首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although estrogens are neuroprotective in a variety of neuroprotection models, the precise underlying mechanisms are currently not well understood. Here, we examined the role of protein kinase C (PKC) in mediating estrogen-induced neuroprotection in the HT-22 immortalized hippocampal cell line. The neuroprotection model utilized calcein fluorescence to quantitate cell viability following glutamate insults. 17beta-Estradiol (betaE2) protected HT-22 cells when treatment was initiated before or after the glutamate insult. The inhibition of PKC by bis-indolylmaleimide mimicked and enhanced betaE2-induced neuroprotection. In contrast, the inhibition of specific PKC isozymes (alpha and beta) by Go6976, inhibition of 1-phosphatidylinositol 3 kinase by wortmannin, or inhibition of protein kinase A by H-89, did not alter cell viability, suggesting a specific involvement of PKC in an isozyme-dependent manner. We further examined whether estrogen interacts with PKC in a PKC isozyme-specific manner. Protein levels and activity of PKC isozymes (alpha, delta, epsilon, and zeta) were assessed by western blot analysis and radiolabeled phosphorylation assays respectively. Among the isozymes tested, betaE2 altered only PKCepsilon; it reduced the activity and membrane translocation of PKCepsilon in a manner that correlated with its protection against glutamate toxicity. Furthermore, betaE2 reversed the increased activity of membrane PKCepsilon induced by glutamate. These data suggest that the neuroprotective effects of estrogens are mediated in part by inhibition of PKCepsilon activity and membrane translocation.  相似文献   

2.
Ethanol enhances gamma-aminobutyrate (GABA) signaling in the brain, but its actions are inconsistent at GABA(A) receptors, especially at low concentrations achieved during social drinking. We postulated that the epsilon isoform of protein kinase C (PKCepsilon) regulates the ethanol sensitivity of GABA(A) receptors, as mice lacking PKCepsilon show an increased behavioral response to ethanol. Here we developed an ATP analog-sensitive PKCepsilon mutant to selectively inhibit the catalytic activity of PKCepsilon. We used this mutant and PKCepsilon(-/-) mice to determine that PKCepsilon phosphorylates gamma2 subunits at serine 327 and that reduced phosphorylation of this site enhances the actions of ethanol and benzodiazepines at alpha1beta2gamma2 receptors, which is the most abundant GABA(A) receptor subtype in the brain. Our findings indicate that PKCepsilon phosphorylation of gamma2 regulates the response of GABA(A) receptors to specific allosteric modulators, and, in particular, PKCepsilon inhibition renders these receptors sensitive to low intoxicating concentrations of ethanol.  相似文献   

3.
The neurotoxic effects of activated microglia in neurodegenerative diseases are well established. We recently provided evidence that chromogranin A (CGA), a multifunctional protein localized in dystrophic neurites and in senile plaques, induces an activated phenotype and secretion of neurotoxins by rat microglia in culture. In the present study, we focused on the mechanisms underlying neuronal degeneration triggered by CGA-activated microglia. We found that neuronal death exhibits apoptotic features, characterized by the externalization of phosphatidylserine and the fragmentation of DNA. Microglial neurotoxins markedly stimulate the phosphorylation and activity of neuronal p38 mitogen-activated protein kinase and provoke the release of mitochondrial cytochrome c, which precedes apoptosis. Inhibition of p38 kinase with SB 203580 partially protects neurons from death induced by CGA-activated microglia. Furthermore, neurons are also protected by Fas-Fc, which antagonizes the interactions between the death receptor Fas and its ligand FasL and by cell-permeable peptides that inhibit caspases 8 and 3. Thus, CGA triggers the release of microglial neurotoxins that mobilize several death-signaling pathways in neurons. Our results further support the idea that CGA, which is up-regulated in many neuropathologies, represents a potent endogeneous inflammatory factor possibly responsible for neuronal degeneration.  相似文献   

4.
Zhang Y  Venugopal SK  He S  Liu P  Wu J  Zern MA 《Cellular signalling》2007,19(11):2339-2350
Ethanol abuse is one of the major etiologies of cirrhosis. Ethanol has been shown to induce apoptosis via activation of oxidative stress, mitogen-activated protein kinases (MAPK), and tyrosine kinases. However, there is a paucity of data that examine the interplay among these molecules. In the present study we have systematically elucidated the role of novel protein kinase C isoforms (nPKC; PKCdelta and PKCepsilon) in ethanol-induced apoptosis in hepatocytes. Ethanol enhanced membrane translocation of PKCdelta and PKCepsilon, which was associated with the phosphorylation of p38MAPK, p42/44MAPK and JNK1/2, and the nuclear translocation of NF-kappaB and AP-1. This resulted in increased apoptosis in primary rat hepatocytes. Inhibition of both PKCdelta and PKCepsilon resulted in a decreased MAPK activation, decreased nuclear translocation of NF-kappaB and AP-1, and inhibition of apoptosis. In addition, ethanol activated the tyrosine phosphorylation of PKCdelta via tyrosine kinase in hepatocytes. The tyrosine phosphorylated PKCdelta was cleaved by caspase-3 and these fragments were translocated to the nucleus. Inhibition of ethanol-induced oxidative stress blocked the membrane translocation of PKCdelta and PKCepsilon, and the tyrosine phosphorylation of PKCdelta in hepatocytes. Inhibition of oxidative stress, tyrosine kinase or caspase-3 activity caused a decreased nuclear translocation of PKCdelta in response to ethanol, and was associated with less apoptosis. Conclusion: These results provide a newly-described mechanism by which ethanol induces apoptosis via activation of nPKC isoforms in hepatocytes.  相似文献   

5.
Niu  Jianyi  Xiong  Jing  Hu  Dan  Zeng  Fei  Nie  Shuke  Mao  Shanping  Wang  Tao  Zhang  Zhentao  Zhang  Zhaohui 《Neurochemical research》2017,42(10):2996-3004

DNA polymerase-β (DNA pol-β) plays a crucial role in the pathogenesis of Parkinson’s disease (PD). The aim of this study was to investigate the neuroprotective effects of a DNA polymerase-β inhibitor 2′,3′-dideoxycytidine (DDC) in PD models. In the in vitro studies, primary cultured neurons were challenged with 1-methyl-4-phenylpyridinium ion (MPP+). The expression of DNA pol-β was assessed using western blot. The neuroprotective effect of DNA pol-β knockdown and DNA pol-β inhibitor DDC was determined using cell viability assay and caspase-3 activity assay. We found that MPP+ induced neuronal death and the activation of caspase-3 in a dose-dependent manner. The expression of DNA pol-β increased after the neurons were exposed to MPP+. DNA pol-β siRNA or DNA pol-β inhibitor DDC attenuated neuronal death induced by MPP+. In the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of PD, MPTP treatment triggered behavioral deficits and nigrostriatal lesions. Pretreatment with DDC attenuated MPTP-induced behavioral deficits, dopaminergic neuronal death and striatal dopamine depletion in the MPTP mouse model. These results indicate that DNA pol-β inhibitors may present a novel promising therapeutic option for the neuroprotective treatment of PD.

  相似文献   

6.
Pro-inflammatory cytokines released from activated microglia may be responsible for neuronal damage and resulting motor deficits associated with CNS disorders such as spinal cord injury, Parkinson’s disease, and multiple sclerosis. Estrogen (17β-estradiol) is capable of ameliorating motoneuron death following spinal cord injury, but has a number of deleterious side effects. Genistein (GEN), an estrogen receptor beta agonist and potent antioxidant, may represent an alternative to estrogen in treating neurodegenerative disorders. However, little is known about the neuroprotective effects of GEN. We therefore tested whether GEN would prevent apoptosis in cultured motoneurons following exposure to pro-inflammatory cytokines released from IFN-γ activated microglia. Exposure of ventral spinal cord 4.1 motoneurons to microglial cytokine supernatant in vitro caused significant apoptosis and reduced mitochondrial membrane potential. An increase in reactive oxygen species, intracellular Ca2+, calpain, caspases, cytochrome c, and the bax:bcl-2 ratio were also noted. GEN treatment reversed apoptotic death and cellular changes following cytokine exposure and was associated with increased expression of estrogen receptor β suggesting that GEN may promote neuroprotection via receptor-mediated pathways. The addition of ICI 182, 780, an estrogen receptor antagonist following GEN treatment attenuated neuroprotection, suggesting that GEN may act mainly via estrogen receptor β to protect VSC4.1 motoneurons. We conclude that GEN protects cultured ventral spinal cord 4.1 cells from inflammatory insult and thus may represent a potential beneficial therapy in the treatment of neurodegenerative disorders.  相似文献   

7.
Epidemiological data from retrospective and case-control studies have indicated that estrogen replacement therapy can decrease the risk of developing Alzheimer's disease. In addition, estrogen replacement therapy has been found to promote neuronal survival both in vivo and in vitro. We have shown that conjugated equine estrogens (CEE), containing 238 different molecules composed of estrogens, progestins, and androgens, exerted neurotrophic and neuroprotective effects in cultured neurons. In the current study, we sought to determine whether a steroidal formulation of nine synthetic conjugated estrogens (SCE) chemically derived from soybean and yam extracts is as effective as the complex multisteroidal formulation of CEE. Analyses of the neuroprotective efficacy indicate that SCE exhibited significant neuroprotection against beta amyloid, hydrogen peroxide, and glutamate-induced toxicity in cultured hippocampal neurons. Indices of neuroprotection included an increase in neuronal survival, a decrease in neurotoxin-induced lactate dehydrogenase release, and a reduction in neurotoxin-induced apoptotic cell death. Furthermore, SCE was found to attenuate excitotoxic glutamate-induced [Ca2+]i rise. Quantitative analyses indicate that the neuroprotective efficacy of SCE was comparable to that of the multisteroidal CEE formulation. Data derived from these investigations predict that SCE could exert neuroprotective effects comparable to CEE in vivo and therefore could reduce the risk of Alzheimer's disease in postmenopausal women.  相似文献   

8.
Tumor necrosis factor α (TNF-α) is a pleiotropic cytokine mediating inflammatory as well as cell death activities, and is thought to induce chondrocytic chondrolysis in inflammatory and degenerative joint diseases. Selective estrogen receptor modulators (SERMs), such as raloxifene, which are commonly used in clinical settings act as estrogen agonists or antagonists. It is assumed that estrogens have a potential role in cartilage protection; however, the precise molecular mechanism for the protective effects of estrogens is unclear. This study was designed to examine whether raloxifene inhibits TNF-α-induced apoptosis in human chondrocytes and to clarify the mechanisms involved. We also investigated the signaling pathways responsible for the anti-apoptotic effect of raloxifene. Apoptosis in chondrocytes was determined by DNA fragmentation assay and caspase-3 activation. Raloxifene significantly inhibited TNF-α-induced caspase-3 activation and cell DNA fragmentation levels in chondrocytes. The inhibitory effect of raloxifene was abolished by the estrogen receptor antagonist ICI 182,780. Extracellular signal-regulated kinase 1/2 (ERK1/2) regulates apoptosis, acting as an apoptotic or anti-apoptotic signal. TNF-α-induced apoptosis was significantly enhanced by the ERK1/2 pathway inhibitor PD98059. Raloxifene stimulated a further increase in ERK1/2 phosphorylation in TNF-α-treated chondrocytes. Furthermore, the anti-apoptotic effects of raloxifene were inhibited by PD98059. In addition, the anti-apoptotic effects of raloxifene were completely abolished in ERK1/2 siRNA-treated chondrocytes. These results suggest that raloxifene prevents caspase-3-dependent apoptosis induced by TNF-α in human chondrocytes by activating estrogen receptors and the ERK1/2 signaling pathway.  相似文献   

9.
The potential neuroprotective role of sex hormones in chronic neurodegenerative disorders and acute brain ischemia following cardiac arrest and stroke is of a great therapeutic interest. Long-term pretreatment with estradiol and other estrogens affords robust neuroprotection in male and female rodents subjected to focal and global ischemia. However, the receptors (e.g., cell surface or nuclear), intracellular signaling pathways and networks of estrogen-regulated genes that intervene in neuronal apoptosis are as yet unclear. We have shown that estradiol administered at physiological levels for two weeks before ischemia rescues neurons destined to die in the hippocampal CA1 and ameliorates ischemia-induced cognitive deficits in ovariectomized female rats. This regimen of estradiol treatment involves classical intracellular estrogen receptors, transactivation of IGF-1 receptors and stimulation of the ERK/MAPK signaling pathway, which in turn maintains CREB activity in the ischemic CA1. We also find that a single, acute injection of estradiol administrated into the brain ventricle immediately after an ischemic event reduces both neuronal death and cognitive deficits. Because these findings suggest that hormones could be used to treat patients when given after brain ischemia, it is critical to determine whether the same or different pathways mediate this form of neuroprotection. We find that an agonist of the membrane estrogen receptor GPR30 mimics short latency estradiol facilitation of synaptic transmission in the hippocampus. Therefore, we are testing the hypothesis that GPR30 may act together with intracellular estrogen receptors to activate cell signaling pathways to promote neuron survival after global ischemia.  相似文献   

10.
Intermittent hypoxia (IH) has been found to protect brain from ischemic injury. We investigated whether IH mitigates brain oxidative stress and behavioral deficits in rats subjected to ethanol intoxication and abrupt ethanol withdrawal (EW). The effects of IH on overt EW behavioral signs, superoxide generation, protein oxidation, and mitochondrial permeability transition pore (PTP) opening were examined. Male rats consumed dextrin or 6.5% (wt/vol) ethanol for 35 days. During the last 20 days, rats were treated with repetitive (5-8 per day), brief (5-10 min) cycles of hypoxia (9.5-10% inspired O2) separated by 4-min normoxia exposures. Cerebellum, cortex, and hippocampus were biopsied on day 35 of the diet or at 24 h of EW. Superoxide and protein carbonyl contents in tissue homogenates and absorbance decline at 540 nm in mitochondrial suspensions served as indicators of oxidative stress, protein oxidation, and PTP opening, respectively. Although IH altered neither ethanol consumption nor blood ethanol concentration, it sharply lowered the severity of EW signs including tremor, tail rigidity, and startle response. Compared with dextrin and ethanol per se, in the three brain regions, EW increased superoxide and protein carbonyl contents and accelerated PTP opening in a manner ameliorated by IH. Administration of antioxidant N-acetylcysteine throughout the IH program abrogated the reductions in EW signs and superoxide content, implicating IH-induced ROS as mediators of the salutary adaptations. We conclude that IH conditioning during chronic ethanol consumption attenuates oxidative damage to the brain and mitigates behavioral abnormalities during subsequent EW. IH-induced ROS may evoke this powerful protection.  相似文献   

11.
Menopause marks the start of a new phase in a woman's life that is associated with a decrease in circulating estrogen levels. Although the average age of women has increased from 50 to nearly 85 years, the average age at menopause has remained essentially constant at 50 years. Thus, women now spend nearly a third of their lives in an estrogen deficient state. This normal aging process in women is associated with increasing health problems such as osteoporosis, cardiovascular disease, neurodegenerative diseases, and cancer. Estrogen replacement therapy (ERT) has been shown to play an important beneficial role in the health and well being of postmenopausal women. Several estrogen preparations are available and among these conjugated equine estrogens (CEE) are most frequently used. The drug CEE, is a complex natural urinary extract of pregnant mare's urine and contains at least 10 estrogens in their sulfate ester form and these are the ring B saturated estrogens: estrone (E(1)), 17beta-estradiol (17beta-E(2)), 17alpha-estradiol (17alpha-E(2)), and the ring B unsaturated estrogens equilin (Eq), 17beta-dihydroequilin (17beta-Eq), 17alpha-dihydroequilin (17alpha-Eq), equilenin (Eqn), 17beta-dihydroequilenin (17beta-Eqn), 17alpha-dihydroequilenin (17alpha-Eqn), and Delta(8)-estrone (Delta(8)-E(1)). All of these estrogens in their unconjugated form are biologically active and can interact with recombinant human estrogen receptor alpha (ERalpha) and beta (ERbeta) with 17beta-estradiol and 17beta-dihydroequilin having the highest affinity for both receptors. A number of the ring B unsaturated estrogens had nearly twofold higher affinity for the ERbeta. The pharmacokinetics of these estrogens in postmenopausal women indicate that the unconjugated estrogens compared to their sulfated forms are cleared more rapidly. The 17-keto estrogens are metabolized to the more potent 17beta-reduced products which are cleared at a slower rate. In postmenopausal women, the extent of 17beta-activation is much higher with the ring B unsaturated estrogens than with ring B saturated estrogens. Oxidized LDL and oxidative stress are thought to contribute to both atherosclerosis and neurodegenerative disorders. Neurons in particular are at a high risk from damage resulting from oxidative stress. In vivo and in vitro studies indicate that the oxidation of LDL isolated from postmenopausal women was inhibited differently by various estrogens and other antioxidants. The unique ring B unsaturated estrogens were the most potent while the red wine component t-resveratrol was the least potent.Studies were designed to explore the cellular and molecular mechanisms that may be involved in the neuroprotective effects of CEE components. The data indicate that the neurotoxic effects of oxidized LDL and glutamate can be inhibited by various estrogens, with the ring B unsaturated estrogens being the most active. These effects are involved in the inhibition of DNA fragmentation and up-regulation of anti-apoptotic protein Bcl-2 and down-regulation of pro-apoptotic protein Bax. These combined data suggest that some of the neuroprotective benefits associated with long-term estrogen therapy may occur by the above mechanism(s). Because estrogens such as the Delta(8)-estrogens are relatively less feminizing than the classical estrogen 17beta-estradiol, they may be important in the development of more neuro-specific estrogens that will be useful in the prevention of neurodegenerative diseases, such as Alzheimer's and Parkinson disease, in both men and women.  相似文献   

12.
13.
14.
It is well known that the biological and carcinogenic effects of 17beta-estradiol (E2) are mediated via nuclear estrogen receptors (ERs) by regulating nuclear gene expression. Several rapid, non-nuclear genomic effects of E2 are mediated via plasma membrane-bound ERs. In addition, there is accumulating evidence suggesting that mitochondria are also important targets for the action of estrogens and ERs. This review summarized the studies on the effects of estrogens via ERs on mitochondrial structure and function. The potential physiological and pathophysiological implications of deficiency and/or overabundance of these E2/ER-mediated mitochondrial effects in stimulation of cell proliferation, inhibition of apoptosis, E2-mediated cardiovascular and neuroprotective effects in target cells are also discussed.  相似文献   

15.
Growth of human breast adenocarcinoma MCF-7 cells as a tumor on nude mice is dependent on estrogen. It has been shown that estrogen withdrawal (EW) induces a partial regression of the tumor via an inhibition of cell proliferation and an induction of apoptosis. We investigated in this in vivo model the underlying molecular mechanisms of the hormone-dependent regulation of cell cycle machinery and apoptosis. We found that, 2 days after EW, the tumor protein levels of p21 rose, whereas those of Rb proteins decreased in parallel with the decrease in the proportion of tumor cells in S phase and the increase of the tumor apoptotic index. Between 3 and 7 days after EW, apoptosis was inhibited and tumor proliferation returned to the control value. There was a concomitant decline in p21 and an elevation of Rb tumor protein content. Slight variations of cyclin D protein level were observed in MCF-7 tumors over the time course following EW treatment. Bcl-2 overexpression not only inhibited apoptosis induced by EW but also modulated hormone-dependent cell cycle regulation. First, the analysis of phosphorylation status of Rb protein and the measurement of the proportion of tumor cells in S phase indicated that Bcl-2 overexpression results in a decrease of DNA synthesis induced by estradiol. Furthermore, after EW, Bcl-2-induced inhibition of hormone-dependent apoptosis was associated with an inhibition of Rb protein downregulation, a sustained level of p21 protein, and a prolonged inhibition of cell cycle progression. These results suggest that, in human hormone-dependent breast cancers, cross-talk exists between the signaling pathways which lead to regulation of cell cycle progression and apoptosis.  相似文献   

16.
17.
Ethanol preconditioning (EtOH-PC) refers to a phenomenon in which tissues are protected from the deleterious effects of ischemia/reperfusion (I/R) by prior ingestion of ethanol at low to moderate levels. In this study, we tested whether prior (24 h) administration of ethanol as a single bolus that produced a peak plasma concentration of 42-46 mg/dl in gerbils would offer protective effects against neuronal damage due to cerebral I/R. In addition, we also tested whether reactive oxygen species (ROS) derived from NADPH oxidase played a role as initiators of these putative protective effects. Groups of gerbils were administered either ethanol or the same volume of water by gavage 24 h before transient global cerebral ischemia induced by occlusion of both common carotid arteries for 5 min. In some experiments, apocynin, a specific inhibitor of NADPH oxidase, was administered (5 mg/kg body wt, i.p.) 10 min before ethanol administration. EtOH-PC ameliorated behavioral deficit induced by cerebral I/R and protected the brain against I/R-induced delayed neuronal death, neuronal and dendritic degeneration, oxidative DNA damage, and glial cell activation. These beneficial effects were attenuated by apocynin treatment coincident with ethanol administration. Ethanol ingestion was associated with translocation of the NADPH oxidase subunit p67(phox) from hippocampal cytosol fraction to membrane, increased NADPH oxidase activity in hippocampus within the first hour after gavage, and increased lipid peroxidation (4-hydroxy-2-nonenal) in plasma and hippocampus within the first 2 h after gavage. These effects were also inhibited by concomitant apocynin treatment. Our data are consistent with the hypothesis that antecedent ethanol ingestion at socially relevant levels induces neuroprotective effects in I/R by a mechanism that is triggered by ROS produced through NADPH oxidase. Our results further suggest the possibility that preconditioning with other pharmacological agents that induce a mild oxidative stress may have similar therapeutic value for suppressing stroke-mediated damage in brain.  相似文献   

18.
Mice lacking protein kinase Cepsilon (PKCepsilon) are hypersensitive to both Gram-positive and Gram-negative bacterial infections; however, the mechanism of PKCepsilon coupling to the Toll-like receptors (TLRs), responsible for pathogen detection, is poorly understood. Here we sought to investigate the mechanism of PKCepsilon involvement in TLR signaling and found that PKCepsilon is recruited to TLR4 and phosphorylated on two recently identified sites in response to lipopolysaccharide (LPS) stimulation. Phosphorylation at both of these sites (Ser-346 and Ser-368) resulted in PKCepsilon binding to 14-3-3beta. LPS-induced PKCepsilon phosphorylation, 14-3-3beta binding, and recruitment to TLR4 were all dependent on expression of the scaffold protein MyD88. In mouse embryo fibroblasts and activated macrophages from MyD88 knock-out mice, LPS-stimulated PKCepsilon phosphorylation was reduced compared with wild type cells. Acute knockdown of MyD88 in LPS-responsive 293 cells also resulted in complete loss of Ser-346 phosphorylation and TLR4/PKCepsilon association. By contrast, MyD88 overexpression in 293 cells resulted in constitutive phosphorylation of PKCepsilon. A general role for MyD88 was evidenced by the finding that phosphorylation of PKCepsilon was induced by the activation of all TLRs tested that signal through MyD88 (i.e. all except TLR3) both in RAW cells and in primary human macrophages. Functionally, it is established that phosphorylation of PKCepsilon at these two sites is required for TLR4- and TLR2-induced NFkappaB reporter activation and IkappaB degradation in reconstituted PKCepsilon(-/-) cells. This study therefore identifies the scaffold protein MyD88 as the link coupling TLRs to PKCepsilon recruitment, phosphorylation, and downstream signaling.  相似文献   

19.
20.
Lithium is widely used for the treatment of bipolar disorder. Recent studies have demonstrated its neuroprotective effect. Ethanol is a potent neurotoxin that is particularly harmful to the developing nervous system. In this study, we evaluated lithium's neuroprotection against ethanol-induced apoptosis. Transient exposure of infant mice to ethanol caused apoptotic cell death in brain, which was prevented significantly by administering a low dose of lithium 15min later. In cultured cerebellar granule neurons, ethanol-induced apoptosis and activation of caspase-3/9, both of which were prevented by lithium. However, lithium's protection is not mediated by its commonly known inhibition of glycogen synthase3beta, because neither ethanol nor lithium has significant effects on the phosphorylation of Akt (ser473) or GSK3beta (ser9). In addition, the selective GSK-3beta inhibitor SB-415286 was unable to prevent ethanol-induced apoptosis. These data suggest lithium may be used as a potential preventive measure for ethanol-induced neurological deficits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号