首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
The altered oxygen binding curves for various abnormal hemoglobins were analyzed according to a two-state allosteric model. Of three allosteric parameters computed for abnormal hemoglobins, K R was nearly constant, but K T and L varied with the correlation of log c=?0.4 log L, where c is K R/K T. This correlation indicates that the abnormal allosteric oxygen binding of hemoglobin is due to altered molecular properties of the deoxy-T state but not that of the deoxy-R state. To clarify the molecular basis of this idea, resonance Raman spectra in the low-frequency region of abnormal hemoglobins were measured under different solvent conditions. Varied frequencies of iron-histidine stretching Raman lines was found to correlate with varied oxygen affinities (K T) of deoxy-T states. The strength of the iron-histidine bond of deoxy-T states was changed, depending upon the magnitude of the strain imposed on hemes by globin, and this bond presumably comprises an important part of the regulation mechanisms for hemoglobin oxygen binding and structure changes.  相似文献   

2.
Summary Oxygen equilibria in tench hemoglobin were analysed according to a three-state MWC model. In addition to theT andR states of the traditionally used two-state model, the three-state model introduces an additional state, theS state, when organic phosphates bind to theT-structure hemoglobin. Under conditions covering natural red cell pH values and nucleoside triphosphate-hemoglobin ratios, it was possible to closely fit experimental data to the three-state equation with constant values of the association constantsK R ,K T , andK S , and with only the allosteric constantsL andM varying with effector conditions. Thus, in contrast to a twostate analysis of oxygen equilibria, the three-state analysis was consistent with the basic assumption of the MWC model, that heterotropic ligands only affect allosteric constants and not association constants. The temperature-dependence of the three-state parameter values showed that in the presence of nucleoside triphosphate the dominance of theS state over theT state was most pronounced at low temperatures. Furthermore, the numerical values of the enthalpy and entropy change of oxygenation were lower in theS state than in theT andR states, and the enthalpy and entropy change for the allostericSR transition were much larger than for theTR transition.Abbreviations Hb hemoglobin - Y fractional O2 saturation - ATP adenosine triphosphate  相似文献   

3.
The redox titration of extracellular hemoglobin of Glossoscolex paulistus (Annelidea) was investigated in different pH conditions and after dissociation induced by pressure. Oxidation increased with increasing pH, as shown by the reduced amount of ferricyanide necessary for the oxidation of hemoglobin. This behavior was the opposite of that of vertebrate hemoglobins. The potential of half oxidation (E1 / 2) changed from − 65.3 to + 146.8 mV when the pH increased from 4.50 to 8.75. The functional properties indicated a reduction in the log P50 from 1.28 to 0.28 in this pH range. The dissociation at alkaline pH or induced by high pressure, confirmed by HPLC gel filtration, suggested that disassembly of the hemoglobin could be involved in the increased potential for oxidation. These results suggest that the high stability and prolonged lifetime common to invertebrate hemoglobins is related to their low tendency to oxidize at acidic pH, in contrast to vertebrate hemoglobins.  相似文献   

4.
The hemoglobin species of rabbit embryo, fetus, and adult were characterized by quantitative polyacrylamide gel electrophoresis (PAGE). Special statistical methods, including joint confidence envelopes for the slope (KR) and intercept (Y0) of the Ferguson plot and analysis of covariance were utilized to identify the hemoglobin species. Five embryonic rabbit hemoglobins could be distinguished. Their relative proportions varied with developmental stage. No specific fetal hemoglobin was detected. The two previously known adult hemoglobins were characterized, prepared by isoclectric focusing on polyacrylamide gel (IFPA) and shown to differ by two amino acid substitutions in the β-chain.A general strategy for testing molecular identity by PAGE is outlined.  相似文献   

5.
Hemoglobins of three baboons, Theropithecus gelada, Papio hamadryas- and Papio anubis, were purified and their oxygen equilibrium characteristics were studied. (a) Oxygen affinity, as expressed by P50, oxygen partial pressure for 50% oxygen binding, was in the order of gelada hemoglobin > anubis hemoglobin > hamadryas hemoglobin although the differences were small. (b) The presence of 2,3-diphosphoglycerate reduced their oxygen affinity in a similar manner. The effect on baboon hemoglobins was greater than that on human and Japanese monkey hemoglobins. (c) The intensity of the Bohr effect, as expressed by ?ΔlogP50ΔpH, at pH 7·4 agreed well with each other and the value was 0·62 in the presence of 2 mm diphosphoglycerate and 0·52 in its absence. These results indicate that phenotypic adaptation (acclimatory) may play an important role in the adaptation of gelada baboon to high altitudes.  相似文献   

6.
Using a polyacrylamide disc gel electrophoretic system similar to that described by J. T. Clarke (1964, Ann. N. Y. Acad. Sci.121, 428–436), we have achieved an improved separation of hemoglobins from Rana catesbeiana tadpoles by substituting one of several amino acids in the place of glycine in the electrode chamber buffer. The relative migrations (Rf) and degree of separation of these similar hemoglobins are proportional to the pK′ of the α-amino group of the amino acid used in the buffer. Specifically, for these proteins, log (Rf × 100) was found to be directly proportional to the pK2 of the amino acid divided by the volume conductivity (specific conductance) of the electrode chamber buffer. For example, improved separation of these hemoglobins in short electrophoretic times can be achieved, at low cost, by using dl-alanine instead of glycine in the buffer. Improved separation of other proteins which migrate at basic pH might be achieved by a similar approach.  相似文献   

7.
Summary The allosteric effects of the erythrocytic nucleoside triphosphates (NTP) and of proton concentrations were investigated by precise measurement of Hb–O2 equilibria of tench hemoglobin (including extreme, high and low saturation ranges) and analysed in terms of the MWC two state model and the Adair four step oxygenation theory.At low concentrations (NTP/Hb ratio=1.0, and pH>7.3) ATP, GTP and protons decrease Hb–O2 affinity by increasing the allosteric constantL and reducingK T, the association constant1 of the deoxy, tense state of the Hb, without significantly affecting that (K R) of the oxy state, increasing the free energy of cooperativity (G). High concentrations of these effectors, however, also reduceK R. The greater sensitivity of the half-saturation O2 tension (P 50) of the Hb to GTP than to ATP at the same concentration, correlates with greater effects of GTP on bothK T andK R. The pH and NTP dependence of the four Adair association constants and the calculated fractional populations of Hb molecules in different stages of oxygenation show that the autochthonous NTP effectors and protons stabilize the T structure and postpone the TR transition basic to cooperativity in fish Hb.The possible implications of the findings for aquatic respiration are discussed.Abbreviations ATP adenosine triphosphate - DPG 2,3-diphosphoglycerate (glycerate-2,3-bisphosphate) - GTP guanosine triphosphate - IHP inositol hexaphosphate - NTP nucleoside triphosphates In this paperK T andK R are defined as theassociation equilibrium constants instead of dissociation constants (as originally defined by Monod et al. 1965) to facilitate comparison with the Adair constants  相似文献   

8.
Summary The interaction of allosteric effectors (CO2, ATP, H+) with respect to the oxygen affinity of carp hemoglobin was analyzed by determining oxygen binding curves spectrophotometrically in dilute solutions of stripped hemoglobin at 20°C. The pH range studied was 6.8–8.2.P CO2 was 0, 10 and 70 mmHg (0, 1.33 and 9.3 kPa). ATP/Hb4 was 0, 8 and 24. In the presence of either CO2 or ATP, the effects of the cofactors onP 50 were as expected over the whole pH range. In contrast to other published data, each cofactor also had a significant effect onP 50 in the presence of the other cofactor. Evidence was obtained that oxylabile carbamate is formed by carp hemoglobin and that the formation of carbamate persists at a lower level in the presence of ATP. The results support the view that the binding of ATP to carp hemoglobin requires only one terminal amino group, leaving the other N-terminal of the -chain free to react with CO2.  相似文献   

9.
The effects of thyroidectomy (Tx) and subsequent treatment with 3,5,3′-triiodothyronine (T3) or combined replacement therapy (TR) with T3 and thyroxine (T4) on the substrate and temperature kinetics properties of Na+,K+-ATPase and lipid/phospholipid makeup of rat kidney microsomes were examined. Enzyme activity was somewhat high in the hypothyroid (Tx) animals and increased significantly following T3 treatment, while TR treatment caused a decrease. In the Tx and T3 groups enzyme activity resolved in two kinetic components, while in the TR group the enzyme showed allosteric behavior up to 0.5 mm ATP concentration. The K m and V max values of both the components decreased in Tx animals without affecting the catalytic efficiency. T3 treatment caused a significant increase in the V max of both the components, with a significant increase in the catalytic efficiency, while the K m values were not upregulated. The TR regimen lowered the K m and V max of component II but improved the catalytic efficiency. Thyroid status-dependent changes were also noted in the temperature kinetics of the enzyme. Regression analysis revealed that changes in the substrate and temperature kinetics parameters correlated with specific phospholipid components.  相似文献   

10.
Hemoglobin is an important protein found in the red cells of many animals. In humans, the hemoglobin is mainly distributed in the red blood cell. Single amino acid substitution is the main pathogenesis of most hemoglobin disorders. Here, the author used a new gene ontology technology to predict the molecular function and biological process of four important hemoglobin disorders with single substitution. The four studied important abnormal hemoglobins (Hb) with single substitution included Hb S, Hb E, Hb C, and Hb J-Baltimore. Using the GoFigure server, the molecular function and biological process in normal and abnormal hemoglobins was predicted. Compared with normal hemoglobin, all studied abnormal hemoglobins had the same function and biological process. This indicated that the overall function of oxygen transportation is not disturbed in the studied hemoglobin disorders. Clinical findings of oxygen depletion in abnormal hemoglobin should therefore be due to the other processes rather than genomics, proteomics, and expression levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号