首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Liquid storage of miniature boar semen.   总被引:3,自引:0,他引:3  
The effects of liquid storage at 15 degrees C on the fertilizing ability of miniature pig semen were investigated. Characterization of ejaculated semen from 3 miniature boars was carried out. Semen volume and pH were similar among these boars. In one of the boars, sperm motility was slightly low, and sperm concentration and total number of sperm were significantly lower than in the others (P < 0.01). Seminal plasma of the semen was substituted with various extenders (Kiev, Androhep, BTS and Modena) by centrifugation and semen was stored for 7 days at 15 degrees C. Sperm motility was estimated daily at 37 degrees C. For complete substitution of seminal plasma, Modena was significantly more efficient than the other extenders (P < 0.001) in retaining sperm motility. Semen from each of the 3 miniature boars that had been stored for 5 to 7 days at 15 degrees C in Modena was used for artificial insemination of 15 miniature sows. The farrowing rates were 100, 100 and 60%, and litter sizes were 6.4 +/- 1.5, 5.8 +/- 0.8 and 5.0 +/- 1.0 for each boar semen, respectively. The boar that sired the smallest farrowing rate was the same one that showed lower seminal quality with respect to sperm motility, sperm concentration and total number of sperm. These results suggest that miniature boar semen can be stored for at least 5 days at 15 degrees C by the substitution of seminal plasma with Modena extender.  相似文献   

2.
Protocols for the successful manipulation and preservation of semen in a given species depend upon a fundamental knowledge of how spermatozoa respond to the physicochemical conditions of the extension media; methods developed for the preservation of eutherian spermatozoa may not necessarily be suitable for marsupial semen. The aim of this study was to investigate the effects on koala sperm motility of serial dilution, changes in temperature, diluent pH and osmolality to establish the optimal physicochemical conditions for short-term semen storage. This study showed that electroejaculated koala semen diluted 1∶1 (v/v) with PBS frequently coagulated after incubation at 35 degrees C, but that further dilution and incubation resulted in a corresponding increase in the percentage of spermatozoa swimming in a non-linear trajectory. The effect of rapid temperature change on the motility of koala spermatozoa was investigated by exposing semen, initially diluted at 35 degrees C, to temperatures of 45, 25, 15 and 5 degrees C. Although sperm motility was reduced after incubation at 45 degrees C, a rapid decrease in temperature of up to 20 degrees C did not result in a significant reduction in sperm motility. However, contrary to evidence in other marsupials, there was a small but significant decrease in sperm motility after rapid cooling of diluted semen from 35 to 5 degrees C. The effects of diluent pH and osmolality on the motility of koala spermatozoa were investigated. These experiments indicated that diluents for koala sperm manipulation should buffer in a pH range of 7-8 and have an osmolality of approximately 300 mmol kg(-1). The final experiment compared the relative effectiveness of Tris-citrate buffer (1% glucose) and PBS to maintain koala sperm motility over a range of incubation temperatures (5-35 degrees C) for up to 8 days. Reduction in sperm motility was directly related to temperature, and motility was sustained for the longest duration when stored at 5 degrees C. The Tris-citrate buffer solution was superior to PBS as a preservation diluent at all temperatures, and koala spermatozoa remained motile even after 42 days storage at 5 degrees C. Spermatozoa diluted in PBS (with Ca(2+) or Mg(2+)) and cooled to 5 degrees C showed evidence of an unusual motility pattern, similar to that of hyperactivated eutherian spermatozoa. This study showed that koala spermatozoa respond to different physicochemical conditions associated with short-term liquid storage in essentially the same way as the spermatozoa of eutherian mammals, although koala spermatozoa appear to be more tolerant of rapid temperature shock. The results of this study can be used to make informed selections with regard to appropriate diluent composition and improved short-term sperm preservation protocols and represent the first such database for any species of marsupial.  相似文献   

3.
New aspects of boar semen freezing strategies   总被引:1,自引:0,他引:1  
Although cryopreserved boar semen has been available since 1975, a major breakthrough in commercial application has not yet occurred. There is ongoing research to improve sperm survival after thawing, to limit the damage occurring to spermatozoa during freezing, and to further minimize the number of spermatozoa needed to establish a pregnancy. Boar spermatozoa are exposed to lipid peroxidation during freezing and thawing, which causes damage to the sperm membranes and impairs energy metabolism. The addition of antioxidants or chelating agents (e.g. catalase, vitamin E, glutathione, butylated hydroxytoluene or superoxide dismutase) to the still standard egg-yolk based cooling and freezing media for boar semen, effectively prevented this damage. In general, final glycerol concentrations of 2-3% in the freezing media, cooling rates of -30 to -50 degrees C/min, and thawing rates of 1200-1800 degrees C/min resulted in the best sperm survival. However, cooling and thawing rates individually optimized for sub-standard freezing boars have substantially improved their sperm quality after cryopreservation. With deep intrauterine insemination, the sperm dose has been decreased from 6 to 1x10(9) spermatozoa without compromising farrowing rate or litter size. Minimizing insemination-to-ovulation intervals, based either on estimated or determined ovulation, have also improved the fertility after AI with cryopreserved boar semen. With this combination of different approaches, acceptable fertility with cryopreserved boar semen can be achieved, facilitating the use of cryopreserved boar semen in routine AI programs.  相似文献   

4.
Occasionally, boar semen must be shipped to another location for cryopreservation. We increased the initial holding time for the cooling of extended semen at 15 degrees C from 3 to 24 h to determine the effects on sperm characteristics and fertility. Thirty-one gilts and sows were inseminated once with subsequently cryopreserved and thawed semen. Increasing the holding time from 3 to 24 h had no significant effect on pregnancy rate 23 days after AI with frozen-thawed semen (64.5%) but decreased (P<0.05) embryo number from 15 to 9 and recovered embryos as fraction of CL from 73 to 47%. While the longer holding time at 15 degrees C did decrease potential litter size, the loss incurred was not too great to preclude the incorporation of a longer holding time into the cryopreservation protocol. An experiment was conducted to test the hypothesis that processing and freeze-thawing of boar semen would induce phospholipid scrambling in the plasma membrane similar to that evoked by incubation in bicarbonate-containing media. Merocyanine staining after incubation in the presence and absence of bicarbonate indicated that changes in plasma membrane phospholipid scrambling of processed and cryopreserved sperm differed from those in fresh semen undergoing bicarbonate-induced capacitation. The level of Annexin-V binding in boar spermatozoa increased from 1.6% in live spermatozoa in fresh semen to 18.7% in cryopreserved sperm. Apoptosis is unlikely to operate in mature spermatozoa. Apoptotic morphology in ejaculated spermatozoa is probably a result of incomplete deletion of apoptotic spermatocytes during spermatogenesis. Increased Annexin-V binding in thawed spermatozoa probably results from plasma membrane damage incurred during freezing and thawing.  相似文献   

5.
Irreversible damage caused by cold shock has been assumed to occur when boar semen is exposed to temperatures below 15 degrees C. Identification of the lower critical temperature at which extended boar semen undergoes cold shock, however, has yet to be defined. The aims of this study were to 1) identify the cold-shock critical temperature and time on extended boar semen as assessed by sperm motility and morphology, and 2) determine the effects on fertility of using extended porcine semen exposed to this critical temperature and time. For Objective 1, ejaculates from 18 boars were collected, analyzed and extended in Androhep to 50 x 10(6) sperm/mL. Doses (4 x 10(9) sperm) from each ejaculate were exposed to 5 storage temperatures (8, 10, 12, 14 and 17 degrees C). Sperm motility and morphology (including acrosomes) were assessed following collection and at 12-h intervals for 48-h. Decreases in sperm motility occurred within the first 12-h at all temperatures. Sample motility dropped below 70% within 12-h in the 8 degrees C group and by 48-h in the 10 degrees C group. Sample motility was > 75% in the 12, 14 and 17 degrees C (control) groups throughout the trial. The percentage of morphologically abnormal sperm cells, including acrosomes, did not change within or between treatment groups over the 48-h storage period. In Objective 2, boar ejaculates (n = 9) were handled as in the first objective and were equally divided into treated (12 degrees C for < or = 60-h) and control (17 degrees C for < or = 60-h) groups. Using a timed, double insemination technique, 135 sows were bred by AI using either 12 degrees C (n = 74) or 17 degrees C (n = 61) extended, stored semen. No differences were observed in the farrowing rate (93 vs 95%), total offspring born (11.58 vs 11.61) or number live born (10.68 vs 10.63) between 12 and 17 degrees C groups, respectively. The results demonstrate that acceptable fertility can be obtained with Androhep extended boar semen exposed to temperatures as low as 12 degrees C for up to 60-h, and that cold shock appears to occur in vitro when extended boar semen is exposed to storage temperatures below 12 degrees C.  相似文献   

6.
Two experiments were conducted to examine the effects of cooling rate and storage temperature on motility parameters of stallion spermatozoa. In Experiment 1, specific cooling rates to be used in Experiment 2 were established. In Experiment 2, three ejaculates from each of two stallions were diluted to 25 x 10(6) sperm/ml with 37 degrees C nonfat dry skim milk-glucose-penicillin-streptomycin seminal extender, then assigned to one of five treatments: 1) storage at 37 degrees C, 2) storage at 25 degrees C, 3) slow cooling rate to and storage at 4 degrees C, 4) moderate cooling rate to and storage at 4 degrees C, and 5) fast cooling rate to and storage at 4 degrees C. Total spermatozoal motility (TSM), progressive spermatozoal motility (PSM), and spermatozoal velocity (SV) were estimated at 6, 12, 24, 48, 72, 96 and 120 h postejaculation. The longevity of spermatozoal motility was greatly reduced when spermatozoa were stored at 37 degrees C as compared to lower spermatozoal storage temperatures. At 6 h postejaculation, TSM values (mean % +/- SEM) of semen stored at 37 degrees C, slowly cooled to and stored at 25 degrees C or slowly cooled to and stored at 4 degrees C were 5.4 +/- 1.1, 79.8 +/- 1.6, and 82.1 +/- 1.6, respectively. Mean TSM for semen that was cooled to 4 degrees C at a slow rate was greater (P<0.05) than mean TSM of semen cooled to 4 degrees C at a moderate rate for four of seven time periods (6, 24, 72 and 120 h), and it was greater (P<0.05) than mean TSM of semen cooled to 4 degrees C at a fast rate for five of seven time periods (6, 12, 24, 72 and 120 h). Mean TSM of semen cooled to 4 degrees C at a slow rate was greater (P<0.05) than mean TSM of semen cooled to 25 degrees C for five of seven time periods (24 to 120 h). A similar pattern was found for PSM. Mean SV of semen cooled to 4 degrees C at a slow rate was greater (P<0.05) than mean SV of semen cooled to 25 degrees C for all time periods. A slow cooling rate (initial cooling rate of -0.3 degrees /min) and a storage temperature of 4 degrees C appear to optimize liquid preservation of equine spermatozoal motility in vitro.  相似文献   

7.
8.
Artificial insemination (AI) in rabbits is not extensive in the breeding programs of the rabbit meat industry. A limiting factor is related to the semen preservation. In order to improve the use of AI, two experiments have been conducted to evaluate sperm viability and fertility of rabbit semen chilled and stored at 15 degrees C after dilution in Tris-based extenders. In Experiment 1, pooled semen samples were diluted 1:10 (semen/extender) in four different Tris-based extenders (Tris-citric-glucose (TCG), TES-Tris-glucose (TTG), Tris-citric-fructose (TCF) and TES-Tris-fructose (TTF)) and stored at 15 degrees C. Sperm viability was evaluated at 0, 24, 48, 72 and 96 h following dilution for total sperm motility (TSM), forward progressive motility (FPM), plasma membrane integrity (PMI) and acrosome integrity (NAR). Viability of spermatozoa declined with time of storage (P<0.05), irrespective of the extender used. There were interactions between extender and time of storage (P<0.05) in all viability parameters evaluated. After 96 h of storage, TCG provided the highest sperm viability (P<0.05) and TTG the lowest (P>0.05). In Experiment 2, a field trial was conducted at a commercial farm to evaluate the conception and farrowing rates of rabbit spermatozoa extended in TCG. After synchronization of oestrous and induction of ovulation, 3713 does with different physiological conditions (nulliparous, primiparous, lactating and re-breeding) were inseminated one time (15x10(6) sperm per doses) with semen stored at 0 (n: 1275), 24 (n: 1503) and 48 h (n: 935) at 15 degrees C. Overall conception and farrowing rates were 77.1+/-0.7 and 70.4+/-0.7, respectively, and the mean litter size was 7.6+/-0.1. Fertility results were unaffected by the time of semen storage (P>0.05). Regardless of time of semen storage, fertility results were affected by the physiological conditions of does (P<0.05). Nulliparous and lactating does showed the highest fertility and primiparous the lowest. In summary, these results indicate that Tris-buffer extenders are effective for preserving viability and fertilizing capability of rabbit spermatozoa stored at 15 degrees C.  相似文献   

9.
The objective of this study was to develop a preservation method for canine sperm using microencapsulation. Pooled ejaculates from three beagles (Canis familiaris) were extended in egg yolk Tris extender and were encapsulated in gel (alginate only) or polycation (poly-l-lysine membrane bound) microcapsules at 0.75% and 1.0% alginate concentration. In Experiment 1, characteristics of microcapsule and microencapsulated sperm were evaluated during chilling storage for 48 h. Gel microcapsules at 0.75% alginate concentration had a teardrop-like structure with fragility, whereas those at 1.0% alginate had a solid spherical structure. In all groups, diameter of the microcapsules increased with duration of storage (P < 0.05). Alginate concentration did not affect the sperm recovery rate from microcapsules. Total average recovery rate of sperm from polycation microcapsules was lower than that of gel microcapsules (P < 0.05). Progressive motility of polycation microencapsulated sperm and unencapsulated sperm (control) was higher than that of the gel microencapsulated sperm, both at 0.75% and 1.0% alginate concentration (P < 0.05), although viability of sperm was similar among the three groups. In Experiment 2, to evaluate the sperm longevity after chilling storage, sperm were microencapsulated in polycation microcapsules at 1.0% alginate concentration, stored at 4 °C for 0, 1, 4, and 7 d, and then cultured at 38.5 °C for 0, 6, and 24 h. Progressive motility and viability of microencapsulated sperm were higher than those of unencapsulated spermatozoa at 0 to 24 h of culture after 4 and 7 d of chilling storage (P < 0.05). In conclusion, polycation microencapsulation at 1.0% alginate concentration can be successfully applied for chilling storage of canine sperm by maintaining motility and viability for up to 7 d.  相似文献   

10.
Preserved stallion semen often has decreased spermatozoal motility and fertility that can vary significantly between individual stallions. It is not known whether the medium used for extending equine sperm contributes to these decreases by inducing premature capacitation during storage. If spermatozoa undergo capacitation or acrosome reaction prior to insemination, this could result in a diminished capacity to penetrate the cumulus mass and fertilize the egg. We hypothesized that skim milk-based semen extenders, similar to those used in cooled storage, stabilize sperm membranes and prolong sperm motility and longevity. However, this could decrease the efficiency of sperm to undergo subsequent capacitation in vivo. This study was designed to evaluate the effects from two media on sperm function. Spermatozoal motility was analyzed, intracellular calcium was measured, and the ability of sperm to undergo acrosome reaction was compared after incubation in a skim milk extender (SME) and Tyrode's medium containing albumin, lactate, and pyruvate (TALP) at 37 degrees C. Results suggest that the SME facilitated capacitation as detected by an increase in both intracellular calcium and acrosome reactions, and a decrease in motility, as compared to TALP. Our data support a shortened functional lifespan for equine sperm in skim milk extender, which indicates that further refinements in cooled semen preservation are required to improve fertility of transported equine semen.  相似文献   

11.
This study investigated the optimum short-term storage conditions for ram spermatozoa before and after flow cytometric sorting. Prior to sorting, semen from four rams (n = 3 ejaculates per ram) was diluted in either a Tris-based diluent (TRIS) or AndroHep (AH) and stored at 5, 15 or 21 degrees C for 0, 6 or 24h. Sperm characteristics were assessed during storage and after sorting, freeze-thawing and incubation (6h, 37 degrees C). Functional capacity and migration ability in artificial cervical mucus (sperm migration test (SMT)) of stored, sorted and non-sorted (control) spermatozoa were assessed after freeze-thawing. After sorting, semen from three rams (n = 3 ejaculates per ram) was diluted in four different extenders: ultra-heat-treated (UHT) long life milk, TRIS containing 10% (v/v) egg yolk (TRIS-EY), AH (pH 7.4), or TEST buffer containing 10% (v/v) egg yolk (TYB). Sorted and non-sorted (control) spermatozoa were stored at 15 degrees C for 24h or 5 degrees C for 6 days. Sperm characteristics were evaluated at 0, 6 and 24h for samples stored at 15 degrees C and daily for samples stored at 5 degrees C. The SMT was performed on sorted and non-sorted (control) spermatozoa after 6h and 3 days storage at 15 and 5 degrees C, respectively. Spermatozoa stored in TRIS were sorted more efficiently, had higher motility after sorting, freezing, thawing and incubation and had greater numbers of spermatozoa penetrating into the SMT than spermatozoa stored in AH prior to sorting. Spermatozoa stored in UHT at both temperatures had higher motility, acrosome integrity and traveled greater distances in the SMT than spermatozoa stored in all other diluents. In summary, storage in TRIS at 21 degrees C was optimal for transport of ram spermatozoa to the sorting site, and storage of spermatozoa in UHT diluent (after sorting) preserved sperm viability and migration ability best at both 15 and 5 degrees C.  相似文献   

12.
Cryopreservation is associated with the production of reactive oxygen species which lead to lipid peroxidation of sperm membranes. The objective was to determine an alpha-tocopherol concentration capable of improving the quality of cryopreserved porcine semen. Boar spermatozoa frozen with 200, 500 or 1000 microg/mL alpha-tocopherol were thawed and incubated at 37 degrees C for 4 h. Routine parameters of semen quality, susceptibility to lipid peroxidation 2-thiobarbituric acid (TBARS) and oxygen uptake were evaluated. Motility was higher (P<0.05) in samples treated with different concentrations of alpha-tocopherol up to 2 h of incubation. Viability and acrosome integrity significantly decreased during incubation (no significant differences between treatments). Two hundred micrograms per milliliter alpha-tocopherol protected spermatozoa against lipid peroxidation during incubation, but 1000 microg/mL failed to protect after 2 h of incubation. There was a negative association between TBARS and motility, suggesting that lipid peroxidation affected sperm motility. Both control and 200 microg/mL alpha-tocopherol samples preserved the capacity to generate oxidative energy up to 1 h of incubation. The addition of 200 microg/mL alpha-tocopherol in the semen extender could be useful to preserve boar spermatozoa against the oxidative stress generated by cryopreservation.  相似文献   

13.
Cryopreservation of boar sperm compromises fertility after thawing by reducing sperm longevity and inducing acrosome reaction-like changes. In an attempt to improve the post-thaw motility and acrosome integrity of boar sperm, semen was frozen using a modified Westendorf method in which the medium was supplemented with either platelet-activating factor (PAF) or a recombinant platelet-activating factor:acetylhydrolase (PAF:AH; Pafase) before or after freezing. Platelet-activating factor is a phospholipid that is present in boar semen and PAF:AH is the naturally occurring enzyme that converts PAF to biologically inactive Lyso-PAF. Addition of PAF to the cryopreservation medium improved post-thaw motility immediately after thawing and after 3h incubation at 37 degrees C (60.0+/-0.0% and 25.0+/-2.9%; mean+/-S.E.M.) compared to the control sperm (41.7+/-1.7% and 10.0+/-2.9%; P<0.05). Acrosome integrity was higher immediately after thawing and after 3 and 6h incubation at 37 degrees C when sperm were frozen in the presence of Pafase (55.7+/-3.2%, 45.7+/-3.7% and 23.0+/-3.1%), compared to the control sperm (42.7+/-1.5%, 25.7+/-5.7% and 12.3+/-2.7%) and sperm frozen in the presence of PAF (33.0+/-3.7%, 26.3+/-2.2% and 11.7+/-0.3%; P<0.05). Addition of PAF to sperm after thawing improved motility immediately post-thaw (41.6+/-2.6%), compared with addition of Pafase (23.3+/-2.2%) or the control sperm with no supplementation of the medium (26.7+/-2.2%; P<0.05). However, this beneficial effect was lost by 3h post-thaw. Supplementation of boar semen cryopreservation medium with PAF and Pafase appeared to have beneficial effects on the in vitro quality of the sperm post-thaw.  相似文献   

14.
The fertility of liquid-preserved boar semen declines during storage at 17°C, insemination trials even indicating early losses in fertilizing ability within the first 24-48 h of storage. Standard semen parameters barely reflect these changes in semen quality, and new approaches for assessment of functional changes in stored spermatozoa are needed. Capacitation, the essential prefertilization step for spermatozoa in the female genital tract, is specifically induced in vitro by bicarbonate. Therefore, we have investigated changes in responsiveness of boar spermatozoa to bicarbonate during storage. Ejaculates of 14 boars were diluted in Beltsville thawing solution, cooled to 17°C and stored for 12, 24, 72, 120, and 168 h before investigation. At each time, basic semen quality was characterized by sperm motility and viability. Subsequently, washed subsamples were incubated in variants of an in vitro fertilization (IVF) medium and assessed for kinetic changes of viability (plasma membrane integrity) and intracellular calcium concentration using flow cytometry in combination with propidium iodide and Fluo-3. By this means, it was possible to determine specific effects of bicarbonate and calcium on sperm subpopulations over incubation time. During storage, standard semen parameters remained on a high level. However, flow cytometric analysis of sperm responses to capacitating and control media revealed two opposing effects of storage. There was a loss of response to bicarbonate in part of the live sperm population but an increasing degree of instability in the rest. Assessment of response to capacitating media by flow cytometry appears a markedly more sensitive way of monitoring sperm functionality during storage than the standard semen parameters of motility and viability.  相似文献   

15.
The effect of liquid storage and cryopreservation of boar spermatozoa on sperm motility, acrosomal integrity, and the penetration of zona-free hamster (ZFH) ova was examined. The sperm penetration assay (SPA) provides valuable information on specific events of fertilization and is a potentially useful indicator of sperm fertility. Ejaculated semen from 4 boars was subjected to 3 treatments: fresh (FRE, no storage), liquid-stored (LIS, stored at 18°C for 3 days), and frozen (FRO, frozen by pellet method and stored at ?196°C for 3 days). A highly motile sperm population was isolated by the swim-up procedure (1 hr). FRE and LIS were incubated an additional 3 hr at 39°C in a Tris-buffered medium to elicit capacitation and the acrosome reaction. Sperm motility and acrosomal integrity were assessed before and after incubation. For the SPA, sperm and eggs were incubated at 39°C for 3 hr in Hams F-10 medium. Each egg was assessed for sperm penetration, sperm binding, and stage of development. Percentages of sperm motility and sperm with a normal apical ridge (NAR) prior to incubation were 78 and 78 (FRE), 75 and 69 (LIS), and 28 and 50 (FRO). After incubation, percentages of motility, NAR, and acrosome-reacted sperm were 34, 10, and 73 (FRE); 43, 24, and 51 (LIS); and 18, 13, and 59 (FRO). A somewhat higher (P < .05) percentage of ZFH ova was penetrated by FRE (45.8) than by LIS (42.0). Penetration of ZFH ova by FRO was markedly (P < .05) reduced (30.2). Sperm penetration was not significantly correlated with motility or acrosomal integrity before or after incubation, regardless of treatment. These data suggest that the SPA can be used in conjunction with conventional measures of semen analysis in assessing the potential fertilizing capacity of boar sperm and that liquid storage is superior to frozen storage with respect to preserving sperm fertility.  相似文献   

16.
There is a need for methods of rapid and sensitive sperm function assessment. As spermatozoa are not able to fertilize an oocyte before having undergone a series of complex physiological changes collectively called capacitation, it is logical to assess sperm function under fertilizing conditions in vitro. In this study, the responsiveness of sperm to capacitating conditions in vitro was monitored by changes in sperm response to ionophore and by changes in the amount of intracellular calcium ions in stored boar semen. Boar semen was diluted at 32 and 20 degrees C and stored for 24 and 72 h at 16 and 10 degrees C. Ionophore-induced changes and increased intracellular calcium ion content in boar spermatozoa were recorded by flow cytometry and found to progress as a function of time during incubation under capacitating conditions. All responsiveness parameters (increases in proportions of membrane-defective spermatozoa, acrosome-reacted spermatozoa, and cells with high intracellular calcium levels) were shown to be sensitive to subtle physiological changes occurring at low storage temperatures. The initial levels of sperm with a high calcium content were higher in semen stored at 10 degrees C, but the accumulation of internal calcium was lower than in semen stored at 16 degrees C. The loss of membrane integrity and increase in the proportion of acrosome-reacted cells were higher in semen stored at 10 degrees C. Dilution at 20 degrees C had no negative effect on membrane integrity or responsiveness to capacitating conditions. There was no significant difference between semen stored for 24 and 72 h in terms of membrane integrity, acrosome reaction, and intracellular calcium after capacitation treatment. However, dynamics of cell death and acrosome reaction in response to capacitating conditions were somewhat accelerated after 72 h storage, especially in semen stored at 10 degrees C. It can be concluded that the simultaneous use of the sperm membrane responsiveness and kinetic parameters is a sensitive tool for the detection of storage-related membrane changes in boar semen.  相似文献   

17.
A study was conducted to determine an optimum technique for semen cryopreservation and the biological competence of frozen-thawed ferret spermatozoa. Fifty-two fresh electroejaculates from 4 males were evaluated for sperm percentage motility, forward progressive motility, motility index (SMI) and acrosomal integrity. To determine the optimum temperature for maintaining sperm motility in vitro and the influence of glycerol on sperm motility, seminal aliquants were diluted in TEST diluent (containing either 0 or 4% glycerol) and maintained at 25 degrees or 37 degrees C. For cryopreservation, semen was diluted in each of 3 cryodiluents (TEST, PDV, BF5F), cooled for 30 min at 5 degrees C and pelleted on solid CO2 or frozen in 0.25 ml straws (20 degrees C/min to -100 degrees C). Following thawing, SMI and acrosomal integrity were determined. Ten females with maximum vulval swelling were given 90 i.u. human chorionic gonadotrophin and laparoscopically inseminated in utero with spermatozoa previously frozen using the optimum diluent and freeze-thaw method. The maintenance temperature of 25 degrees C was superior (P less than 0.05) to 37 degrees C for sustaining sperm motility, and glycerol did not influence (P greater than 0.05) motility for up to 11 h of culture. After thawing, motile spermatozoa were recovered in all treatment groups, but sperm motility and normal acrosomal ratings were highest using the PDV diluent, the pelleting method and thawing at 37 degrees C (P less than 0.05). Seven of the 10 ferrets (70%) inseminated with spermatozoa frozen by this approach became pregnant and produced 31 kits (mean litter size 4.4; range 1-9 kits).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The objectives of this study were to evaluate the effects and interactions of freezing dog semen using 4 different sperm concentrations (50 x 10(6), 100 x 10(6), 200 x 10(6) and 400 x 10(6) spermatozoa/mL) in 0.5-mL straws and diluting the thawed semen at 4 different rates (1:0, 1:1, 1:2 and 1:4) on post-thaw survival and longevity of dog spermatozoa during incubation at 38 degrees C. Fifteen ejaculates were collected from 12 dogs and pooled. The semen pool was divided into 4 aliquots containing respectively 4,200 x 10(6), 2,100 x 10(6), 1,050 x 10(6) and 525 x 10(6) spermatozoa, which were centrifuged. Sperm pellets were rediluted with TRIS-glucose-egg yolk extender containing 5% glycerol and 0.5% of Equex STM Paste to obtain the designated sperm concentrations. The semen was frozen in 0.5-mL straws 4 cm above liquid nitrogen (LN2). The straws were thawed at 70 degrees C for 8 sec and the contents of each straw were divided into 4 aliquots and diluted with TRIS buffer at 38 degrees C at rates of 1:0, 1:1, 1:2 and 1:4 (semen:buffer), respectively, making a total of 16 treatments. Sperm motility was subjectively evaluated after thawing and at 1-h intervals during 8 h of incubation at 38 degrees C. Plasma membrane integrity and acrosomal status were evaluated at 1, 3, 6, 12 and 18 h post-thaw using a triple-staining procedure and flow cytometry. For data pooled across the post-thaw dilution rate, motility was higher (P< 0.001) in samples frozen with 200 x 10(6) spermatozoa/mu. The integrity of sperm plasma membranes after 18 h incubation was higher (P<0.05) in samples frozen with 200 x 10(6) and 400 x 10(6) spermatozoa/mL. For data pooled across sperm concentration, samples diluted at a rate of 1:2 or 1:4 had better (P<0.001) motilities after 8 h of incubation than undiluted samples or those diluted at 1:1. The integrity of the sperm plasma membranes was higher (P<0.001) at increasing dilution rates. When the 16 treatments were compared, the best longevity was obtained when semen packaged at a concentration of 200 x 10(6) spermatozoa/mL was diluted immediately after thawing at 1:4 dilution rate.  相似文献   

19.
This study was designed to evaluate the possible benefits of adding gelatin to a standard milk extender, for solid storage of sheep semen at 15 degrees C. Solid storage was assessed in terms of effects on sperm motility and membrane integrity up to 2 days (Study 1), and on in vitro penetration capacity after storage for 24h (Study 2). In both studies, semen was diluted in CONTROL (standard milk extender) and GEL (1.5 g gelatin/100ml extender) diluents to a final concentration of 400 x 10(6)sperm/ml. In Study 1, semen samples were stored at 15 degrees C, and sperm quality variables analyzed after 2, 24 and 48 h of storage. Motility and viability values were significantly lowered using the liquid compared to the gel extender for all storage periods, except for motility after 2h of storage, whose values were similar. After 2h of incubation at 37 degrees C, motile cell percentages and membrane integrity were significantly lower in the CONTROL group than in the GEL group for all storage periods. In Study 2, in vitro matured lamb oocytes were randomly divided into three groups and fertilized with CONTROL diluted semen stored for 2h or 24h, or with GEL diluted semen stored for 24h. After co-incubation, oocytes were evaluated for signs of penetration. Storage of semen in the GEL diluent for 24h gave rise to increased in vitro fertilization rates in comparison with the CONTROL diluent. Our findings indicate that the solid storage at 15 degrees C of ram spermatozoa by adding gelatin to the extender leads to improved survival and in vitro penetrating ability over the use of the normal liquid extender. A solid diluent could thus be a useful option for the preservation of fresh ovine semen for extended periods.  相似文献   

20.
The relationship between various semen evaluation tests and fertility in fertile and subfertile artificial insemination (AI) boars was examined. In total, 36 boars, 19 Finnish Landrace and 17 Yorkshire, were included. The average value of three ejaculates extended in an X-cell extender from each boar was used in the analysis. Based on nonreturn results (NR60d, later referred to nonreturn rate, NR%), the boars were divided into two groups: those with poor fertility (NR% < 80, n = 19) and those with normal or above average nonreturn rates (NR% = 83, n = 17). Semen quality was determined after 1 and 7 days of storage at 17 degrees C. Sperm motility before and after each methanol stress was assessed both subjectively and using a computer-assisted semen analyzer (CASA). The sperm cells were stained with calcein AM and propidium iodide and evaluated for plasma membrane integrity under an epifluorescence microscope. Propidium iodide and Hoechst 33258 dyes were used in parallel to stain sperm cells for fluorometric analysis with an automatic fluorometer. Sperm morphology was evaluated in stained smears. The percentage of sows reported as not having returned to estrus within 60 days after AI (nonreturn rate, NR%) and litter size of primiparous and multiparous farrowings were used as measures of fertility. Of the parameters analyzed, only CASA-assessed total sperm motility and methanol-stressed total sperm motility correlated significantly (P < 0.05) with nonreturn rate. Those tests presenting the highest correlation with nonreturn rate were CASA-assessed total motility (r = 0.54, P < 0.01) and subjective sperm motility (r = 0.52, P < 0.01) after 7 days of storage. The highest correlation with fertility at 1 day of storage was shown by methanol-stressed total sperm motility assessed with the CASA (r = 0.46, P < 0.01). The only semen parameter that correlated significantly (r = 0.37, P < 0.05) with litter size of multiparous farrowings was viability of seven-day stored semen stained with Hoechst 33258 and analyzed with a fluorometer. The methanol stress test described here could serve as a rapid test whose results could be used to predict NR% better than motility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号