首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
Teicoplanin is the third in a series of macrocyclic glycopeptide antibiotics that has been evaluated as a chiral selector in capillary electrophoresis (CE). It was used to resolve over 100 anionic racemates at low selector concentrations. Like the other related glycopeptide antibiotics, its enantioselectivity tends to be opposite to that of the ansa-type antibiotics which prefers cationic compounds, particularly amines. Factors that affect teicoplanin-based enantioseparations include the selector concentration, pH, and the concentration of the organic modifier. The temperature and the nature and strength of the buffer are also known-to affect the stability of the chiral selector as well as the enantioseparation. Teicoplanin exhibited some features that were not noted with the other glycopeptide antibiotics. For example, it aggregates (forms micelles) in aqueous solutions and this influences its enantioselectivity. Unlike the other studied glycopeptides, teicoplanin precipitates in alcohol-water mixtures. It also binds less to the capillary wall than vancomycin as evidenced by the faster electroosmotic flow velocity. The micellization of teicoplanin is pH dependent so that the effect of pH on enantiorecognition is more complex for teicoplanin than for other chiral selectors. Also it is shown that the simple model proposed to explain the role of organic modifiers in cyclodextrin-based CE enantioseparations may not apply to these and other systems. © 1996 Wiley-Liss, Inc.  相似文献   

2.
《Chirality》2017,29(9):512-521
Six novel regioselectively substituted amylose derivatives with a benzoate at 2‐position and two different phenylcarbamates at 3‐ and 6‐positions were synthesized and their structures were characterized by 1H nuclear magnetic resonance (NMR) spectroscopy. Their enantioseparation abilities were then examined as chiral stationary phases (CSPs) for high‐performance liquid chromatography (HPLC) after they were coated on 3‐aminopropyl silica gels. Investigations indicated that the substituents at the 3‐ and 6‐positions played an important role in chiral recognition of these amylose 2‐benzoate serial derivatives. The derivatives demonstrated characteristic enantioseparation and some racemates were better resolved on these derivatives than on Chiralpak AD, which is one of the most efficient CSPs, utilizing coated amylose tris(3,5‐dimethylphenylcarbamate) as the chiral selector. Among the derivatives prepared, amylose 2‐benzoate‐3‐(phenylcarbamate/4‐methylphenylcarbamate)‐6‐(3,5‐dimethylphenylcarbamate) exhibited chiral recognition abilities comparable to that of Chiralpak AD and may be useful CSPs in the future. The effect of mobile phase on chiral recognition was also studied. In general, with the decreased concentration of 2‐propanol, better resolutions were obtained with longer retention times. Moreover, when ethanol was used instead of 2‐propanol, poorer resolutions were often achieved. However, in some cases, improved enantioselectivity was achieved with ethanol rather than 2‐propanol as the mobile phase modifier.  相似文献   

3.
In an effort to elucidate the mechanism of chiral discrimination of cholic acid-based stationary phases, the enantiomeric recognition ability of six chiral stationary phases (CSPs), prepared from differently substituted cholic acid derivatives, was evaluated in normal phase high-performance liquid chromatography (HPLC) with a series of 1,1'-binaphthyl compounds. The influence of structural variations of analytes on retention and enantioselectivity was investigated. Particularly high values of enantioselectivity were observed for the binaphthol enantiomers on a CSP prepared from the allyl 7 alpha,12 alpha-dihydroxy-3 alpha-phenylcarbamoyloxy-5 beta-cholan-24-oate. The complexes of this chiral selector with both enantiomers of binaphthol were studied as models for the interactions responsible for the enantioseparation with the cholic acid-based stationary phases. The 1:1 stoichiometry of the complex in solution was determined by UV titration. The chiral selector dissolved in chloroform exhibited a chiral discrimination for the binaphthol in (1)H and (13)C nuclear magnetic resonance (NMR) spectroscopies. Some aromatic proton and carbon resonances of binaphthol were clearly separated into a pair of peaks due to enantiomers in the presence of the chiral selector. Moreover, on the basis of molecular mechanics calculation, a chiral discrimination model was proposed which nicely explains the relevant chromatographic behavior of the 1,1'-binaphthyl derivatives.  相似文献   

4.
Capillary electrophoresis (CE) coupled to tandem mass spectrometry was applied to the chiral separation of baclofen using sulfobutylether-beta-cyclodextrin chiral selector in partial filling counter current mode. On-line UV detection was simultaneously used. Method optimization was performed by studying the effect of cyclodextrin and BGE concentration as well as sheath liquid composition on analyte migration time and enantiomeric resolution. The cyclodextrin showed stereoselective complexation towards baclofen enantiomers, allowing chiral resolution at low concentration. The CE capillary protrusion from the ESI needle relevantly affected the chiral resolution and the analyte migration time. Complete enantiomeric separation was obtained by using 0.25 M formic acid BGE containing 1.75 mM of chiral selector and water/methanol (30:70, v/v) 3% formic acid as sheath liquid. The method exhibited a LOD of 0.1 microg/mL (racemic concentration) in MS3 product ion scan mode of detection and was applied to the analysis of racemic baclofen in pharmaceutical formulations.  相似文献   

5.
Flurbiprofen is a kind of nonsteroidal anti‐inflammatory drug, which has been widely used in clinic for treatment of rheumatoid arthritis and osteoarthritis. It has been reported that S‐flurbiprofen shows good performance on clinic anti‐inflammatory treatment, while R‐enantiomer almost has no pharmacological activities. It has important practical values to obtain optically pure S‐flurbiprofen. In this work, chiral ionic liquids, which have good structural designability and chiral recognize ability, were selected as the extraction selector by the assistance of quantum chemistry calculations. The distribution behaviors of flurbiprofen enantiomers were investigated in the extraction system, which was composed of organic solvent and aqueous phase containing chiral ionic liquid. The results show that maximum enantioselectivity up to 1.20 was attained at pH 2.0, 25°C using 1,2‐dichloroethane as organic solvent, 1‐butyl‐3‐methylimidazole L‐tryptophan ([Bmim][L‐trp]) as chiral selector. The racemic flurbiprofen initial concentration was 0.2 mmol L?1, and [Bmim][L‐trp] concentration was 0.02 mol L?1. Furthermore, the recycle of chiral ionic liquids has been achieved by reverse extraction process of the aqueous phase with chiral selector, which is significant for industrial application of chiral ionic liquids and scale‐up of the extraction process.  相似文献   

6.
Cellobiohydrolase Cel7A (previously called CBH 1), the major cellulase produced by the mould fungus Trichoderma reesei, has been successfully exploited as a chiral selector for separation of stereo-isomers of some important pharmaceutical compounds, e.g. adrenergic beta-blockers. Previous investigations, including experiments with catalytically deficient mutants of Cel7A, point unanimously to the active site as being responsible for discrimination of enantiomers.In this work the structural basis for enantioselectivity of basic drugs by Cel7A has been studied by X-ray crystallography. The catalytic domain of Cel7A was co-crystallised with the (S)-enantiomer of a common beta-blocker, propranolol, at pH 7, and the structure of the complex was determined and refined at 1. 9 A resolution. Indeed, (S)-propranolol binds at the active site, in glucosyl-binding subsites -1/+1. The catalytic residues Glu212 and Glu217 make tight salt links with the secondary amino group of (S)-propranolol. The oxygen atom attached to the chiral centre of (S)-propranolol forms hydrogen bonds to the nucleophile Glu212 O(epsilon1) and to Gln175 N(epsilon2), whereas the aromatic naphthyl moiety stacks with the indole ring of Trp376 in site +1. The bidentate charge interaction with the catalytic glutamate residues is apparently crucial, since no enantioselectivity has been obtained with the catalytically deficient mutants E212Q and E217Q.Activity inhibition experiments with wild-type Cel7A were performed in conditions close to those used for crystallisation. Competitive inhibition constants for (R)- and (S)-propranolol were determined at 220 microM and 44 microM, respectively, corresponding to binding free energies of 20 kJ/mol and 24 kJ/mol, respectively. The K(i) value for (R)-propranolol was 57-fold lower than the highest concentration, 12.5 mM, used in co-crystallisation experiments. Still several attempts to obtain a complex with the (R)-enantiomer have failed.By using cellobiose as a selective competing ligand, the retention of the enantiomers of propranolol on the chiral stationary phase (CSP) based on Cel7A mutant D214N were resolved into enantioselective and non- selective binding. The enantioselective binding was weaker for both enantiomers on D214N-CSP than on wild-type-CSP.  相似文献   

7.
Novel chiral ionic liquid stationary phases based on chiral imidazolium were prepared. The ionic liquid chiral selector was synthesized by ring opening of cyclohexene oxide with imidazole or 5,6‐dimethylbenzimidazole, and then chemically modified by different substitute groups. Chiral stationary phases were prepared by bonding to the surface of silica sphere through thioene “click” reaction. Their enantioselective separations of chiral acids were evaluated by high‐performance liquid chromatography. The retention of acid sample was related to the counterion concentration and showed a typical ion exchange process. The chiral separation abilities of chiral stationary phases were greatly influenced by the substituent group on the chiral selector as well as the mobile phase, which indicated that, besides ion exchange, other interactions such as steric hindrance, π‐π interaction, and hydrogen bonding are important for the enantioselectivity. In this report, the influence of bulk solvent components, the effects of varying concentration, and the type of the counterion as well as the proportion of acid and basic additives were investigated in detail.  相似文献   

8.
Capillary zone electrophoresis (CZE) and micellar capillary electrophoresis (MCE) were applied for the enantiomeric separation of nine mononuclear tris(diimine)ruthenium(II) complexes as well as the separation of all stereoisomers of a dinuclear tris(diimine)ruthenium(II) complex. Nine cyclodextrin (CD) based chiral selectors were examined as run buffer additives to evaluate their effectiveness in the enantiomeric separation of tris(diimine)ruthenium(II) complexes. Seven showed enantioselectivity. Sulfated gamma-cyclodextrin (SGC), with four baseline and three partial separations, was found to be the most useful chiral selector. In CZE mode, the derivatized gamma-CDs were more effective than beta-CDs while sulfated CDs work better than carboxymethyl CDs. In MCE mode, hydroxypropyl beta-CD separated the greatest number of tris(diimine) ruthenium(II) complexes. The effects of chiral selector concentration, run buffer pH and concentration, the concentration ratio between chiral selector and other factors were investigated.  相似文献   

9.
The enantioseparation of seven Tröger's base derivatives (TBs) was carried out by capillary electrophoresis using α‐, β‐, and γ‐cyclodextrins as chiral selectors and phosphate at 20 mmol/l concentration, pH 2.5, as background electrolyte. The method was optimized with respect to the concentration of chosen chiral selectors (0–50 mmol/l) and the amount of organic solvent (acetonitrile, 0–25 % (v/v)) in the electrolyte. The results indicate that all the studied variables, i.e., type of chiral selector, its concentration, and the amount of the added organic solvent, have a significant impact on the enantioseparation of the studied TBs. The best results for the majority of the separated TBs were obtained utilizing β‐cyclodextrin at 5 mmol/l concentration and with various amounts of acetonitrile added ranging from 5 to 15% (v/v) in the background electrolyte. For the two smallest studied TBs, γ‐cyclodextrin with 10% (v/v) acetonitrile also provided good resolution. Chirality 25:379–383, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

10.
Enantiomers of lomefloxacin hydrochloride were separated by high-speed counter-current chromatography (HSCCC) using sulfated-β-cyclodextrin as a chiral selector (CS). The separation was performed with a two-phase solvent system composed of ethyl acetate–methanol–water (10:1:10, v/v) containing CS at 0–60 mmol/l in a head-to-tail elution mode, while obtained fractions were identified by polarimeter and spectropolarimeter. The results show that the concentration of the CS in the system strongly affects the peak resolution (Rs). As the concentration of CS increases, the Rs first increases reaching the maximum at 50 mmol/l and then decreases. When the CS concentration is kept constant in the solvent systems, the Rs decreases as the concentration of the lomefloxacin hydrochloride increases. The overall results of our studies indicated that sulfated-β-cyclodextrin is very useful for the chiral separation by HSCCC.  相似文献   

11.
Lambda-carrageenan, a linear high molecular weight sulfated polysaccharide, has been employed as a chiral selector in capillary electrophoresis for the separation of enantiomers of weakly basic pharmaceutical compounds. The racemic compounds that were enantioresolved included propranolol, pindolol, tryptophanol, laudanosine and laudanosoline. In addition, the diastereomeric pair of cinchonine and cinchonidine were also resolved. Method conditions such as buffer pH, electrolyte concentration, column temperature, and chiral selector concentration were found to be important for improvement of enantioselectivity. © 1996 Wiley-Liss, Inc.  相似文献   

12.
Beck GM  Neau SH 《Chirality》2000,12(8):614-620
Lambda-carrageenan, a linear high molecular weight sulfated polysaccharide, was employed as a chiral selector in capillary electrophoresis for the separation of enantiomers of weakly basic pharmaceutical compounds. In order to improve the utility of the chiral selector, the purity and concentration of the lambda-carrageenan and other important capillary electrophoresis method parameters were investigated. The results indicated that the purity and concentration of the lambda-carrageenan, ionic strength of the buffer, and temperature were critical to successful enantioseparation. These new method conditions were then applied to previously investigated beta-blockers (such as propranolol HCl and pindolol) and racemic tryptophan derivatives. These studies were successful in identifying important method conditions for the improved enantioselectivity with lambda-carrageenan.  相似文献   

13.
14.
In vitro metabolism models have been used to determine the relative metabolic stability of novel 2-aminotetralin analogues for the treatment of CNS diseases. Few of these new compounds had been produced as stereochemically pure materials and the achiral analytical techniques, used initially, measured the average metabolic clearance of the two enantiomers of the racemic mixtures. A chiral HPLC assay, using a Chiral AGP column, was developed for two of these racemic analogues and was used to measure the clearance of the enantiomers from suspensions of freshly isolated rat hepatocytes. Robust separations were obtained for both compounds and a number of metabolic products. The enantiomers of only one analogue were subject to different rates of metabolism. The extent of the difference was dependent upon the initial starting concentration of the incubation. The identity of certain metabolites was investigated using LC/MS. The enantioselectivity appears to have arisen from the restricted hydroxylation of one analogue compared to that of the other. © 1996 Wiley-Liss, Inc.  相似文献   

15.
Phinney KW  Sander LC 《Chirality》2003,15(4):287-294
Polar additive concentration effects in supercritical fluid chromatography were studied on chiral stationary phases having either a macrocyclic glycopeptide or a derivatized polysaccharide as the chiral selector. Two basic additives, isopropylamine and triethylamine, were incorporated into the methanol modifier at various concentrations and the effects on retention, selectivity, and resolution were monitored. Many of the analytes failed to elute from the macrocyclic glycopeptide stationary phase in the absence of an additive and the most noticeable effect of increasing additive concentration was a significant decrease in retention. On the derivatized polysaccharide stationary phase the additives had little effect on retention, but they did foster significant improvements in peak shape and resolution.  相似文献   

16.
Economic and enantioselective synchronous fluorescence spectroscopy and high‐performance thin‐layer chromatography methods have been developed and validated as per ICH guidelines for the separation of zopiclone enantiomers using L‐(+)‐tartaric acid as a chiral selector, followed by determination of the chiral‐switching eszopiclone. Synchronous fluorescence spectroscopy was successfully applied for chiral recognition of R & S enantiomers of zopiclone at  = 110 nm based on creating of diastereomeric complexes with 0.06M tartaric acid in an aqueous medium containing 0.2M disodium hydrogen orthophosphate. Synchronous fluorescence intensities of eszopiclone were recorded at 296 nm in concentration range 0.2‐ to 4‐μg/mL eszopiclone. High‐performance thin‐layer chromatography method depends on resolution of zopiclone enantiomers on achiral HPTLC silica‐gel plates using acetonitrile:methanol:water (8:2:0.25, v/v/v) containing L‐(+)‐tartaric acid as a chiral mobile‐phase additive followed by densitometric measurements at 304 nm in concentration range of 1 to 10 μg/band of eszopiclone. The effect of chiral‐selector concentration, pH, and temperature on the resolution have been studied and optimized for the proposed methods. The cited procedures were successfully applied to determine eszopiclone in commercial tablets of pure and racemic forms. Enantiomeric excess was evaluated using optical purity test and integrated peak area to describe the enantiomeric ratio. Thermodynamics of chromatographic separation, enthalpy, and entropy were evaluated using the Van't Hoff equation. The proposed methods were found to be selective for identification and determination of the eutomer in drug substances and products.  相似文献   

17.
Yu H  Yin C  Jia C  Jin Y  Ke Y  Liang X 《Chirality》2012,24(5):391-399
Two "click" binaphthyl chiral stationary phases were synthesized and evaluated by liquid chromatography. Their structures incorporate S-(-)-1,1'-binaphthyl moiety as the chiral selector and 1,2,3-triazole ring as the spacer. These chiral stationary phases (CSPs) allowed the efficient resolution for a wide range of racemic BINOL derivatives, particularly for nonpolar diether derivatives and 3-phenyl indolin-2-one analogs. The chromatographic data showed that the π-π interaction was crucial for enantiorecognition of these CSPs. Loss of enantioselectivity observed on CSP3, which are lacking the triazole ring linkage, indicated that the triazole ring linkage took part in the enantioseparation process, although it was remote from the chiral selector of the CSP. The substitution of the phenyl group at 6 and 6' positions can significantly improve the separation ability of the CSP. The chiral recognition mechanism was also investigated by tracking the elution orders and studying the thermodynamic parameters.  相似文献   

18.
A modified macrocyclic glycopeptide‐based chiral stationary phase (CSP), prepared via Edman degradation of vancomycin, was evaluated as a chiral selector for the first time. Its applicability was compared with other macrocyclic glycopeptide‐based CSPs: TeicoShell and VancoShell. In addition, another modified macrocyclic glycopeptide‐based CSP, NicoShell, was further examined. Initial evaluation was focused on the complementary behavior with these glycopeptides. A screening procedure was used based on previous work for the enantiomeric separation of 50 chiral compounds including amino acids, pesticides, stimulants, and a variety of pharmaceuticals. Fast and efficient chiral separations resulted by using superficially porous (core‐shell) particle supports. Overall, the vancomycin Edman degradation product (EDP) resembled TeicoShell with high enantioselectivity for acidic compounds in the polar ionic mode. The simultaneous enantiomeric separation of 5 racemic profens using liquid chromatography‐mass spectrometry with EDP was performed in approximately 3 minutes. Other highlights include simultaneous liquid chromatography separations of rac‐amphetamine and rac‐methamphetamine with VancoShell, rac‐pseudoephedrine and rac‐ephedrine with NicoShell, and rac‐dichlorprop and rac‐haloxyfop with TeicoShell.  相似文献   

19.
Copper(II) complexes of (S)-phenylalaninamide have been successfully used for the direct enantiomeric separation of unmodified (R,S)-α-hydroxy acids in reversed phase high-performance liquid chromatography (RP-HPLC). The effect of various parameters (pH, eluent polarity, selector concentration) on enantioselectivity is discussed. Evidence is provided that a mechanism of ligand exchange is actually occurring during the chromatographic separation. The method is very convenient and easy to use, and the chiral selector is commercially available and can be recovered at the end of the analysis. A conventional achiral RP-ODS-2 column is used and no pretreatment of the samples is required. This method allows the accurate determination of the enantiomeric excess of α-hydroxy acids in synthetic and biological samples. © 1995 Wiley-Liss, Inc.  相似文献   

20.
A Micelle-enhanced ultrafiltration (MEUF) separation process was investigated that can potentially be used for large-scale enantioseparations. Copper(II)-amino acid derivatives dissolved in nonionic surfactant micelles were used as chiral selectors for the separation of dilute racemic amino acids solutions. For the alpha-amino acids phenylalanine, phenylglycine, O-methyltyrosine, isoleucine, and leucine good separation was obtained using cholesteryl L-glutamate and Cu(II) ions as chiral selector with an operational enantioselectivity (alpha(op)) up to 14.5 for phenylglycine. From a wide set of substrates, including four beta-amino acids, it was concluded that the performance of this system is determined by two factors: the hydrophobicity of the racemic amino acid, which results in a partitioning of the racemic amino acid over micelle and aqueous solution, and the stability of the diastereomeric complex formed upon binding of the amino acid with the chiral selector. The chiral hydrophobic cholesteryl anchor of the chiral selector also plays an active role in the recognition process, since inversion of the chirality of the glutamate does not yield the reciprocal enantioselectivities. However, if the cholesteryl group is replaced by a nonchiral alkyl chain, reciprocal operational enantioselectivities are found with enantiomeric glutamate selectors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号