首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mitogen activated protein kinases (MAPK) play a critical role in controlling cell survival and repopulation following exposure to ionising radiation. Most investigations on these pathways have been done using cultured cells or by ex vivo treatments. The present study was carried out to determine whether the response of MAPKs in mouse lymphocytes differs following in vivo and ex vivo irradiation with 60 Coγ-rays. We observed that ex vivo treatment resulted in a very significant decrease in the activated p44/42 and p38 MAPK as compared to in vivo. However, stress activated protein kinase (SAPK) response showed no significant difference between in vivo and ex vivo treatments. These observations point towards the differences in response elicited when the treatment is given in vivo as compared to in vitro. Therefore the findings reported from in vitro or ex vivo treatments should be treated with caution especially if it has to be clinically applied.  相似文献   

2.
The dependence between the adaptive response and adaptive dose was studied on the basis of cytogenetic damage in polychromatic erythrocytes of bone marrow cells in mice after a low dose gamma-irradiation in vivo. The adaptive response to doses of 0.1 and 0.2 Gy was found to be retained for at least two months after irradiation. However, the adaptive dose of 0.4 Gy did not induce prolonged adaptive response.  相似文献   

3.
After a large-scale nuclear accident or an attack with an improvised nuclear device, rapid biodosimetry would be needed for triage. As a possible means to address this need, we previously defined a gene expression signature in human peripheral white blood cells irradiated ex vivo that predicts the level of radiation exposure with high accuracy. We now demonstrate this principle in vivo using blood from patients receiving total-body irradiation (TBI). Whole genome microarray analysis has identified genes responding significantly to in vivo radiation exposure in peripheral blood. A 3-nearest neighbor classifier built from the TBI patient data correctly predicted samples as exposed to 0, 1.25 or 3.75 Gy with 94% accuracy (P < 0.001) even when samples from healthy donor controls were included. The same samples were classified with 98% accuracy using a signature previously defined from ex vivo irradiation data. The samples could also be classified as exposed or not exposed with 100% accuracy. The demonstration that ex vivo irradiation is an appropriate model that can provide meaningful prediction of in vivo exposure levels, and that the signatures are robust across diverse disease states and independent sample sets, is an important advance in the application of gene expression for biodosimetry.  相似文献   

4.
Radiation-induced progression delay in G1/S, S and G2/M phases of p53 wild-type Ehrlich ascites carcinoma (EAC) cells growing in vivo was investigated by DNA flow cytometry. Different behavior patterns of EAC cells at the time after irradiation with low (2, 4, 6, 8 Gy) and high (10, 15, 20 Gy) doses were evaluated. While EAC cells showed a small progression delay in S phase and a dose-dependent block in G2/M phase after the irradiation with low doses, a clear additional block in G1/S phase was observed after irradiation with high doses. An assessment of the damage response and repair networks at the time after irradiation might have important implication for the development of cancer management and treatment.  相似文献   

5.
Micronuclei in human lymphocytes irradiated in vitro or in vivo   总被引:1,自引:0,他引:1  
Venous blood from healthy donors or from patients with various lympho- and myeloproliferative diseases was incubated in vitro in the presence of cytochalasin B for the induction of binucleated lymphocytes. The time at which cytochalasin B was added depended on the proliferation rate of the lymphocytes. Proliferation was monitored using a semiautomatic microscope photometer/computer system. The background level of micronuclei in binucleated lymphocytes of the patients before radiotherapy was statistically indistinguishable from that of healthy persons. Blood from both groups was irradiated in vitro for the study of the dose-response relationship. The dose-response curves were very similar up to 3.75 Gy, and a somewhat lower micronucleus frequency was found in lymphocytes of patients after a 5-Gy exposure. These in vitro results were compared with in vivo exposure after total-body irradiation of leukemic patients. Due to heavy medication that accompanied radiation therapy, only two doses (1.25 and 2.5 Gy) could be checked after in vivo exposure. There was no statistically significant difference between in vitro and in vivo results after 1.25 Gy, but a slightly lower number of micronuclei was observed after in vivo exposure to 2.5 Gy.  相似文献   

6.
7.
The incorporation of [14C]adenine into the cyclic AMP fraction by whole cells of Escherichia coli B/r was taken as a measure of the in vivo adenylate cyclase activity. This activity was significantly inhibited by irradiation of the cells either with 60Co gamma-rays or with UV light from a germicidal lamp, suggesting inhibition of cyclic AMP synthesis. The incubation of cells after irradiation with lower doses (50-100 Gy) of gamma-rays produced a significant increase of in vivo adenylate cyclase activity, whereas there was no significant change after higher doses (150 Gy and above). Dark incubation of cells after irradiation with UV light (54 J m-2) led to recovery of enzyme activity to the level measured in unirradiated cells. Thus it appears that the catabolite repression of L-arabinose isomerase induced by UV light, as well as gamma-irradiation, is due to reduced cyclic AMP synthesis in irradiated cells.  相似文献   

8.
TAB182是一个端锚聚合酶1(tankyrase 1)结合蛋白,它在体外能够被tankyrase 1发生二磷酸腺苷核糖基化(PAR)修饰,其生物学功能目前尚不明确.本研究发现,TAB182蛋白水平受电离辐射诱导表达,HeLa细胞经过4 Gy照射处理时,TAB182在2 h表达含量最高; 经过不同剂量照射处理,2 h后2 Gy、4 Gy照射剂量组HeLa细胞中TAB182的表达有明显增加. 通过shRNA沉默HeLa细胞中TAB182基因表达,导致其对4 Gy及以下剂量 辐射的敏感性增加,但对8 Gy大剂量照射的敏感性没有明显变化. 与对照组相比,4 Gy照射诱发TAB182基因沉默细胞的G2/M期阻滞时间显著延长.抑制TAB182表达导致细胞中DNA损伤反应蛋白DNA PKcs、ATM、Chk2的表达水平显著降低. 实验结果提示,TAB182蛋白参与放射DNA损伤信号反应和调控细胞周期G2/M进程.  相似文献   

9.
The T-cell receptor (TCR) mutation assay for in vivo somatic mutations is a sensitive indicator of exposure to ionizing radiation. However, this assay cannot be immediately applied after radiation exposure because expression of a mutant phenotype may require as long as several months. In the present study, we eliminate this time lag by stimulating lymphocytes with a mitogen that can accelerate the turnover of TCR protein expression in T-cells. When lymphocytes obtained from healthy donors were irradiated with various doses of X-rays and cultured with human interleukin-2 after phytohemagglutinin (PHA) pulse stimulation, the mutant frequency (MF) of CD4+ T-cells increased dose dependently during the first 7 days, then decreased rapidly due to the growth disadvantage of mutant cells. This suggests that PHA stimulation can shorten the expression time of a mutant phenotype to within a week after radiation exposure. The relationship between radiation dose and TCR MF on the seventh day was best fitted by a linear-quadratic dose–response model. We applied this improved TCR mutation assay to gynecological cancer patients who received 5 days of localized radiotherapy, totaling about 10 Gy. The in vivo TCR MF in the patients did not change within a week after radiotherapy, whereas the in vitro TCR MF of PHA-stimulated lymphocytes from the same patients significantly increased 7 days after initiating culture. The estimated mean radiation dose to the peripheral blood lymphocytes of the cancer patients was about 0.9 Gy, based on the in vitro linear-quadratic dose–response curve. This estimated dose was close to that described in a previous report on unstable-type chromosome aberrations from cervical cancer patients after receiving the same course of radiotherapy. On the basis of these findings, we propose that the improved TCR mutation assay is a useful biological dosimeter for recent radiation exposure.  相似文献   

10.
Low doses of ionizing radiation are known to induce adaptive response (AR), which is characterized in most cases by temporary nature, though the possibility of long-term persistence of AR is not ruled out. In this investigation we studied the effect of low doses of gamma-radiation on both high-dose radiation-induced and spontaneous level of cytogenetic damage throughout the life of mice. SHK male mice 2 months old were used. Priming doses of 0.1 and 0.2 Gy (0.125 Gy/min, gamma-radiation from 60Co) were used. A challenging dose of 1.5 Gy (1 Gy/min) was used in the experiments using a routine AR experimental design. The frequency of micronucleated polychromatic erythrocytes in bone marrow cells of primed, primed and challenged, and control groups was assessed at various times of animal life span. It was shown that: a) single low-dose gamma-irradiation induces a cytogenetic AR which can be revealed at 1, 3, 6, 9, 12 months after priming; b) single low-dose gamma-irradiation decreases the cytogenetic damage to a level below the spontaneous rate at the end of lifetime (20 months) of animals; c) ability to induce adaptive response does not depend on the age of animals at the moment of priming irradiation. In conclusion, the mechanisms underlying AR not only protect from chromosome damage induced by high-dose irradiation but also may play a role in spontaneous mutagenesis during aging of animals.  相似文献   

11.
Previous investigations have demonstrated an increased release of von Willebrand factor (VWF; also known as vWF) in endothelial cells after high single-dose irradiation in vitro. We have also found increased levels of Vwf protein in mouse glomeruli after a high single dose of renal irradiation in vivo. In addition, increased numbers of leukocytes were observed in the renal cortex after irradiation in vivo. The aim of the present study was to investigate and quantify these biological processes after clinically relevant fractionated irradiation and to relate them to changes in renal function. A significantly greater increase in release of VWF was observed in cultured human umbilical vein endothelial cells (HUVECs) after fractionated irradiation (20 x 1.0 Gy) than after a single dose of 20 Gy (147% compared to 115% of control, respectively, P < 0.0005). In contrast with the in vitro observations, glomerular Vwf staining was lower after fractionated irradiation in vivo (20 x 2.0 Gy or 10 x 1.6 Gy +/- re-irradiation) than after a single dose of 16 Gy. The number of leukocytes accumulating in the renal cortex was also lower after fractionated in vivo irradiation than after a single radiation dose. The onset of these events preceded renal functional and histopathological changes by approximately 10 weeks. These data indicate that radiation-induced changes in endothelial VWF expression after in vivo irradiation may be distinct from the in vitro observations. Increased VWF expression may reflect pivotal processes in the pathogenesis of late radiation nephropathy and provide a clue to appropriate timing of pharmacological intervention.  相似文献   

12.
Effects of irradiation on intestinal cells in vivo and in vitro   总被引:3,自引:0,他引:3  
The effects of irradiation on intestinal epithelial cells were analyzed in vivo and in vitro. The in vivo study was carried out on the rat small intestine and for the in vitro study the intestinal crypt cell-line IEC-6 was used. Rat intestine and IEC-6 cells were irradiated with X-ray doses ranging between 1-16 Gy. Energy-dispersive X-ray microanalysis was used for detection of the elemental changes in the cells. Cell morphology was investigated in the scanning electron microscope, DNA-synthesis by autoradiography of 3H-thymidine incorporating nuclei and proliferation by cell counting. Our results indicate that in vivo, in the crypt cells, the increasing doses of irradiation led to increased sodium and lowered potassium and phosphorus concentrations. Corresponding ion shifts were found in the irradiated IEC-6 cells. Cells continued to proliferate up to the dose of 8 Gy, although the proliferation rate became lower with increasing dose of irradiation. The increasing dose of irradiation significantly reduced DNA-synthesis (16 Gy decreased DNA-synthesis by 50%) which resulted in a complete inhibition of cell proliferation. Analysis of goblet cells also showed characteristic radiation-dependent elemental changes. Scanning electron microscopical investigation of cells in culture revealed that most of the control cells were flat and had rather smooth cell membranes. Irradiation led to the appearance of numerous different membrane manifestations (microvilli of varying length and distribution, and blebs). Frequency of differences in the topology of the cells was related to the dose of irradiation. Our study clearly demonstrates that even low doses of irradiation cause changes in the ionic composition of the cells and inhibit DNA-synthesis and cell proliferation. The effects observed in the crypt cells in vivo were the same as in the intestinal cell line in vitro, which indicates that IEC-6 cells can be used for investigation of side effects of radiation to the abdomen.  相似文献   

13.
The effect of fractionated doses of Co(60) gamma-irradiation (2 Gy per fraction over 5 days), as is delivered in cancer radiotherapy, was compared with acute doses of 10 and 2 Gy, in a serially transplanted mouse fibrosarcoma grown in Swiss mice. The aspects that were studied included the three major mitogen-activated protein (MAP) kinases, namely p44 MAP kinase, p38 MAP kinase, and stress-activated protein (SAP) kinase, which are known to be involved in determining the cell fate following exposure to ionizing radiation. The response of dual specificity phosphatase PAC1 which is involved in the dephosphorylation of MAP kinases was also looked at. There were significant differences in the response to different dose regimens for all the factors studied. Fractionated irradiation elicited an adaptive response with a sustained activation over 7 days of prosurvival p44 MAP kinase which was balanced by the increased activation of proapoptotic p54 SAP kinase up to 1 day post-irradiation, whereas, phosphorylated p38 MAP kinase showed a decrease at most time points. PAC1 was induced following fractionated irradiation and may be acting as a feed back regulator of p44 MAP kinase. The activation of SAP kinase after fractionated irradiation may be a stress response, whereas, constitutively activated p44 MAP kinase may play an important role in the induction of radioresistance during fractionated radiotherapy of cancer and may serve as a promising target for specific inhibitors to enhance the efficacy of radiotherapy.  相似文献   

14.
The assessment of tumor radiosensitivity would be particularly useful in optimizing the radiation dose during radiotherapy. Therefore, the degree of correlation between radiation-induced DNA damage, as measured by the alkaline and the neutral comet assays, and the clonogenic survival of different human tumor cells was studied. Further, tumor radiosensitivity was compared with the expression of genes associated with the cellular response to radiation damage. Five different human tumor cell lines were chosen and the radiosensitivity of these cells was established by clonogenic assay. Alkaline and neutral comet assays were performed in γ-irradiated cells (2-8Gy; either acute or fractionated). Quantitative PCR was performed to evaluate the expression of DNA damage response genes in control and irradiated cells. The relative radiosensitivity of the cell lines assessed by the extent of DNA damage (neutral comet assay) immediately after irradiation (4Gy or 6Gy) was in agreement with radiosensitivity pattern obtained by the clonogenic assay. The survival fraction of irradiated cells showed a better correlation with the magnitude of DNA damage measured by the neutral comet assay (r=-0.9; P<0.05; 6Gy) than evaluated by alkaline comet assay (r=-0.73; P<0.05; 6Gy). Further, a significant correlation between the clonogenic survival and DNA damage was observed in cells exposed to fractionated doses of radiation. Of 15 genes investigated in the gene expression study, HSP70, KU80 and RAD51 all showed significant positive correlations (r=0.9; P<0.05) with tumor radiosensitivity. Our study clearly demonstrated that the neutral comet assay was better than alkaline comet assay for assessment of radiosensitivities of tumor cells after acute or fractionated doses of irradiation.  相似文献   

15.
The response of the brain to irradiation is complex, involving a multitude of stress inducible pathways that regulate neurotransmission within a dynamic microenvironment. While significant past work has detailed the consequences of CNS radiotherapy following relatively high doses (≥ 45 Gy), few studies have been conducted at much lower doses (≤ 2 Gy), where the response of the CNS (like many other tissues) may differ substantially from that expected from linear extrapolations of high dose data. Low dose exposure could elicit radioadaptive modulation of critical CNS processes such as neurogenesis, that provide cellular input into hippocampal circuits known to impact learning and memory. Here we show that mice deficient for chemokine signaling through genetic disruption of the CCR2 receptor exhibit a neuroprotective phenotype. Compared to wild type (WT) animals, CCR2 deficiency spared reductions in hippocampal neural progenitor cell survival and stabilized neurogenesis following exposure to low dose irradiation. While radiation-induced changes in microglia levels were not found in WT or CCR2 deficient animals, the number of Iba1+ cells did differ between each genotype at the higher dosing paradigms, suggesting that blockade of this signaling axis could moderate the neuroinflammatory response. Interestingly, changes in proinflammatory gene expression were limited in WT animals, while irradiation caused significant elevations in these markers that were attenuated significantly after radioadaptive dosing paradigms in CCR2 deficient mice. These data point to the importance of chemokine signaling under low dose paradigms, findings of potential significance to those exposed to ionizing radiation under a variety of occupational and/or medical scenarios.  相似文献   

16.
Radiation-induced bystander effects occur in cells that are not directly hit by radiation tracks but that receive signals from hit cells. They are well-documented in vitro consequences of low-dose exposure, but their relevance to in vivo radiobiology is not established. To investigate the in vivo production of bystander signals, bladder explants were established from two strains of mice known to differ significantly in both short-term and long-term radiation responses. These were investigated for the ability of 0.5 Gy total-body irradiation in vivo to induce production of bystander signals in bladder epithelium. The studies demonstrate that irradiated C57BL/6 mice, but not CBA/Ca mice, produce bystander signals that induce apoptosis and reduce clonogenic survival in reporter HPV-G-transfected keratinocytes. Transfer of medium from explants established from irradiated animals to explants established from unirradiated animals confirmed these differences in bladder epithelium. The responses to the in vivo-generated bystander signal exhibit genotypic differences in calcium signaling and also in signaling pathways indicative of a major role for the balance of pro-apoptosis and anti-apoptosis proteins in determining the overall response. The results clearly demonstrate the in vivo induction of bystander signals that are strongly influenced by genetic factors and have implications for radiation protection, medical imaging, and radiotherapy.  相似文献   

17.
Cardiovascular disease is recognized as an important clinical problem in radiotherapy and radiation protection. However, only few radiobiological models relevant for assessment of cardiotoxic effects of ionizing radiation are available. Here we describe the isolation of mouse primary cardiac endothelial cells, a possible target for cardiotoxic effects of radiation. Cells isolated from hearts of juvenile mice were cultured and irradiated in vitro. In addition, cells isolated from hearts of locally irradiated adult animals (up to 6 days after irradiation) were tested. A dose-dependent formation of histone γH2A.X foci was observed after in vitro irradiation of cultured cells. However, such cells were resistant to radiation-induced apoptosis. Increased levels of actin stress fibres were observed in the cytoplasm of cardiac endothelial cells irradiated in vitro or isolated from irradiated animals. A high dose of 16 Gy did not increase permeability to Dextran in monolayers formed by endothelial cells. Up-regulated expression of Vcam1, Sele and Hsp70i genes was detected after irradiation in vitro and in cells isolated few days after irradiation in vivo. The increased level of actin stress fibres and enhanced expression of stress-response genes in irradiated endothelial cells are potentially involved in cardiotoxic effects of ionizing radiation.  相似文献   

18.
Induction of differentiation of a human promyelocytic leukemic cell line (HL60) in culture is accompanied by changes in acid phosphatase (Acpase) activity. The increase in activity is less than twofold when the leukemic cells are stimulated by dimethylsulfoxide (DMSO) to differentiate into metamyelocytes and granulocytes but is eightfold when the cells are stimulated by the tumor-promoting agent 12-0- tetradecanoylphorbol 13-acetate (TPA) to differentiate into macrophage- like cells. Five different isozymes of Acpase were separated by acrylamide gel electrophoresis. Isozyme 1, the most anodal isozyme, was found to be present in undifferentiated, DMSO-treated and TPA-treated cells; isozyme 2 was a very faint band observed both in DMSO- and TPA- treated cells, the isoenzymes 3a and 3b were present only in TPA- induced cells; and isozyme 4, the most cathodal isozyme, was present both in TPA- and DMSO-induced cells. A time sequence study on the appearance of the various forms after TPA treatment indicated that the expression of the isozymes is regulated in an uncoordinated fashion. Acpase activity has been shown by ultrastructural cytochemistry to be localized in the entire rough endoplasmic reticulum (RER) and in areas of the smooth endoplasmic reticulum (SER) located near the Golgi complex in differentiating cells but to be extremely weak, if at all detectable, in undifferentiated promyelocytes.  相似文献   

19.
To evaluate the effect of blood storage on the yield of micronuclei (MN) in both irradiated (in vivo and ex vivo) and unirradiated peripheral blood lymphocytes (PBL), we applied the MN assay in cytokinesis-blocked (CB) PBL obtained from healthy subjects (n=11), and from cancer patients (n=10) who were undergoing fractionated partial-body radiotherapy (xRT). The heparinized blood samples were exposed to 137Cs-irradiation (0 Gy or 2 Gy) immediately after blood collection and were stored upright in test tubes either at room temperature (22 degrees C) or in the refrigerator (5 degrees C). Duplicate whole blood cultures from each sample were set up at 0 h, 96 h, and 120 h after ex vivo irradiation. Giemsa (10%) stained slides were prepared from each culture. MN yield was determined per 1000 binucleated cells. As compared to that obtained from the corresponding fresh blood samples, we found that (1) the 22 degrees C blood storage temperature did not affect MN yields in PBL of either healthy subjects or cancer patients up to 96 h, either with or without ex vivo irradiation; and (2) while blood samples were stored at 5 degrees C, the MN yield increased significantly in PBL of healthy subjects (with or without ex vivo irradiation) at 120 h, and in cancer patients (with ex vivo irradiation) at 96 h and 120 h. Since handling of the blood sample is important for CBMN assay during shipment or in the laboratory, our findings showed that blood storage at 22 degrees C or at 5 degrees C up to 96 h appeared to provide insignificant variations of the MN results as compared to fresh blood samples. However, the 96 h of blood storage at 5 degrees C elevated the MN frequency in ex vivo irradiated PBL of cancer patients who were undergoing xRT.  相似文献   

20.
In the central nervous system (CNS) O-2A (Oligodendrocyte type 2 Astrocyte) progenitor cells have been proposed as potential target cells, and their depletion by irradiation will cause demyelination. The extent and time course of repopulation of these glial stem cells were studied in the adult rat optic nerve after irradiation in vivo. The number of O-2A progenitor cells was measured quantitatively by an in vitro clonogenic assay. Although the CNS is typically a late-responding tissue, repopulation was initiated almost immediately after irradiation and after several weeks a plateau was reached that lasted up to 6 months. Single doses of 4-12 Gy of X rays caused a permanent reduction in the number of O-2A progenitor cells. An analysis of the colony size of O-2A progenitor cells showed a sustained reduction in the number of offspring of cells surviving a dose of 12 Gy. In addition, the colony size of unirradiated progenitors diminished with increasing age of the animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号