首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

The role of inter-specific hybridisation is of particular importance in mosquito disease vectors for predicting the evolution of insecticide resistance. Two molecular forms of Anopheles gambiae s.s., currently recognized as S and M taxa, are considered to be incipient sibling species. Hybrid scarcity in the field was suggested that differentiation of M and S taxa is maintained by limited or absent gene flow. However, recent studies have revealed shared polymorphisms within the M and S forms, and a better understanding of the occurrence of gene flow is needed. One such shared polymorphism is the G119S mutation in the ace-1 gene (which is responsible for insecticide resistance); this mutation has been described in both the M and S forms of A. gambiae s.s.

Methods and Results

To establish whether the G119S mutation has arisen independently in each form or by genetic introgression, we analysed coding and non-coding sequences of ace-1 alleles in M and S mosquitoes from representative field populations. Our data revealed many polymorphic sites shared by S and M forms, but no diversity was associated with the G119S mutation. These results indicate that the G119S mutation was a unique event and that genetic introgression explains the observed distribution of the G119S mutation within the two forms. However, it was impossible to determine from our data whether the mutation occurred first in the S form or in the M form. Unexpectedly, sequence analysis of some resistant individuals revealed a duplication of the ace-1 gene that was observed in both A. gambiae s.s. M and S forms. Again, the distribution of this duplication in the two forms most likely occurred through introgression.

Conclusions

These results highlight the need for more research to understand the forces driving the evolution of insecticide resistance in malaria vectors and to regularly monitor resistance in mosquito populations of Africa.  相似文献   

2.

Background

Attempts over the last three decades to reconstruct the phylogenetic history of the Anopheles gambiae species complex have been important for developing better strategies to control malaria transmission.

Methodology

We used fingerprint genotyping data from 414 field-collected female mosquitoes at 42 microsatellite loci to infer the evolutionary relationships of four species in the A. gambiae complex, the two major malaria vectors A. gambiae sensu stricto (A. gambiae s.s.) and A. arabiensis, as well as two minor vectors, A. merus and A. melas.

Principal Findings

We identify six taxonomic units, including a clear separation of West and East Africa A. gambiae s.s. S molecular forms. We show that the phylogenetic relationships vary widely between different genomic regions, thus demonstrating the mosaic nature of the genome of these species. The two major malaria vectors are closely related and closer to A. merus than to A. melas at the genome-wide level, which is also true if only autosomes are considered. However, within the Xag inversion region of the X chromosome, the M and two S molecular forms are most similar to A. merus. Near the X centromere, outside the Xag region, the two S forms are highly dissimilar to the other taxa. Furthermore, our data suggest that the centromeric region of chromosome 3 is a strong discriminator between the major and minor malaria vectors.

Conclusions

Although further studies are needed to elucidate the basis of the phylogenetic variation among the different regions of the genome, the preponderance of sympatric admixtures among taxa strongly favor introgression of different genomic regions between species, rather than lineage sorting of ancestral polymorphism, as a possible mechanism.  相似文献   

3.

Background

Malaria and alcohol consumption both represent major public health problems. Alcohol consumption is rising in developing countries and, as efforts to manage malaria are expanded, understanding the links between malaria and alcohol consumption becomes crucial. Our aim was to ascertain the effect of beer consumption on human attractiveness to malaria mosquitoes in semi field conditions in Burkina Faso.

Methodology/Principal Findings

We used a Y tube-olfactometer designed to take advantage of the whole body odour (breath and skin emanations) as a stimulus to gauge human attractiveness to Anopheles gambiae (the primary African malaria vector) before and after volunteers consumed either beer (n = 25 volunteers and a total of 2500 mosquitoes tested) or water (n = 18 volunteers and a total of 1800 mosquitoes). Water consumption had no effect on human attractiveness to An. gambiae mosquitoes, but beer consumption increased volunteer attractiveness. Body odours of volunteers who consumed beer increased mosquito activation (proportion of mosquitoes engaging in take-off and up-wind flight) and orientation (proportion of mosquitoes flying towards volunteers'' odours). The level of exhaled carbon dioxide and body temperature had no effect on human attractiveness to mosquitoes. Despite individual volunteer variation, beer consumption consistently increased attractiveness to mosquitoes.

Conclusions/Significance

These results suggest that beer consumption is a risk factor for malaria and needs to be integrated into public health policies for the design of control measures.  相似文献   

4.
5.
6.
7.

Background

Long Lasting Insecticidal Nets (LLIN) and Indoor Residual Spraying (IRS) have both proven to be effective malaria vector control strategies in Africa and the new technology of insecticide treated durable wall lining (DL) is being evaluated. Sustaining these interventions at high coverage levels is logistically challenging and, furthermore, the increase in insecticide resistance in African malaria vectors may reduce the efficacy of these chemical based interventions. Monitoring of vector populations and evaluation of the efficacy of insecticide based control approaches should be integral components of malaria control programmes. This study reports on entomological survey conducted in 2011 in Bomi County, Liberia.

Methods

Anopheles gambiae larvae were collected from four sites in Bomi, Liberia, and reared in a field insectary. Two to five days old female adult An gambiae s.l. were tested using WHO tube (n = 2027) and cone (n = 580) bioassays in houses treated with DL or IRS. A sample of mosquitoes (n = 169) were identified to species/molecular form and screened for the presence of knock down resistance (kdr) alleles associated with pyrethroid resistance.

Results

Anopheles gambiae s.l tested were resistant to deltamethrin but fully susceptible to bendiocarb and fenithrothion. The corrected mortality of local mosquitoes exposed to houses treated with deltamethrin either via IRS or DL was 12% and 59% respectively, suggesting that resistance may affect the efficacy of these interventions. The presence of pyrethroid resistance was associated with a high frequency of the 1014F kdr allele (90.5%) although this mutation alone cannot explain the resistance levels observed.

Conclusion

High prevalence of resistance to deltamethrin in Bomi County may reduce the efficacy of malaria strategies relying on this class of insecticide. The findings highlight the urgent need to expand and sustain monitoring of insecticide resistance in Liberian malaria vectors, evaluate the effectiveness of existing interventions and develop appropriate resistance management strategies.  相似文献   

8.

Background

Alternative compounds which can complement pyrethroids on long-lasting insecticidal nets (LN) in the control of pyrethroid resistant malaria vectors are urgently needed. Pyriproxyfen (PPF), an insect growth regulator, reduces the fecundity and fertility of adult female mosquitoes. LNs containing a mixture of pyriproxyfen and pyrethroid could provide personal protection through the pyrethroid component and reduce vector abundance in the next generation through the sterilizing effect of pyriproxyfen.

Method

The efficacy of Olyset Duo, a newly developed mixture LN containing pyriproxyfen and permethrin, was evaluated in experimental huts in southern Benin against pyrethroid resistant Anopheles gambiae and Culex quinquefasciatus. Comparison was made with Olyset Net® (permethrin alone) and a LN with pyriproxyfen alone (PPF LN). Laboratory tunnel tests were performed to substantiate the findings in the experimental huts.

Results

Overall mortality of wild pyrethroid resistant An. gambiae s.s. was significantly higher with Olyset Duo than with Olyset Net (50% vs. 27%, P = 0.01). Olyset DUO was more protective than Olyset Net (71% vs. 3%, P<0.001). The oviposition rate of surviving blood-fed An. gambiae from the control hut was 37% whereas none of those from Olyset Duo and PPF LN huts laid eggs. The tunnel test results were consistent with the experimental hut results. Olyset Duo was more protective than Olyset Net in the huts against wild pyrethroid resistant Cx. quinquefasciatus although mortality rates of this species did not differ significantly between Olyset Net and Olyset Duo. There was no sterilizing effect on surviving blood-fed Cx. quinquefasciatus with the PPF-treated nets.

Conclusion

Olyset Duo was superior to Olyset Net in terms of personal protection and killing of pyrethroid resistant An. gambiae, and sterilized surviving blood-fed mosquitoes. Mixing pyrethroid and pyriproxyfen on a LN shows potential for malaria control and management of pyrethroid resistant vectors by preventing further selection of pyrethroid resistant phenotypes.  相似文献   

9.
10.
11.

Background

The siRNA and piRNA pathways have been shown in insects to be essential for regulation of gene expression and defence against exogenous and endogenous genetic elements (viruses and transposable elements). The vast majority of endogenous small RNAs produced by the siRNA and piRNA pathways originate from repetitive or transposable elements (TE). In D. melanogaster, TE-derived endogenous siRNAs and piRNAs are involved in genome surveillance and maintenance of genome integrity. In the medically relevant malaria mosquito Anopheles gambiae TEs constitute 12-16% of the genome size. Genetic variations induced by TE activities are known to shape the genome landscape and to alter the fitness in An. gambiae.

Results

Here, using bioinformatics approaches we analyzed the small RNA data sets from 6 libraries formally reported in a previous study and examined the expression of the mixed germline/somatic siRNAs and piRNAs produced in adult An. gambiae females. We characterized a large population of TE-derived endogenous siRNAs and piRNAs, which constitutes 56-60% of the total siRNA and piRNA reads in the analysed libraries. Moreover, we identified a number of protein coding genes producing gene-specific siRNAs and piRNAs that were generally expressed at much lower levels than the TE-associated small RNAs. Detailed sequence analysis revealed that An. gambiae piRNAs were produced by both “ping-pong” dependent (TE-associated piRNAs) and independent mechanisms (genic piRNAs). Similarly to D. melanogaster, more than 90% of the detected piRNAs were produced from TE-associated clusters in An. gambiae. We also found that biotic stress as blood feeding and infection with Plasmodium parasite, the etiological agent of malaria, modulated the expression levels of the endogenous siRNAs and piRNAs in An. gambiae.

Conclusions

We identified a large and diverse set of the endogenously derived siRNAs and piRNAs that share common and distinct aspects of small RNA expression across insect species, and inferred their impact on TE and gene activity in An. gambiae. The TE-specific small RNAs produced by both the siRNA and piRNA pathways represent an important aspect of genome stability and genetic variation, which might have a strong impact on the evolution of the genome and vector competence in the malaria mosquitoes.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1436-1) contains supplementary material, which is available to authorized users.  相似文献   

12.
13.
Gupta L  Noh JY  Jo YH  Oh SH  Kumar S  Noh MY  Lee YS  Cha SJ  Seo SJ  Kim I  Han YS  Barillas-Mury C 《PloS one》2010,5(11):e15410

Background

Apolipophorin-III (ApoLp-III) is known to play an important role in lipid transport and innate immunity in lepidopteran insects. However, there is no evidence of involvement of ApoLp-IIIs in the immune responses of dipteran insects such as Drosophila and mosquitoes.

Methodology/Principal Findings

We report the molecular and functional characterization of An. gambiae apolipophorin-III (AgApoLp-III). Mosquito ApoLp-IIIs have diverged extensively from those of lepidopteran insects; however, the predicted tertiary structure of AgApoLp-III is similar to that of Manduca sexta (tobacco hornworm). We found that AgApoLp-III mRNA expression is strongly induced in the midgut of An. gambiae (G3 strain) mosquitoes in response to Plasmodium berghei infection. Furthermore, immunofluorescence stainings revealed that high levels of AgApoLp-III protein accumulate in the cytoplasm of Plasmodium-invaded cells and AgApoLp-III silencing increases the intensity of P. berghei infection by five fold.

Conclusion

There are broad differences in the midgut epithelial responses to Plasmodium invasion between An. gambiae strains. In the G3 strain of An. gambiae AgApoLp-III participates in midgut epithelial defense responses that limit Plasmodium infection.  相似文献   

14.

Background

There is higher rate of R. felis infection among febrile patients than in healthy people in Sub-Saharan Africa, predominantly in the rainy season. Mosquitoes possess a high vectorial capacity and, because of their abundance and aggressiveness, likely play a role in rickettsial epidemiology.

Methodology/Principal Findings

Quantitative and traditional PCR assays specific for Rickettsia genes detected rickettsial DNA in 13 of 848 (1.5%) Anopheles mosquitoes collected from Côte d’Ivoire, Gabon, and Senegal. R. felis was detected in one An. gambiae molecular form S mosquito collected from Kahin, Côte d’Ivoire (1/77, 1.3%). Additionally, a new Rickettsia genotype was detected in five An. gambiae molecular form S mosquitoes collected from Côte d’Ivoire (5/77, 6.5%) and one mosquito from Libreville, Gabon (1/88, 1.1%), as well as six An. melas (6/67, 9%) mosquitoes collected from Port Gentil, Gabon. A sequence analysis of the gltA, ompB, ompA and sca4 genes indicated that this new Rickettsia sp. is closely related to R. felis. No rickettsial DNA was detected from An. funestus, An. arabiensis, or An. gambiae molecular form M mosquitoes. Additionally, a BLAST analysis of the gltA sequence from the new Rickettsia sp. resulted in a 99.71% sequence similarity to a species (JQ674485) previously detected in a blood sample of a Senegalese patient with a fever from the Bandafassi village, Kedougou region.

Conclusion

R. felis was detected for the first time in An. gambiae molecular form S, which represents the major African malaria vector. The discovery of R. felis, as well as a new Rickettsia species, in mosquitoes raises new issues with respect to African rickettsial epidemiology that need to be investigated, such as bacterial isolation, the degree of the vectorial capacity of mosquitoes, the animal reservoirs, and human pathogenicity.  相似文献   

15.

Background

Malaria parasites undergo complex developmental transitions within the mosquito vector. A commonly used laboratory model for studies of mosquito-malaria interaction is the rodent parasite, P. berghei. Anopheles funestus is a major malaria vector in sub-Saharan Africa but has received less attention than the sympatric species, Anopheles gambiae. The imminent completion of the A. funestus genome sequence will provide currently lacking molecular tools to describe malaria parasite interactions in this mosquito, but previous reports suggested that A. funestus is not permissive for P. berghei development.

Methods

An A. funestus population was generated in the laboratory by capturing female wild mosquitoes in Mali, allowing them to oviposit, and rearing the eggs to adults. These F1 progeny of wild mosquitoes were allowed to feed on mice infected with a fluorescent P. berghei strain. Fluorescence microscopy was used to track parasite development inside the mosquito, salivary gland sporozoites were tested for infectivity to mice, and parasite development in A. funestus was compared to A. gambiae.

Results

P. berghei oocysts were detectable on A. funestus midguts by 7 days post-infection. By 18–20 days post-infection, sporozoites had invaded the median and distal lateral lobes of the salivary glands, and hemocoel sporozoites were observed in the hemolymph. Mosquitoes were capable of infecting mice via bite, demonstrating that A. funestus supports the complete life cycle of P. berghei. In a random sample of wild mosquito genotypes, A. funestus prevalence of infection and the characteristics of parasite development were similar to that observed in A. gambiae-P. berghei infections.

Conclusions

The data presented in this study establish an experimental laboratory model for Plasmodium infection of A. funestus, an important vector of human malaria. Studying A. funestus-Plasmodium interactions is now feasible in a laboratory setting. This information lays the groundwork for exploitation of the awaited genome sequence of A. funestus.  相似文献   

16.

Introduction

High coverage of conventional and long-lasting insecticide treated nets (ITNs and LLINs) in parts of E Africa are associated with reductions in local malaria burdens. Shifts in malaria vector species ratio have coincided with the scale-up suggesting that some species are being controlled by ITNs/LLINs better than others.

Methods

Between 2005–2006 six experimental hut trials of ITNs and LLINs were conducted in parallel at two field stations in northeastern Tanzania; the first station was in Lower Moshi Rice Irrigation Zone, an area where An. arabiensis predominates, and the second was in coastal Muheza, where An. gambiae and An. funestus predominate. Five pyrethroids and one carbamate insecticide were evaluated on nets in terms of insecticide-induced mortality, blood-feeding inhibition and exiting rates.

Results

In the experimental hut trials mortality of An. arabiensis was consistently lower than that of An. gambiae and An. funestus. The mortality rates in trials with pyrethroid-treated nets ranged from 25–52% for An. arabiensis, 63–88% for An. gambiae s.s. and 53–78% for An. funestus. All pyrethroid-treated nets provided considerable protection for the occupants, despite being deliberately holed, with blood-feeding inhibition (percentage reduction in biting rates) being consistent between species. Veranda exiting rates did not differ between species. Percentage mortality of mosquitoes tested in cone bioassays on netting was similar for An. gambiae and An. arabiensis.

Conclusions

LLINs and ITNs treated with pyrethroids were more effective at killing An. gambiae and An. funestus than An. arabiensis. This could be a major contributing factor to the species shifts observed in East Africa following scale up of LLINs. With continued expansion of LLIN coverage in Africa An. arabiensis is likely to remain responsible for residual malaria transmission, and species shifts might be reported over larger areas. Supplementary control measures to LLINs may be necessary to control this vector species.  相似文献   

17.

Background

Association studies are a promising way to uncover the genetic basis of complex traits in wild populations. Data on population stratification, linkage disequilibrium and distribution of variant effect-sizes for different trait-types are required to predict study success but are lacking for most taxa. We quantified and investigated the impacts of these key variables in a large-scale association study of a strongly selected trait of medical importance: pyrethroid resistance in the African malaria vector Anopheles gambiae.

Methodology/Principal Findings

We genotyped ≈1500 resistance-phenotyped wild mosquitoes from Ghana and Cameroon using a 1536-SNP array enriched for candidate insecticide resistance gene SNPs. Three factors greatly impacted study power. (1) Population stratification, which was attributable to co-occurrence of molecular forms (M and S), and cryptic within-form stratification necessitating both a partitioned analysis and genomic control. (2) All SNPs of substantial effect (odds ratio, OR>2) were rare (minor allele frequency, MAF<0.05). (3) Linkage disequilibrium (LD) was very low throughout most of the genome. Nevertheless, locally high LD, consistent with a recent selective sweep, and uniformly high ORs in each subsample facilitated significant direct and indirect detection of the known insecticide target site mutation kdr L1014F (OR≈6; P<10−6), but with resistance level modified by local haplotypic background.

Conclusion

Primarily as a result of very low LD in wild A. Gambiae, LD-based association mapping is challenging, but is feasible at least for major effect variants, especially where LD is enhanced by selective sweeps. Such variants will be of greatest importance for predictive diagnostic screening.  相似文献   

18.
19.

Background

An accurate method for detecting malaria parasites in the mosquito’s vector remains an essential component in the vector control. The Enzyme linked immunosorbent assay specific for circumsporozoite protein (ELISA-CSP) is the gold standard method for the detection of malaria parasites in the vector even if it presents some limitations. Here, we optimized multiplex real-time PCR assays to accurately detect minor populations in mixed infection with multiple Plasmodium species in the African malaria vectors Anopheles gambiae and Anopheles funestus.

Methods

Complementary TaqMan-based real-time PCR assays that detect Plasmodium species using specific primers and probes were first evaluated on artificial mixtures of different targets inserted in plasmid constructs. The assays were further validated in comparison with the ELISA-CSP on 200 field caught Anopheles gambiae and Anopheles funestus mosquitoes collected in two localities in southern Benin.

Results

The validation of the duplex real-time PCR assays on the plasmid mixtures demonstrated robust specificity and sensitivity for detecting distinct targets. Using a panel of mosquito specimen, the real-time PCR showed a relatively high sensitivity (88.6%) and specificity (98%), compared to ELISA-CSP as the referent standard. The agreement between both methods was “excellent” (κ = 0.8, P<0.05). The relative quantification of Plasmodium DNA between the two Anopheles species analyzed showed no significant difference (P = 0, 2). All infected mosquito samples contained Plasmodium falciparum DNA and mixed infections with P. malariae and/or P. ovale were observed in 18.6% and 13.6% of An. gambiae and An. funestus respectively. Plasmodium vivax was found in none of the mosquito samples analyzed.

Conclusion

This study presents an optimized method for detecting the four Plasmodium species in the African malaria vectors. The study highlights substantial discordance with traditional ELISA-CSP pointing out the utility of employing an accurate molecular diagnostic tool for detecting malaria parasites in field mosquito populations.  相似文献   

20.

Background

Indoor residual spraying (IRS) is widely used for malaria transmission control in sub-Saharan Africa. Resistance to pyrethroids in the mosquito Anopheles gambiae is a growing problem. There is an urgent need to develop long-lasting alternative insecticides to reduce selection pressure for pyrethroid resistance and to provide control with a single IRS application in countries with long transmission seasons.

Methods

Two capsule suspension formulations (CS) of the organophosphate pirimiphos methyl were evaluated as IRS treatments in experimental huts in an area of Benin where the mosquitoes Anopheles gambiae and Culex quinquefasciatus are resistant to pyrethroids but susceptible to organophosphates. The CS formulations were tested alongside an emulsifiable concentrate (EC) formulation of pirimiphos methyl and a CS formulation of the pyrethroid lambdacyhalothrin.

Results

The two CS formulations of pirimiphos methyl gave prolonged control of An. gambiae and Cx. quinquefasciatus. In cement huts application rates of 0.5 g/m2 induced high mortality of An. gambiae for almost a year: overall mortality rates 87% (95% CI 82–91%) and 92% (95% CI 88–94%). In mud huts application rates of 1 g/m2 induced high mortality of An. gambiae for 10 months: overall mortality rates 75% (95% CI 69–81%) and 76% (95% CI 68–83%). The EC formulation of pirimiphos methyl failed to control An. gambiae two months after spraying. The pyrethroid lambdacyhalothrin demonstrated prolonged residual activity in bioassay tests but failed to control pyrethroid resistant An. gambiae that entered the huts. Pirimiphos methyl CS was highly active against Culex quinquefasciatus and gave control for 10 months in cement huts and 6 months in mud huts.

Conclusion

Pirimiphos methyl CS (Actellic 300 CS) applied at 1 g/m2 shows great promise for providing prolonged control of pyrethroid-resistant An gambiae and for delaying pyrethroid resistance. An alternative to DDT, giving year-round transmission control in sub-Saharan Africa is now a realistic prospect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号