首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ATP represents a major gliotransmitter that serves as a signaling molecule for the cross talk between glial and neuronal cells. ATP has been shown to be released by astrocytes in response to a number of stimuli under nonischemic conditions. In this study, using a luciferin-luciferase assay, we found that mouse astrocytes in primary culture also exhibit massive release of ATP in response to ischemic stress mimicked by oxygen-glucose deprivation (OGD). Using a biosensor technique, the local ATP concentration at the surface of single astrocytes was found to increase to around 4 muM. The OGD-induced ATP release was inhibited by Gd(3+) and arachidonic acid but not by blockers of volume-sensitive outwardly rectifying Cl(-) channels, cystic fibrosis transmembrane conductance regulator (CFTR), multidrug resistance-related protein (MRP), connexin or pannexin hemichannels, P2X(7) receptors, and exocytotic vesicular transport. In cell-attached patches on single astrocytes, OGD caused activation of maxi-anion channels that were sensitive to Gd(3+) and arachidonic acid. The channel was found to be permeable to ATP(4-) with a permeability ratio of P(ATP)/P(Cl) = 0.11. Thus, it is concluded that ischemic stress induces ATP release from astrocytes and that the maxi-anion channel may serve as a major ATP-releasing pathway under ischemic conditions.  相似文献   

2.
ATP serves not only as an energy source for all cell types but as an ‘extracellular messenger’ for autocrine and paracrine signalling. It is released from the cell via several different purinergic signal efflux pathways. ATP and its Mg2+ and/or H+ salts exist in anionic forms at physiological pH and may exit cells via some anion channel if the pore physically permits this. In this review we survey experimental data providing evidence for and against the release of ATP through anion channels. CFTR has long been considered a probable pathway for ATP release in airway epithelium and other types of cells expressing this protein, although non-CFTR ATP currents have also been observed. Volume-sensitive outwardly rectifying (VSOR) chloride channels are found in virtually all cell types and can physically accommodate or even permeate ATP4− in certain experimental conditions. However, pharmacological studies are controversial and argue against the actual involvement of the VSOR channel in significant release of ATP. A large-conductance anion channel whose open probability exhibits a bell-shaped voltage dependence is also ubiquitously expressed and represents a putative pathway for ATP release. This channel, called a maxi-anion channel, has a wide nanoscopic pore suitable for nucleotide transport and possesses an ATP-binding site in the middle of the pore lumen to facilitate the passage of the nucleotide. The maxi-anion channel conducts ATP and displays a pharmacological profile similar to that of ATP release in response to osmotic, ischemic, hypoxic and salt stresses. The relation of some other channels and transporters to the regulated release of ATP is also discussed.  相似文献   

3.
Neuroinflammation is associated with a variety of CNS pathologies. Levels of tumor necrosis factor-alpha (TNF-alpha), a major proinflammatory cytokine, as well as extracellular ATP, are increased following various CNS insults. Here we report on the relationship between ATP/P2 purinergic receptor activation and lipopolysaccharide (LPS)-induced TNF-alpha release from primary cultures of rat cortical astrocytes. Using ELISA, we confirmed that treatment with LPS stimulated the release of TNF-alpha in a concentration and time dependent manner. ATP treatment alone had no effect on TNF-alpha release. LPS-induced TNF-alpha release was attenuated by 1 mm ATP, a concentration known to activate P2X7 receptors. Consistent with this, 3'-O-(4-Benzoyl)benzoyl-ATP (BzATP), a P2X7 receptor agonist, also attenuated LPS-induced TNF-alpha release. This reduction in TNF-alpha release was not due to loss of cell viability. Adenosine and 2-chloroadenosine were ineffective, suggesting that attenuation of LPS-induced TNF-alpha release by ATP was not due to ATP breakdown and subsequent activation of adenosine/P1 receptors. Interestingly, treatment of astrocyte cultures with 10 microm or 100 microm ATP potentiated TNF-alpha release induced by a submaximal concentration of LPS. UTP and 2methylthioADP (2-MeSADP), P2Y receptor agonists, also enhanced this LPS-induced TNF-alpha release. Our observations demonstrate opposing effects of ATP/P2 receptor activation on TNF-alpha release, i.e. P2X receptor activation attenuates, whereas P2Y receptor activation potentiates TNF-alpha release in LPS-stimulated astrocytes. These observations suggest a mechanism whereby astrocytes can sense the severity of damage in the CNS via ATP release from damaged cells and can modulate the TNF-alpha mediated inflammatory response depending on the extracellular ATP concentration and corresponding type of astrocyte ATP/P2 receptor activated.  相似文献   

4.
AimsRecently, we demonstrated that cultured mouse astrocytes exhibited basal channel opening of P2X7 receptor (P2X7R) in the absence of any exogenous ligand, but the regulatory mechanism involved was not elucidated. Since our preliminary experiments suggested possible involvement of peroxisome proliferator-activated receptor (PPAR) γ in the regulation, we examined whether PPARγ regulated P2X7R basal channel opening in mouse astrocytes.Main methodsP2X7R channel opening was assessed as to the uptake of a marker dye, YO-PRO-1® (YP), in the presence or absence of agonists and antagonists for PPARγ under a fluorescence microscope. Expression of PPARγ was evaluated by Western blotting and immunocytochemistry.Key findingsNSAIDs such as flufenamic acid (FFA) and indomethacin, which are a cyclooxygenase inhibitor and a PPARγ agonist, showed enhancing and inhibiting effects on YP uptake at low and high concentrations, respectively, and the enhanced uptake was abolished by periodate-oxidized ATP (oxATP), a selective P2X7R antagonist. The PPARγ agonists 15-deoxy-Δ12,14-prostaglandin J2 and ciglitazone decreased the basal and FFA-enhanced YP uptake, while the antagonist GW9662 increased YP uptake, this effect being blocked by the agonists and also by oxATP. PPARγ was distributed in the nucleus and cytosolic/membrane fraction of cultured mouse astrocytes.SignificanceThese findings indicate that basal channel opening of P2X7R in mouse astrocytes is at least in part regulated by PPARγ.  相似文献   

5.
Protection of the heart from ischemia-reperfusion injury can be achieved by ischemic preconditioning and ischemic postconditioning. Previous studies revealed that a complex of pannexin-1 with the P2X(7) receptor forms a channel during ischemic preconditioning and ischemic postconditioning that results in the release of endogenous cardioprotectants. ATP binds to P2X(7) receptors, inducing the formation of a channel in association with pannexin-1. We hypothesized that this channel would provide a pathway for the release of these same cardioprotectants. Preconditioning-isolated perfused rat hearts with 0.4 μM ATP preceding 40 min of ischemia minimized infarct size upon subsequent reperfusion (5% of risk area) and resulted in >80% recovery of left ventricular developed pressure. Postconditioning with ATP after ischemia during reperfusion was also protective (6% infarct and 72% recovery of left ventricular developed pressure). Antagonists of both pannexin-1 (carbenoxolone and mefloquine) and P2X(7) receptors (brilliant blue G and A438079) blocked ATP pre- and postconditioning, indicating that ATP protection was elicited via the opening of a pannexin-1/P2X(7) channel. An antagonist of binding of the endogenous cardioprotectant sphingosine 1-phosphate to its G protein-coupled receptor diminished protection by ATP, which is also consistent with an ATP-dependent release of cardioprotectants. Suramin, an antagonist of binding of ATP (and ADP) to P2Y receptors, was without effect on ATP protection. Benzoyl benzoyl-ATP, a more specific P2X(7) agonist, was also a potent pre- and postconditioning agent and sensitive to blockade by pannexin-1/P2X(7) channel antagonists. The data point out for the first time the potential of P2X(7) agonists as cardioprotectants.  相似文献   

6.
CFTR (cystic fibrosis transmembrane conductance regulator), MDR1 (multidrug resistance), and MRP1 (multidrug resistance-associated protein), members of the ABC transporter superfamily, possess multiple functions, particularly Cl(-), anion, and glutathione conjugate transport and cell detoxification. They are also hypothesized to have a number of complementary functions. It is generally accepted that data obtained from nasal mucosa can be extrapolated to lower airway cell physiology. The aim of the present study was to investigate by immunohistochemistry the differential localization of CFTR, MDR1, and MRP1 in the normal mucosa of 10 human nasal turbinates. In ciliated epithelial cells, CFTR was inconstantly expressed at the apical cell surface, intense membranous labeling was observed for MDR1, and intense cytoplasmic labeling was observed for MRP1. In the glands, a higher level of expression was observed on serous cells, at the apical surface (for CFTR), on lateral membranes (for MDR1), and with an intracytoplasmic distribution (for MRP1). In conclusion, CFTR, MDR1 and MRP1 are expressed in the epithelium and glands of the nasal respiratory mucosa, but with different patterns of expression. These results suggest major roles for CFTR, MDR1, and MRP1 in serous glandular cells and a protective function for MDR1 and MRP1 in respiratory ciliated cells. (J Histochem Cytochem 48:1215-1222, 2000)  相似文献   

7.
ATP release by nonpigmented (NPE) and pigmented (PE) ciliary epithelial cells is the enabling step in purinergic regulation of aqueous humor formation, but the release pathways are unknown. We measured ATP release from primary cultures of bovine mixed NPE and PE (bCE) cells and transformed bovine NPE and PE cells, using the luciferin-luciferase reaction. Hypotonicity-triggered bCE ATP release was inhibited by the relatively selective blocker of pannexin-1 (PX1) hemichannels (probenecid, 1 mM, 47 ± 2%), by a connexin inhibitor (heptanol, 1 mM, 49 ± 4%), and by an inhibitor of vesicular release (bafilomycin A1, 25 ± 2%), but not by the P2X(7) receptor (P2RX(7)) antagonist KN-62. Bafilomycin A1 acts by reducing the driving force for uptake of ATP from the cytosol into vesicles. The reducing agent dithiothreitol reduced probenecid-blockable ATP release. Similar results were obtained with NPE and PE cell lines. Pannexins PX1-3, connexins Cx43 and Cx40, and P2RX(7) were identified in native cells and cell lines by RT-PCR. PX1 mRNA expression was confirmed by Northern blots; its quantitative expression was comparable to that of Cx43 by real-time PCR. Heterologous expression of bovine PX1 in HEK293T cells enhanced swelling-activated ATP release, inhibitable by probenecid. We conclude that P2RX(7)-independent PX1 hemichannels, Cx hemichannels, and vesicular release contribute comparably to swelling-triggered ATP release. The relatively large response to dithiothreitol raises the possibility that the oxidation-reduction state is a substantial regulator of PX1-mediated ATP release from bovine ciliary epithelial cells.  相似文献   

8.
Interleukin (IL)-1beta and IL-18 are structurally similar proteins that require caspase-1 processing for activation. Both proteins are released from the cytosol by unknown pathway(s). To better characterize the release pathway(s) for IL-1beta and IL-18 we evaluated the role of lipopolysaccharide priming, of interleukin-1beta-converting enzyme (ICE) inhibition, of human purinergic receptor (P2X(7)) function, and of signaling pathways in human monocytes induced by ATP. Monocytes rapidly processed and released both IL-1beta and IL-18 after exogenous ATP. Despite its constitutive cytosolic presence, IL-18 required lipopolysaccharide priming for the ATP-induced release. Neither IL-1beta nor IL-18 release was prevented by ICE inhibition, and IL-18 release was not induced by ICE activation itself. Release of both cytokines was blocked completely by a P2X7 receptor antagonist, oxidized ATP, and partially by an antibody to P2X(7) receptor. In evaluating the signaling components involved in the ATP effect, we identified that the protein-tyrosine kinase inhibitor, AG126, produced a profound inhibition of both ICE activation as well as release of IL-1beta/IL-18. Taken together, these results suggest that, although synthesis of IL-1beta and IL-18 differ, ATP-mediated release of both cytokines requires a priming step but not proteolytically functional caspase-1.  相似文献   

9.
In human and rodent macrophages, activation of the P2X7 nucleotide receptor stimulates interleukin-1beta processing and release, apoptosis, and killing of intracellular Mycobacterium tuberculosis. Signaling pathways downstream of this ionotropic ATP receptor are poorly understood. Here we describe the rapid activation of the stress-activated protein kinase (SAPK)/JNK pathway in BAC1 murine macrophages stimulated by extracellular ATP. Brief exposure of the cells to ATP (10-30 min) was sufficient to trigger a rapid accumulation of activated SAPK that was then sustained for >120 min. Several observations indicated that the P2X7 receptor mediated this effect. 1) ATP and 3'-O-(4-benzoyl)benzoyl-ATP were the only agonistic nucleotides. 2) The effect was inhibited by oxidized ATP and the isoquinoline KN-62, two known P2X7 receptor antagonists. 3) ATP-induced SAPK activation could be recapitulated in P2X7 receptor-transfected HEK293 cells, but not in wild-type HEK293 cells. Because P2X7 receptor stimulation can rapidly activate caspase family proteases that have been implicated in the induction of the SAPK pathway, we investigated whether ATP-dependent SAPK activation involved such proteases. Brief exposure of BAC1 macrophages to extracellular ATP induced DNA fragmentation, alpha-fodrin breakdown, and elevated levels of caspase-3-type activity. Asp-Glu-Val-Asp-cho, a caspase-3 inhibitor, inhibited ATP-induced DNA fragmentation and alpha-fodrin proteolysis, but had no effect on ATP-induced SAPK activation. Tyr-Val-Ala-Asp-chloromethyl ketone, a caspase-1 inhibitor, prevented ATP-induced release of processed interleukin-1beta, but not ATP-dependent SAPK activity. We conclude that activation of ionotropic P2X7 nucleotide receptors triggers a strong activation of SAPK via a pathway independent of caspase-1- or caspase-3-like proteases.  相似文献   

10.
The newly proposed function of the maxi-anion channel as a conductive pathway for ATP release requires that its pore is sufficiently large to permit passage of a bulky ATP(4-) anion. We found a linear relationship between relative permeability of organic anions of different size and their relative ionic mobility (measured as the ratio of ionic conductance) with a slope close to 1, suggesting that organic anions tested with radii up to 0.49 nm (lactobionate) move inside the channel by free diffusion. In the second approach, we, for the first time, succeeded in pore sizing by the nonelectrolyte exclusion method in single-channel patch-clamp experiments. The cutoff radii of PEG molecules that could access the channel from intracellular (1.16 nm) and extracellular (1.42 nm) sides indicated an asymmetry of the two entrances to the channel pore. Measurements by symmetrical two-sided application of PEG molecules yielded an average functional pore radius of approximately 1.3 nm. These three estimates are considerably larger than the radius of ATP(4-) (0.57-0.65 nm) and MgATP(2-) (approximately 0.60 nm). We therefore conclude that the nanoscopic maxi-anion channel pore provides sufficient room to accommodate ATP and is well suited to its function as a conductive pathway for ATP release in cell-to-cell communication.  相似文献   

11.
The purinergic P2X(7) receptor (P2X(7)R) can mediate glutamate release from cultured astrocytes. Using patch clamp recordings, we investigated whether P2X(7)Rs have the same action in hippocampal astrocytes in situ. We found that 2- and 3-O-(4-benzoylbenzoyl)ATP (BzATP), a potent, although unselective P2X(7)R agonist, triggers two different glutamate-mediated responses in CA1 pyramidal neurons; they are transient inward currents, which have the kinetic and pharmacological properties of previously described slow inward currents (SICs) due to Ca(2+)-dependent glutamate release from astrocytes, and a sustained tonic current. Although SICs were unaffected by P2X(7)Rs antagonists, the tonic current was inhibited, was amplified in low extracellular Ca(2+), and was insensitive to glutamate transporter and hemichannel inhibitors. BzATP triggered in astrocytes a large depolarization that was inhibited by P2X(7)R antagonists and amplified in low Ca(2+). In low Ca(2+) BzATP also induced lucifer yellow uptake into a subpopulation of astrocytes and CA3 neurons. Our results demonstrate that purinergic receptors other than the P2X(7)R mediate glutamate release that evokes SICs, whereas activation of a receptor that has features similar to the P2X(7)R, mediates a sustained glutamate efflux that generates a tonic current in CA1 neurons. This sustained glutamate efflux, which is potentiated under non-physiological conditions, may have important pathological actions in the brain.  相似文献   

12.
The potent pro-inflammatory cytokine, interleukin-1β (IL-1β), is synthesized as an inactive 33-kDa precursor (pro-IL-1β) and is processed by caspase 1 into the bioactive 17-kDa mature form. The P2X7 receptor, an ATP-gated cation channel, plays an essential role in caspase 1 activation, production and release of mature bioactive 17-kDa form. We recently reported ATP induces the release of an unconventional 20-kDa form of IL-1β (p20-IL-1β) from lipopolysaccharide-primed microglial cells. Emerging evidence suggests physiological relevance for p20-IL-1β; however, the underlying mechanisms for its production and release remain unknown. Here, we investigated the pathways involved in the ATP-induced production of p20-IL-1β using lipopolysaccharide-primed mouse microglial cells. The activation of P2X7 receptor by ATP triggered p20-IL-1β production under acidic extracellular conditions. ATP-induced p20-IL-1β production was blocked by pepstatin A, a potent inhibitor of the lysosomal protease, cathepsin D. The removal of extracellular Ca(2+) inhibited the p20-IL-1β production as well as ATP-induced cathepsin D release via lysosome exocytosis. The acidic extracellular pH also facilitated the dilatation of membrane pore after ATP stimulation. Since facilitation of pore dilatation results in cytolysis accompanied with cytoplasmic pro-IL-1β leakage, our data suggest the leaked pro-IL-1β is processed into p20-IL-1β by cathepsin D released after ATP stimulation under acidic extracellular conditions.  相似文献   

13.
The general structure of the P2X7 receptor (P2X7R) is similar to the structure of other P2X receptor family members, with the exception of its C terminus, which is the longest of this family. The P2X7R activates several intracellular signaling cascades, such as the calmodulin, mitogen-activated protein kinase and phospholipase D pathways. At low concentrations of ATP (micromolar range), P2X7R activation opens a cationic channel, similarly to other P2X receptors. However, in the presence of high concentrations of ATP (millimolar range), it opens a pathway that allows the passage of larger organic cations and anions. Here, we discuss both the structural characteristics of P2X7R related to its remarkable functions and the proposed mechanisms, including the dilation of the endogenous pore and the integration of another channel. In addition, we highlight the importance of P2X7R as a therapeutic target.  相似文献   

14.
Extracellular ATP acts as a potent agonist on cardiomyocytes, inducing a broad range of physiological responses via P2 purinoceptors. Its concentration in the interstitial space within the heart is elevated during ischemia or hypoxia due to its release from a number of cell types, including cardiomyocytes. However, the exact mechanism responsible for the release of ATP from cardiomyocytes during ischemia is not known. In this study, we investigated whether and how the release of ATP was strictly regulated during ischemia in cultured neonatal rat cardiomyocytes. Ischemia was mimicked by oxygen-glucose deprivation (OGD). Exposure of cardiomyocytes to OGD resulted in an increase in the concentration of extracellular ATP shortly after the onset of OGD (15 min), and the increase was reversed by treatment with blockers of maxi-anion channels. Unexpectedly, at 1 and 2h after the onset of OGD, the blocking of maxi-anion channels increased the concentration of extracellular ATP, and the increase was significantly suppressed by co-treatment with blockers of hemichannels, suggesting that ATP release via maxi-anion channels was involved in the suppression of ATP release via hemichannels during persistent OGD. Here we show the possibility that the release of ATP from cardiomyocytes was strictly regulated during ischemia by negative-feedback mechanisms; that is, maxi-anion channel-derived ATP-induced suppression of ATP release via hemichannels in cardiomyocytes.  相似文献   

15.
Our guiding hypothesis is that ecto-enzymatic conversion of extracellular ATP to adenosine activates A(1) adenosine receptors, reducing resistance to aqueous humor outflow and intraocular pressure. The initial step in this purinergic regulation is ATP release from outflow-pathway cells by mechanisms unknown. We measured similar ATP release from human explant-derived primary trabecular meshwork (TM) cells (HTM) and a human TM cell line (TM5). Responses to 21 inhibitors indicated that pannexin-1 (PX1) and connexin (Cx) hemichannels and P2X(7) receptors (P2RX(7) ) were comparably important in modulating ATP release induced by hypotonic swelling, whereas vesicular release was insignificant. Consistent with prior studies of PX1 activity in certain other cells, ATP release was lowered by the reducing agent dithiothreitol. Overexpressing PX1 in HEK293T cells promoted, while partial knockdown (KD) in both HEK293T and TM5 cells inhibited hypotonicity-activated ATP release. Additionally, KD reduced the pharmacologically defined contribution of PX1 and enhanced those of Cx and P2RX(7) . ATP release was also triggered by raising intracellular Ca(2+) activity with ionomycin after a prolonged lag time and was unaffected by the PX1 blocker probenecid, but nearly abolished by P2RX(7) antagonists. We conclude that swelling-stimulated ATP release from human TM cells is physiologically mediated by PX1 and Cx hemichannels and P2X(7) receptors, but not by vesicular release. PX1 appears not to be stimulated by intracellular Ca(2+) in TM cells, but can be modulated by oxidation-reduction state. The P2RX(7) -dependent component of swelling-activated release may be mediated by PX1 hemichannels or reflect apoptotic magnification of ATP release, either through itself and/or hemichannels.  相似文献   

16.
17.
Altered cytokine production in mice lacking P2X(7) receptors   总被引:31,自引:0,他引:31  
The P2X(7) receptor (P2X(7)R) is an ATP-gated ion channel expressed by monocytes and macrophages. To directly address the role of this receptor in interleukin (IL)-1 beta post-translational processing, we have generated a P2X(7)R-deficient mouse line. P2X(7)R(-/-) macrophages respond to lipopolysaccharide and produce levels of cyclooxygenase-2 and pro-IL-1 beta comparable with those generated by wild-type cells. In response to ATP, however, pro-IL-1 beta produced by the P2X(7)R(-/-) cells is not externalized or activated by caspase-1. Nigericin, an alternate secretion stimulus, promotes release of 17-kDa IL-1 beta from P2X(7)R(-/-) macrophages. In response to in vivo lipopolysaccharide injection, both wild-type and P2X(7)R(-/-) animals display increases in peritoneal lavage IL-6 levels but no detectable IL-1. Subsequent ATP injection to wild-type animals promotes an increase in IL-1, which in turn leads to additional IL-6 production; similar increases did not occur in ATP-treated, LPS-primed P2X(7)R(-/-) animals. Absence of the P2X(7)R thus leads to an inability of peritoneal macrophages to release IL-1 in response to ATP. As a result of the IL-1 deficiency, in vivo cytokine signaling cascades are impaired in P2X(7)R-deficient animals. Together these results demonstrate that P2X(7)R activation can provide a signal that leads to maturation and release of IL-1 beta and initiation of a cytokine cascade.  相似文献   

18.
P2X7 receptors trigger Ca2+‐dependent exocytotic glutamate release, but also function as a route for non‐exocytotic glutamate release from neurons or astrocytes. To gain an insight into the mechanisms involving the P2X7 receptor as a direct pathway for glutamate release, we compared the behavior of a full‐length rat P2X7 receptor, a truncated rat P2X7 receptor in which the carboxyl tail had been deleted, a rat P2X7 receptor with the 18‐amino acid cysteine‐rich motif of the carboxyl tail deleted, and a rat P2X2 receptor, all of which are expressed in HEK293 cells. We found that the P2X7 receptor function as a route for glutamate release was antagonized in a non‐competitive way by extracellular Mg2+, did not require the recruitment of pore‐forming molecules, and was dependent on the carboxyl tail. Indeed, the truncated P2X7 receptor and the P2X7 receptor with the deleted cysteine‐rich motif both lost their function as a pathway for glutamate release, while still evoking intracellular Ca2+ elevation. No glutamate efflux was observed through the P2X2 receptor. Notably, HEK293 cells (lacking the machinery for Ca2+‐dependent exocytosis), when transfected with P2X7 receptors, appear to be a suitable model for investigating the P2X7 receptor as a route for non‐exocytotic glutamate efflux.  相似文献   

19.
Focal mechanical stimulation of single neonatal mouse cardiac myocytes in culture induced intercellular Ca(2+) waves that propagated with mean velocities of approximately 14 micrometer/s, reaching approximately 80% of the cells in the field. Deletion of connexin43 (Cx43), the main cardiac gap junction channel protein, did not prevent communication of mechanically induced Ca(2+) waves, although the velocity and number of cells communicated by the Ca(2+) signal were significantly reduced. Similar effects were observed in wild-type cardiac myocytes treated with heptanol, a gap junction channel blocker. Fewer cells were involved in intercellular Ca(2+) signaling in both wild-type and Cx43-null cultures in the presence of suramin, a P(2)-receptor blocker; blockage was more effective in Cx43-null than in wild-type cells. Thus gap junction channels provide the main pathway for communication of slow intercellular Ca(2+) signals in wild-type neonatal mouse cardiac myocytes. Activation of P(2)-receptors induced by ATP release contributes a secondary, extracellular pathway for transmission of Ca(2+) signals. The importance of such ATP-mediated Ca(2+) signaling would be expected to be enhanced under ischemic conditions, when release of ATP is increased and gap junction channels conductance is significantly reduced.  相似文献   

20.
Accumulating evidence indicates that astroglial syncytium plays key role in normal and pathological brain functions. Astrocytes both in vitro and in situ respond to extracellular adenine-based nucleotides via the activation of P2 receptors. Massive release of ATP from neurons and glial cells occurs as a result of pathological conditions of the brain leading to neuroinflammation and involving P2X7 receptors. In this study, we investigated whether P2X7 stimulation on cultured cortical astrocytes promoted a differential activation of mitogen-activated protein kinases (MAPKs), and whether the second messenger arachidonic acid (AA), which is also a key modulator of neuroinflammation, affected the P2X7-mediated MAPK phosphorylation. The results show that the synthetic P2X7 receptor agonist 2′,3′-O-(4-benzoyl)benzoyl-ATP (BzATP), induced a concentration-dependent phosphorylation of MAPK ERK1/2, JNK and p38. Stimulation of ERK1/2, JNK and p38 phosphorylation was also obtained by pathophysiological levels of extracellularly applied AA. Interestingly, a robust potentiation of ERK1/2 phosphorylation was elicited by co-application of BzATP and AA, whereas no differences were observed in JNK or p38 phosphosignals. The kinases activation showed a differential dependence on the presence of extracellular Ca2+. The potentiation of BzATP-mediated ERK1/2 phosphorylation was also observed in human embryonic kidney cells (HEK293) stably transfected with rat P2X7, but not in HEK cells expressing truncated P2X7 receptor lacking the full cytoplasmic carboxy-terminal or in those carrying the structurally related rat P2X2. AA and BzATP synergism in ERK1/2 activation was abolished by cyclo-oxygenase and lipoxygenase pathway inhibitors.The result that ERK1/2-mediated transduction pathway is synergistically modulated by ATP and AA signalling depicts possible novel pharmacological targets for interfering with pathological activation of astroglial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号