首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The strong cross-reactions demonstrated for staphylococcal enterotoxins B (SEB) and C1 (SEC1) by measurement of antigen-binding capacity were reflected in well defined polypeptides obtained by limited tryptic digestion from SEB and SEC1. Two antigenic determinants on each enterotoxin were capable of reacting with heterologous antibody, one on the first 57 amino acids and one on the last 150 residues of the polypeptide backbone. The larger, carboxyl terminal polypeptides bound efficiently to homologous antiserum but about two orders of magnitude less efficiently to heterologous antibody. The amino terminal peptides showed only weak homologous binding but nearly comparable heterologous binding. It is proposed that the determinant on the amino terminal polypeptides is largely responsible for the strong reciprocal binding of the intact enterotoxins and that their low antigen-binding capacity is due to a random or a structurally distorted conformation in solution.  相似文献   

2.
A synthetic peptide containing selected epitopes from staphylococcal enterotoxin A (SEA) and enterotoxin B (SEB) was used to produce monoclonal antibodies (Mabs) to respective enterotoxins in a single fusion procedure. The peptide inhibited the reaction of polyclonal anti-SEA or anti-SEB antisera with their homologous enterotoxin, thus showing that the chosen epitopes are part of the antibody-inducing enterotoxin sequences. Two Mabs, Mab-A and Mab-B, reacted with both the peptide and with either SEA or SEB. Used in a double antibody sandwich ELISA, the Mabs were able to quantitate the native SEA or SEB toxins at nanogram levels.  相似文献   

3.
The objective of these studies was to set up a reliable radioimmunoassay (RIA) for staphylococcal enterotoxins A, B, and C (SEA, SEB, and SEC) in a food system. Significant differences (95% confidence limits) were obtained between the 0- and 1-ng/ml enterotoxin standards, so the sensitivity of the RIAs was 1 ng/ml. Polystyrene tubes coated with anti-SEB and stored at 4 degrees C were unstable. The percentage of iodinated SEB bound to these tubes decreased at a rate of 0.33%/day, in contrast to the rate of 0.07%/day obtained with tubes prepared the day before the analyses. Satisfactory precision and maximum sensitivity were obtained by using six replicates for each sample and freshly coated tubes. The antisera used for coating the tubes were reused four times and were frozen between coatings. The process of drum drying mashed potatoes containing 1 mug of SEB per g of mashed potatoes inactivated 83% (wt/wt) of the SEB. Statistical quality control parameters were used to insure that RIAs were performing reliably with a sensitivity of 1 ng/ml. Over 450 samples of potato flakes and granules, which represented different production lots from 12 different manufacturers, were examined for SEA, SEB, and SEC. No enterotoxins were detected.  相似文献   

4.
The objective of these studies was to set up a reliable radioimmunoassay (RIA) for staphylococcal enterotoxins A, B, and C (SEA, SEB, and SEC) in a food system. Significant differences (95% confidence limits) were obtained between the 0- and 1-ng/ml enterotoxin standards, so the sensitivity of the RIAs was 1 ng/ml. Polystyrene tubes coated with anti-SEB and stored at 4 degrees C were unstable. The percentage of iodinated SEB bound to these tubes decreased at a rate of 0.33%/day, in contrast to the rate of 0.07%/day obtained with tubes prepared the day before the analyses. Satisfactory precision and maximum sensitivity were obtained by using six replicates for each sample and freshly coated tubes. The antisera used for coating the tubes were reused four times and were frozen between coatings. The process of drum drying mashed potatoes containing 1 mug of SEB per g of mashed potatoes inactivated 83% (wt/wt) of the SEB. Statistical quality control parameters were used to insure that RIAs were performing reliably with a sensitivity of 1 ng/ml. Over 450 samples of potato flakes and granules, which represented different production lots from 12 different manufacturers, were examined for SEA, SEB, and SEC. No enterotoxins were detected.  相似文献   

5.
A simple method for the purification of staphylococcal enterotoxins A (SEA), B (SEB), and C2 (SEC2) from fermentor-grown cultures was developed. The toxins were purified by pseudo-affinity chromatography by using the triazine textile dye "Red A" and gave overall yields of 49% (SEA), 44% (SEB), and 53% (SEC2). The purified toxins were homogeneous when analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, but isoelectric focusing of the preparations revealed the microheterogeneity associated with these toxins. The SEA and SEB preparations each consisted of two isoelectric forms with pI values of 7.3 and 6.8 (SEA) and 8.9 and 8.55 (SEB); in contrast, SEC2 contained five different isoelectric forms, with pI values ranging between 7.6 and 6.85. The pattern of elution of the isoelectric forms from the column indicated a cationic-exchange process involved in the binding of toxin to Red A. Such a method forms the basis of a high-yielding, rapid means of purifying the staphylococcal enterotoxins that can easily be adapted to large-scale production.  相似文献   

6.
A simple method for the purification of staphylococcal enterotoxins A (SEA), B (SEB), and C2 (SEC2) from fermentor-grown cultures was developed. The toxins were purified by pseudo-affinity chromatography by using the triazine textile dye "Red A" and gave overall yields of 49% (SEA), 44% (SEB), and 53% (SEC2). The purified toxins were homogeneous when analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, but isoelectric focusing of the preparations revealed the microheterogeneity associated with these toxins. The SEA and SEB preparations each consisted of two isoelectric forms with pI values of 7.3 and 6.8 (SEA) and 8.9 and 8.55 (SEB); in contrast, SEC2 contained five different isoelectric forms, with pI values ranging between 7.6 and 6.85. The pattern of elution of the isoelectric forms from the column indicated a cationic-exchange process involved in the binding of toxin to Red A. Such a method forms the basis of a high-yielding, rapid means of purifying the staphylococcal enterotoxins that can easily be adapted to large-scale production.  相似文献   

7.
The avidin-biotin enzyme-linked immunosorbent assay (ELISA), reversed passive latex agglutination (RPLA) test, and the modified Ouchterlony precipitation test (MOPT) were compared in detecting enterotoxin production by Staphylococcus aureus strains. A total of 1015 strains isolated from human beings, animals, and foods were tested for staphylococcal enterotoxins A (SEA), B (SEB), and C (SEC). Of these, 495 (48.8%), 467 (46.0%), and 204 (20.1%) were classified as enterotoxigenic by the ELISA, RPLA test, and MOPT, respectively. The difference in the number of strains classified as enterotoxigenic by the ELISA and RPLA test was not significant (P > or = 0.05; chi 2), but both tests detected significantly (P < 0.001; chi 2) more enterotoxigenic strains than the MOPT. The combined use of the three assay systems classified 258 (25.4%), 278 (27.4%), and 263 (25.9%) of 1015 strains tested as positive for SEA, SEB, and SEC, respectively. However, the three systems were all positive in only 29.1% of SEA-producing strains, 32.0% of SEB-producing strains, and 25.1% of SEC-producing strains. The MOPT was negative when the corresponding ELISA and RPLA test were positive (46.9% for SEA, 43.5% for SEB, and 40% for SEC); the RPLA test was negative when the corresponding ELISA was positive (10.5% for SEA, 15.5% for SEB, and 25.5% for SEC); and the ELISA was negative when the RPLA test was positive (13.6% for SEA, 9.0% for SEB, and 9.5% for SEC). All factors considered, the RPLA test appears most suitable for quantitatively screening large numbers of strains for staphylococcal enterotoxins.  相似文献   

8.
Soluble staphylococcal protein A (SpA) in the form of high m.w. complexes with IgG has been shown to significantly inhibit the growth of Meth A fibrosarcomas in BALB/c mice. Although SpA reportedly is a potent T cell mitogen that can induce immune cell proliferation and production of humoral factors with anti-tumor activity, it has been suggested that mitogenic enterotoxin contaminants might be responsible for these effects. The purpose of the present study was to investigate the nature of SpA-induced cell proliferation and the relationship between mitogenicity and the anti-tumor effect that we observed in our mouse model. SpA stimulated the proliferation of a mixed population of splenic B and T cells from BALB/c mice, but activity did not require the presence of IgG in the culture medium. Furthermore, mitogenic activity could be inhibited completely by anti-SEA plus anti-SEB, but was unaffected by anti-SpA. HPLC-purified SpA was inactive while the mitogenic factor(s) had the same retention time as authentic enterotoxin and its activity was inhibited by anti-SEA and anti-SEB, but not by anti-SpA. Enterotoxin-free rSpA produced in Escherichia coli had the same IgG binding capacity as the staphylococcal product but was not mitogenic. These data indicate that SEA and SEB completely account for mitogenicity in SpA preparations. In contrast, we found that optimal concentrations of rSpA as well as crude and HPLC purified staphylococcal SpA were equally effective in inhibiting the growth of established Meth A fibrosarcomas demonstrating that SpA is responsible for antitumor activity without any apparent role for enterotoxins.  相似文献   

9.
A staphylococcal enterotoxin visual immunoassay kit (TECRA) has recently become commercially available. Since the kit is an enzyme-linked immunosorbent assay system equipped with polyvalent antisera against staphylococcal enterotoxin types A to E (SEA to SEE) and the test is simple and rapid to perform (4 h), it has been widely used for screening purposes. In this study, the sensitivity of the kit for detection of SEA, SEB, and SEC in ham, cheese, and mushrooms was similar to those of kits based on an enzyme immunoassay and reversed passive latex agglutination: 0.75 to 1.0 ng of SEA per ml, 0.5 to 0.75 ng of SEB per ml, and 1.0 to 1.25 ng of SEC per ml. However, the TECRA kit showed nonspecific reactions with food samples contaminated by microorganisms other than Staphylococcus aureus, such as Enterobacter agglomerans, Enterobacter cloacae, Proteus mirabilis, Pseudomonas aeruginosa, and Serratia marcescens. The substance contributing to the false-positive results differed from true staphylococcal enterotoxins in that it was (i) heat labile (completely inactivated by heating for 2 min at 100 degrees C, whereas true staphylococcal enterotoxins were inactivated by about 10% with this treatment), (ii) lower in molecular weight than staphylococcal enterotoxins, and (iii) not bound to a copper chelate Sepharose gel (all of the substance remained in the unbound wash fraction, whereas staphylococcal enterotoxins were quantitatively bound to the gel). The problem of false-positive results with the TECRA kit could be resolved by heat treatment (2 min at 100 degrees C) or by cleanup procedures involving metal chelate affinity chromatography with copper chelate Sepharose for 4 h before use of the TECRA kit.  相似文献   

10.
C E Park  M Akhtar    M K Rayman 《Applied microbiology》1992,58(8):2509-2512
A staphylococcal enterotoxin visual immunoassay kit (TECRA) has recently become commercially available. Since the kit is an enzyme-linked immunosorbent assay system equipped with polyvalent antisera against staphylococcal enterotoxin types A to E (SEA to SEE) and the test is simple and rapid to perform (4 h), it has been widely used for screening purposes. In this study, the sensitivity of the kit for detection of SEA, SEB, and SEC in ham, cheese, and mushrooms was similar to those of kits based on an enzyme immunoassay and reversed passive latex agglutination: 0.75 to 1.0 ng of SEA per ml, 0.5 to 0.75 ng of SEB per ml, and 1.0 to 1.25 ng of SEC per ml. However, the TECRA kit showed nonspecific reactions with food samples contaminated by microorganisms other than Staphylococcus aureus, such as Enterobacter agglomerans, Enterobacter cloacae, Proteus mirabilis, Pseudomonas aeruginosa, and Serratia marcescens. The substance contributing to the false-positive results differed from true staphylococcal enterotoxins in that it was (i) heat labile (completely inactivated by heating for 2 min at 100 degrees C, whereas true staphylococcal enterotoxins were inactivated by about 10% with this treatment), (ii) lower in molecular weight than staphylococcal enterotoxins, and (iii) not bound to a copper chelate Sepharose gel (all of the substance remained in the unbound wash fraction, whereas staphylococcal enterotoxins were quantitatively bound to the gel). The problem of false-positive results with the TECRA kit could be resolved by heat treatment (2 min at 100 degrees C) or by cleanup procedures involving metal chelate affinity chromatography with copper chelate Sepharose for 4 h before use of the TECRA kit.  相似文献   

11.
Toxic shock syndrome toxin-1 (TSST-1) and staphylococcal enterotoxins (SE) A, B, and C were studied on binding to rabbit spleen cells. The toxins showed remarkable mitogenic effects on the cells. Among them, SEA and TSST-1 had much stronger mitogenic activities than SEB and SEC. Binding study showed that labeled TSST-1 and SEA bound considerably to cells, but that labeled SEB or SEC was not observed to bind at a detectable level under the same conditions as TSST-1 and SEA. Competitive binding analysis between toxins to cells proved that TSST-1 and SEA clearly competed with each other in binding. Scatchard plots for TSST-1 and SEA in binding were linear at the doses used. The Scatchard analysis for TSST-1 and SEA gave a dissociation constant of 2.5 X 10(-9) M and 7.6 X 10(-8) M and the number of binding sites per cell of 5.3 X 10(3) and 1.0 X 10(5), respectively.  相似文献   

12.
《MABS-AUSTIN》2013,5(1):119-129
Staphylococcal enterotoxin (SE) B is among the potent toxins produced by Staphylococcus aureus that cause toxic shock syndrome (TSS), which can result in multi-organ failure and death. Currently, neutralizing antibodies have been shown to be effective immunotherapeutic agents against this toxin, but the structural basis of the neutralizing mechanism is still unknown. In this study, we generated a neutralizing monoclonal antibody, 3E2, against SEB, and analyzed the crystal structure of the SEB-3E2 Fab complex. Crystallographic analysis suggested that the neutralizing epitope overlapped with the MHC II molecule binding site on SEB, and thus 3E2 could inhibit SEB function by preventing interaction with the MHC II molecule. Mutagenesis studies were done on SEB, as well as the related Staphylococcus aureus toxins SEA and SEC. These studies revealed that tyrosine (Y)46 and lysine (K)71 residues of SEB are essential to specific antibody–antigen recognition and neutralization. Substitution of Y at SEA glutamine (Q)49, which corresponds to SEB Y46, increased both 3E2’s binding to SEA in vitro and the neutralization of SEA in vivo. These results suggested that SEB Y46 is responsible for distinguishing SEB from SEA. These findings may be helpful for the development of antibody-based therapy for SEB-induced TSS.  相似文献   

13.
A study was made of the presence of antibodies (Ab) to staphylococcal enterotoxins A to E (SEA-SEE) in the serum and milk of 133 healthy goats, using a competitive ELISA method. Antibodies to some enterotoxins were detected in 83 sera (62.4%) and in 41 (30.8%) milk samples. In serum, antibodies to all SE types were detected, the most frequent being antibodies to SEA (24.8%). Milk contained antibodies to SEA, SEB and SEC, the latter being the most frequent (24.8%). A statistical study was performed to correlate the number of animals harbouring antibodies to a given enterotoxin with the presence in these animals of staphylococci producing that enterotoxin.  相似文献   

14.
Staphylococcal toxins bind to different sites on HLA-DR   总被引:5,自引:0,他引:5  
Staphylococcal enterotoxins (SE) and toxic shock syndrome toxin 1 (TSST-1) bind to MHC class II molecules and the toxin-class II complexes induce proliferation of T cells bearing specific V beta sequences. We have previously reported that these toxins display varying binding affinities for HLA-DR1. We now investigated whether these differences simply reflected differences in binding affinity for a single class II binding site or, at least in part, the engagement of different binding sites on the HLA-DR complex. Through competitive binding studies we show that SEB and TSST-1, which are not closely related by their amino acid sequences, bind to two different sites on HLA-DR. Both of these sites are also occupied by staphylococcal enterotoxin A (SEA), enterotoxin D (SED), and enterotoxin E (SEE) which exhibit more than 70% amino acid sequence homology. SEB and TSST-1 failed to inhibit SEA binding to HLA-DR. These studies suggest that there may be three distinct, although perhaps overlapping, binding sites on HLA-DR for these toxins. Further, although SED and SEE are similar to SEA in structure, and appear to bind the same sites on HLA-DR as SEA, they displayed significantly lower binding affinities. T cell proliferative responses to SED required a higher concentration of the toxin than SEA, probably reflecting its lower binding affinity. SEE, however, elicited T cell responses at very low concentrations, similar to SEA, despite its much lower binding affinity. Therefore, although the affinities of these toxins to MHC class II molecules appear to significantly influence the T cell responses, the effective recognition of the toxin-class II complex by the TCR may also contribute to such responses.  相似文献   

15.
Crystal structure of the superantigen staphylococcal enterotoxin type A.   总被引:2,自引:1,他引:1  
Staphylococcal enterotoxins are prototype superantigens characterized by their ability to bind to major histocompatibility complex (MHC) class II molecules and subsequently activate a large fraction of T-lymphocytes. The crystal structure of staphylococcal enterotoxin type A (SEA), a 27 kDa monomeric protein, was determined to 1.9 A resolution with an R-factor of 19.9% by multiple isomorphous replacement. SEA is a two domain protein composed of a beta-barrel and a beta-grasp motif demonstrating the same general structure as staphylococcal enterotoxins SEB and TSST-1. Unique for SEA, however, is a Zn2+ coordination site involved in MHC class II binding. Four amino acids including Ser1, His187, His225 and Asp227 were found to be involved in direct coordination of the metal ion. SEA is the first Zn2+ binding enterotoxin that has been structurally determined.  相似文献   

16.
Staphylococcal enterotoxin (SE) B is among the potent toxins produced by Staphylococcus aureus that cause toxic shock syndrome (TSS), which can result in multi-organ failure and death. Currently, neutralizing antibodies have been shown to be effective immunotherapeutic agents against this toxin, but the structural basis of the neutralizing mechanism is still unknown. In this study, we generated a neutralizing monoclonal antibody, 3E2, against SEB, and analyzed the crystal structure of the SEB-3E2 Fab complex. Crystallographic analysis suggested that the neutralizing epitope overlapped with the MHC II molecule binding site on SEB, and thus 3E2 could inhibit SEB function by preventing interaction with the MHC II molecule. Mutagenesis studies were done on SEB, as well as the related Staphylococcus aureus toxins SEA and SEC. These studies revealed that tyrosine (Y)46 and lysine (K)71 residues of SEB are essential to specific antibody–antigen recognition and neutralization. Substitution of Y at SEA glutamine (Q)49, which corresponds to SEB Y46, increased both 3E2’s binding to SEA in vitro and the neutralization of SEA in vivo. These results suggested that SEB Y46 is responsible for distinguishing SEB from SEA. These findings may be helpful for the development of antibody-based therapy for SEB-induced TSS.  相似文献   

17.
AIM: The aim of this study was to develop a loop-mediated isothermal amplification (LAMP) assay targeting the genes for the four classical enterotoxins, SEA, SEB, SEC and SED, in Staphylococcus aureus. METHODS AND RESULTS: Specific primers were designed which target each specific sequence of the enterotoxin genes. With 30 strains of Staph. aureus, the results of the LAMP assay to each enterotoxin, SEA, SEB, SEC and SED, completely accorded with the results of polymerase chain reaction (PCR) assay. Enterotoxin production, determined by a reverse passive latex agglutination assay, strongly correlated with the presence of the corresponding genes. Amplification was not observed when 14 strains of nonenterotoxigenic Staph. aureus and 20 strains consisting of 19 bacterial species other than Staph. aureus were tested. In addition, the sensitivity of the LAMP assay was generally higher than that of conventional PCR assay and it rapidly detected enterotoxigenic Staph. aureus strains within 60 min. CONCLUSIONS: The LAMP assay developed in this study is rapid, specific and sensitive for the detection of enterotoxigenic Staph. aureus. SIGNIFICANCE AND IMPACT OF THE STUDY: The method is suitable for clinical diagnosis and food safety applications.  相似文献   

18.
从噬菌体表面展示肽库中筛选葡萄球菌B型肠毒素抑制剂   总被引:1,自引:0,他引:1  
通过生物淘选,从噬菌体表面展示12肽肽库中筛选能与葡萄球菌B型肠毒素(staphylococcalenterotoxinB ,SEB)结合且能抑制其肠毒活性的特异性短肽.采用Phage ELISA和MTT鉴定所得目的肽的亲和性;根据优势噬菌体阳性克隆序列合成相应多肽.利用竞争ELISA研究合成肽与SEB单克隆抗体竞争结合SEB的情况;通过动物实验考察其抑制SEB的超抗原特性和肠毒活性情况.筛选所得短肽在一定浓度范围内可以抑制SEB对鼠脾淋巴细胞的激活;合成肽与SEB质量比为16 0∶1时,合成肽可较好地抑制SEB对乳猫的肠毒活性,并对SEB引起的小鼠致死具有明显保护作用.结果表明,初步得到了能与SEB特异结合并能抑制SEB超抗原特性和肠毒活性的短肽,为进一步研制SEB高效抑制剂奠定了基础.  相似文献   

19.
By fusion of mouse spleen cells immunized with five different staphylococcal enterotoxins (SEA, SEB, SEC2, SED, and SEE) with myeloma cells, we obtained 15 hybridomas producing monoclonal antibodies (mAbs). Four mAbs were reactive with both SEA and SEE, whereas 8 mAbs were reactive with SEB and SEC2. One mAb reacted with SEA, SED, and SEE. The other two mAbs were found to be reactive with all five serotypes of SEs. The mAbs specific for five serotypes of SEs were found to be most reactive with SED, reactive with SEA, and slightly less reactive with SEB, SEC2, and SEE. Those mAbs with specificities for all serotypes of SEs may be valuable to prepare immunoadsorbent(s) for isolation of SEs and to detect SEs in foods and clinical specimens involved in outbreaks of staphylococcal food poisoning.  相似文献   

20.
Staphylococcal food poisoning (SFP) is one of the most prevalent causes of food-borne illness throughout the world. SFP is caused by 21 different types of staphylococcal enterotoxins produced by Staphylococcus aureus. Among these, staphylococcal enterotoxin B (SEB) is the most potent toxin and is a listed biological warfare (BW) agent. Therefore, development of immunological reagents for detection of SEB is of the utmost importance. High-affinity and specific monoclonal antibodies are being used for detection of SEB, but hybridoma clones tend to lose their antibody-secreting ability over time. This problem can be overcome by the use of recombinant antibodies produced in a bacterial system. In the present investigation, genes from a hybridoma clone encoding monoclonal antibody against SEB were immortalized using antibody phage display technology. A murine phage display library containing single-chain variable-fragment (ScFv) antibody genes was constructed in a pCANTAB 5E phagemid vector. Phage particles displaying ScFv were rescued by reinfection of helper phage followed by four rounds of biopanning for selection of SEB binding ScFv antibody fragments by using phage enzyme-linked immunosorbent assay (ELISA). Soluble SEB-ScFv antibodies were characterized from one of the clones showing high affinity for SEB. The anti-SEB ScFv antibody was highly specific, and its affinity constant was 3.16 nM as determined by surface plasmon resonance (SPR). These results demonstrate that the recombinant antibody constructed by immortalizing the antibody genes from a hybridoma clone is useful for immunodetection of SEB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号