use in the study of intermediate reactions of photosynthesis.  相似文献   

2.
3.
4.
5.
Chloroplasts have evolved an elaborate system of membrane and soluble subcompartments to organize and regulate photosynthesis and essential aspects of amino acid and lipid metabolism. The biogenesis and maintenance of organellar architecture rely on protein subunits encoded by both nuclear and plastid genomes. Import of nuclear-encoded proteins is mediated by interactions between the intrinsic N-terminal transit sequence of the nuclear-encoded preprotein and a common import machinery at the chloroplast envelope. Recent investigations have shown that there are two unique membrane-bound translocation systems, in the outer and inner envelope membranes, which physically associate during import to transport preproteins from the cytoplasm to the internal stromal compartment. This review discusses current understanding of these translocation systems and models for the way in which they might function.  相似文献   

6.
7.
Intact isolated chloroplasts were shown to exhibit a characteristic three-phase pattern of development of oxygen evolution activity. The first phase, Phase I, appeared to be an equilibration phase in which the isolated chloroplasts adapted to the conditions on the electrode surface. It was characterised by a rapidly increasing rate of oxygen evolution accompanied by decreasing enhancement signals. The second phase, Phase II, was an intermediate phase in which the rate of oxygen evolution was maximal and no enhancement was observed. In the last phase, Phase III, the rate of oxygen fell again, normal enhancement was still missing, but the samples appeared to undergo slow adaptive changes closely related to the State I-State II changes previously reported for whole cell systems. The concentrations of Mg2+ within the chloroplast were shown to play an important role in the control of the development of both the oxygen evolution and enhancement signals. It was shown how these signals could be explained in terms of a model that was consistent with that developed in Part I of this investigation to account for the variability of enhancement of the alga Chlorella pyrenoidosa.  相似文献   

8.
9.
10.
11.
Gerald T. Babcock  Kenneth Sauer 《BBA》1973,325(3):483-503
An analysis of electron paramagnetic resonance Signal II in spinach chloroplasts has been made using both continuous and flashing light techniques. In order to perform the experiments we developed a method which allows us to obtain fresh, untreated chloroplasts with low dark levels of Signal II. Under these conditions a single 10-μs flash is sufficient to generate greater than 80% of the possible light-induced increase in Signal II spin concentration. The risetime for this flash-induced increase in Signal II is approx. 1 s. The close association of Signal II with Photo-system II is confirmed by the observations that red light is more effective than is far red light in generating Signal II, and that 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) does not inhibit the formation of the radical. Single flash saturation curves for the flash-induced increase in Signal I and Signal II indicate that the quantum efficiency for Signal II formation is close to that for Signal I. While one or two flashes (spaced 10 ms apart) are quite efficient in generating Signal II, three or four flashes are much less effective. However, if this spacing is decreased to 100 μs, three or four flashes become as efficient as one or two flashes. From observations of a deficiency of O2 evolved during the initial flashes of dark-adapted chloroplasts, we conclude that the species which gives rise to Signal II is able to compete with water for oxidizing equivalents generated by Photosystem II. On the basis of these results we postulate a model in which Signal II arises from an oxidized radical which is produced by a slow electron transfer to the specific states S2 and S3 on the water side of Photo-system II.  相似文献   

12.
13.
The formation of lipid peroxide and changes in the lipid compositionof isolated chloroplasts aged in the light or dark, were investigatedin more detail. Lipid peroxide formation was observed in thethylakoid membrane as well as in the supernatant from dark-agedchloroplasts. Light was necessary for its formation in bothsystems. We confirmed that the peroxidation of lipids formedduring aging did not induce the inhibition of photochemicalactivities in chloroplasts. Aged chloroplasts underwent decompositionof their endogeneous monogalactolipid and phosphatidylcholine(lecithin) resulting in free fatty acids and lysophosphatidylcholine(lysolecithin). Decomposition of monogalactolipid occurred inboth the light- and dark-aged chloroplasts. The change of lecithinto lysolecithin was stimulated by illumination. This suggeststhat the peroxidation of lipids occurs as a result of the illuminationof free fatty acids released from monogalactolipid and lecithinin the thylakoid membranes, and that the change of lecithinto lysolecithin is related to the inactivation of photochemicalactivities and to swelling in light-aged chloroplasts. 1 Present address: Department of Microbiology, Ishikawa ResearchLaboratory for Public Health and Environment, Minma, Kanazawa,Japan. (Received August 15, 1974; )  相似文献   

14.
15.
Intact isolated chloroplasts were shown to exhibit a characteristic three-phase pattern of development of oxygen evolution activity. The first phase, Phase I, appeared to be an equilibration phase in which the isolated chloroplasts adapted to the conditions on the electrode surface. It was characterised by a rapidly increasing rate of oxygen evolution accompanied by decreasing enhancement signals. The second phase, Phase II, was an intermediate phase in which the rate of oxygen evolution was maximal and no enhancement was observed. In the last phase, Phase III, the rate of oxygen fell again, normal enhancement was still missing, but the samples appeared to undergo slow adaptive changes closely related to the State I-State II changes previously reported for whole cell systems.The concentrations of Mg2+ within the chloroplast were shown to play an important role in the control of the development of both the oxygen evolution and enhancement signals. It was shown how these signals could be explained in terms of a model that was consistent with that developed in Part I of this investigation to account for the variability of enhancement of the alga Chlorella pyrenoidosa.  相似文献   

16.
17.
Plant cells contain two organelles originally derived from endosymbiotic bacteria: mitochondria and plastids. Their endosymbiotic origin explains why these organelles contain their own DNA, nonetheless only a few dozens of genes are actually encoded by these genomes. Many of the other genes originally present have been transferred to the nuclear genome of the host, the product of their expression being targeted back to the corresponding organelle. Although targeting of proteins to mitochondria and chloroplasts is generally highly specific, an increasing number of examples have been discovered where the same protein is imported into both organelles. The object of this review is to compare and discuss these examples in order to try and identify common features of dual-targeted proteins. The study helps throw some light on the factors determining organelle targeting specificity, and suggests that dual-targeted proteins may well be far more common than once thought.  相似文献   

18.
19.
1. The recently described reaction of ATP-induced luminescence is analyzed for its relation to other ATP-induced reactions such as ATP-driven transmembrane proton gradient formation and ATP-driven reverse electron flow. 2. In the absence of phenazine methosulfate ATP-induced luminescence is optimal while the main phase of ATP-driven reverse electron flow is eliminated. 3. DCMU which by itself causes a much smaller luminescence, inhibits the ATP-induced luminescence. 4. Nigericin plus valinomycin, but not each by itself, fully inhibit the ATP-induced luminescence. 5. The observations are interpreted as indicating that ATP stimulates luminescence by a 2-fold mechanism: (a) increasing the amount of the reducing primary electron acceptor of Photosystem II, Q, and (b) creating a transmembrane electrochemical potential which serves to decrease the activation energy required for the charge recombination reaction which leads to luminescence.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号