首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microorganisms capable of producing xylitol from D-arabitol were screened for. Of the 420 strains tested, three bacteria, belonging to the genera Acetobacter and Gluconobacter, produced xylitol from D-arabitol when intact cells were used as the enzyme source. Among them, Gluconobacter oxydans ATCC 621 produced 29.2 g/l xylitol from 52.4 g/l D-arabitol after incubation for 27 h. The production of xylitol was increased by the addition of 5% (v/v) ethanol and 5 g/l D-glucose to the reaction mixture. Under these conditions, 51.4 g/l xylitol was obtained from 52.4 g/l D-arabitol, a yield of 98%, after incubation for 27 h. This conversion consisted of two successive reactions, conversion of D-arabitol to D-xylulose by a membrane-bound D-arabitol dehydrogenase, and conversion of D-xylulose to xylitol by a soluble NAD-dependent xylitol dehydrogenase. Use of disruptants of the membrane-bound alcohol dehydrogenase genes suggested that NADH was generated via NAD-dependent soluble alcohol dehydrogenase.  相似文献   

2.
Conversion of pentoses by yeasts   总被引:2,自引:0,他引:2  
The utilization and conversion of D-xylose, D-xylulose, L-arabinose, and xylitol by yeast strains have been investigated with the following results: (1) The majority of yeasts tested utilize D-xylose and produce polyols, ethanol, and organic acids. The type and amount of products formed varies with the yeast strains used. The most commonly detected product is xylitol. (2)The majority of yeasts tested utilize D-xylulose aerobically and fermentatively to produce ethanol, xylitol, D-arabitol, and organic acids. The type and amount of products varies depending upon the yeast strains used. (3) Xylitol is a poor carbon and energy source for most yeasts tested. Some yeast strains produce small amounts of ethanol from xylitol. (4) Most yeast strains utilize L-arabinose, and L-arabitol is the common product. Small amounts of ethanol are also produced by some yeast strains. (5) Of the four substrates examined, D-xylulose was the perferred substrate, followed by D-xylose, L-arabinose, and xylitol. (6) Mutant yeast strains that exhibit different metabolic product patterns can be induced and isolated from Candida sp. Saccharomyces cerevisiae, and other yeasts. These mutant strains can be used for ethanol production from D-xylose as well as for the study of metabolic regulation of pentose utilization in yeasts.  相似文献   

3.
Summary With pure D-xylulose as substrate, Schizosaccharomyces pombe produced ethanol in good yield with low quantities of polyols as by-products. Saccharomyces cerevisiae was found to be a good alcohol producer in glucose but not as good in D-xylulose. Other yeast cultures converted D-xylulose to xylitol, or D-arabitol or both, with lower ethanol yield.  相似文献   

4.
氧化葡萄糖酸杆菌Gluconobacter oxydans NH-10能够转化D-阿拉伯糖醇,经木酮糖生成木糖醇,但该菌中存在的NAD+型D-阿拉伯糖醇脱氢酶可将中间产物D-木酮糖还原成D-阿拉伯糖醇,从而影响木糖醇的积累.利用同源重组基因敲除的方法构建G.oxydans NH-10 NAD+型D-阿拉伯糖醇脱氢酶( sArDH)基因敲除突变株.PCR结果显示:sArDH基因在1株重组菌中完全被卡那抗性基因替代,表明sArDH基因敲除突变体构建成功.生物学特性鉴定显示:突变菌在菌落形态,生长状态方面与原始菌无明显差异.静息细胞转化D-阿拉伯糖醇结果显示,突变株不存在还原D-木酮糖产D-阿拉伯糖醇的逆反应,终产物木糖醇的产量有所提高.  相似文献   

5.
Mycobacterium smegmatis transformed D-xylulose to xylitol in washed cell reactions under aerobic and anaerobic conditions. The yield of xylitol reached about 70% in anaerobic conditions (in N2) by cells grown on media containing xylitol or D-mannitol. Cells immobilized with Ca-alginate had almost the same activity of xylitol production as washed cells.Xylitol was produced from D-xylose using commercial immobilized D-xylose isomerase from Bacillus coagulans and immobilized cells of M. smegmatis. From 10 g of D-xylose, 4 g of xylitol was produced and 5 g of D-xylose remained in the reaction mixture; no D-xylulose was detected.  相似文献   

6.
The biotransformation of D-arabitol into xylitol was investigated with focus on the conversion of D-xylulose into xylitol. This critical conversion was accomplished using Escherichia coli to co-express a xylitol dehydrogenase gene from Gluconobacter oxydans and a cofactor regeneration enzyme gene which was a glucose dehydrogenase gene from Bacillus subtilis for system 1 and an alcohol dehydrogenase gene from G. oxydans for system 2. Both systems efficiently converted D-xylulose into xylitol without the addition of expensive NADH. Approximately 26.91 g/L xylitol was obtained from around 30 g/L D-xylulose within system 1 (E. coli Rosetta/Duet-xdh-gdh), with a 92% conversion yield, somewhat higher than that of system 2 (E. coli Rosetta/Duet-xdh-adh, 24.9 g/L, 85.2%). The xylitol yields for both systems were more than 3-fold higher compared to that of the G. oxydans NH-10 cells (7.32 g/L). The total turnover number (TTN), defined as the number of moles of xylitol formed per mole of NAD(+), was 32,100 for system 1 and 17,600 for system 2. Compared with that of G. oxydans NH-10, the TTN increased by 21-fold for system 1 and 11-fold for system 2, hence, the co-expression systems greatly enhanced the NADH supply for the conversion, benefiting the practical synthesis of xylitol.  相似文献   

7.
Xylitol dehydrogenase (XDH) was purified from the cytoplasmic fraction of Gluconobacter oxydans ATCC 621. The purified enzyme reduced D-xylulose to xylitol in the presence of NADH with an optimum pH of around 5.0. Based on the determined NH2-terminal amino acid sequence, the gene encoding xdh was cloned, and its identity was confirmed by expression in Escherichia coli. The xdh gene encodes a polypeptide composed of 262 amino acid residues, with an estimated molecular mass of 27.8 kDa. The deduced amino acid sequence suggested that the enzyme belongs to the short-chain dehydrogenase/reductase family. Expression plasmids for the xdh gene were constructed and used to produce recombinant strains of G. oxydans that had up to 11-fold greater XDH activity than the wild-type strain. When used in the production of xylitol from D-arabitol under controlled aeration and pH conditions, the strain harboring the xdh expression plasmids produced 57 g/l xylitol from 225 g/l D-arabitol, whereas the control strain produced 27 g/l xylitol. These results demonstrated that increasing XDH activity in G. oxydans improved xylitol productivity.  相似文献   

8.
Klebsiella pneumoniae PRL-R3 has inducible catabolic pathways for the degradation of ribitol and D-arabitol but cannot utilize xylitol as a growth substrate. A mutation in the rbtB regulatory gene of the ribitol operon permits the constitutive synthesis of the ribitol catabolic enzymes and allows growth on xylitol. The evolved xylitol catabolic pathway consists of an induced D-arabitol permease system that also transports xylitol, a constitutively synthesized ribitol dehydrogenase that oxidizes xylitol at the C-2 position to produce D-xylulose, and an induced D-xylulokinase from either the D-arabitol or D-xylose catabolic pathway. To investigate the potential of K. pneumoniae to evolve a different xylitol catabolic pathway, strains were constructed which were unable to synthesize ribitol dehydrogenase or either type of D-xylulokinase but constitutively synthesized the D-arabitol permease system. These strains had an inducible L-xylulokinase; therefore, the evolution of an enzyme which oxidized xylitol at the C-4 position to L-xylulose would establish a new xylitol catabolic pathway. Four independent xylitol-utilizing mutants were isolated, each of which had evolved a xylitol-4-dehydrogenase activity. The four dehydrogenases appeared to be identical because they comigrated during nondenaturing polyacrylamide gel electrophoresis. This novel xylitol dehydrogenase was constitutively synthesized, whereas L-xylulokinase remained inducible. Transductional analysis showed that the evolved dehydrogenase was not an altered ribitol or D-arabitol dehydrogenase and that the evolved dehydrogenase structural gene was not linked to the pentitol gene cluster. This evolved dehydrogenase had the highest activity with xylitol as a substrate, a Km for xylitol of 1.4 M, and a molecular weight of 43,000.  相似文献   

9.
D-Xylulose and L-xylulose were produced biologically by the oxidation of a corresponding pentitol. A Klebsiella pneumoniae mutant was constructed for the oxidation of D-arabitol to D-xylulose. This mutant constitutively synthesized the D-arabitol permease system and D-arabitol dehydrogenase but was unable to produce the D-xylulokinase of the D-arabitol pathway or the D-xylose isomerase and D-xylulokinase of the D-xylose pathway. An Erwinia uredovora mutant which constitutively synthesized a novel xylitol-4-dehydrogenase but could not synthesize L-xylulokinase was used for the oxidation of xylitol to L-xylulose. Washed cell suspensions of either mutant incubated with 0.5% pentitol would oxidize 60 to 65% of the pentitol to the corresponding ketopentose in 18 h and excrete the ketopentose into the medium. Ketopentoses were rapidly purified from the remaining pentitol by hydroxyl affinity chromatography.  相似文献   

10.
D-Xylulose and L-xylulose were produced biologically by the oxidation of a corresponding pentitol. A Klebsiella pneumoniae mutant was constructed for the oxidation of D-arabitol to D-xylulose. This mutant constitutively synthesized the D-arabitol permease system and D-arabitol dehydrogenase but was unable to produce the D-xylulokinase of the D-arabitol pathway or the D-xylose isomerase and D-xylulokinase of the D-xylose pathway. An Erwinia uredovora mutant which constitutively synthesized a novel xylitol-4-dehydrogenase but could not synthesize L-xylulokinase was used for the oxidation of xylitol to L-xylulose. Washed cell suspensions of either mutant incubated with 0.5% pentitol would oxidize 60 to 65% of the pentitol to the corresponding ketopentose in 18 h and excrete the ketopentose into the medium. Ketopentoses were rapidly purified from the remaining pentitol by hydroxyl affinity chromatography.  相似文献   

11.
To improve yield and productivity of ketose in NAD-dependent polyol oxidations, two enzymatic methods for regeneration of the oxidized coenzyme form have been compared and partly optimized for the batch conversion of xylitol into D-xylulose and D-sorbitol into D-fructose. Polyol oxidation was catalyzed by xylitol dehydrogenase from the yeast Galactocandida mastotermitis. Reduction of OM2 (apparently to H2O) by partially purified NADH dehydrogenase complex from Corynebacterium callunae could drive alcohol oxidations better than reductive amination of EaL-ketoglutarate by glutamate dehydrogenase. A fed-batch procedure was developed that overcame inhibition of glutamate dehydrogenase by α-ketoglutarate (Kis 25 mM), thus increasing the productivity of ketose almost 2-fold. For D-fructose production from D-sorbitol (0.1-0.3M) yields of < 90% and productivities up to 1.30g/(L.h) have been obtained. High conversion of up to 50g/L xylitol into D-xylulose for which xylitol dehydrogenase exhibits an about 80-fold higher specificity constant than for D-fructose required complexation of the ketose product with borate. In comparison with reductive amination by glutamate dehydrogenase, advantages of using NADH-dehydrogenase catalyzed regeneration of NAD for ketose production are (i) avoidance of byproduct formation, (ii) cheaper substrate (02 versus α-ketoglutarate), and (iii) easier process control (batch versus fed-batch).  相似文献   

12.
汉逊德巴利酵母发酵葡萄糖生产D-阿拉伯糖醇   总被引:1,自引:0,他引:1  
从378株耐高渗酵母中,筛选到1株由葡萄糖发酵高产D-阿拉伯糖醇的酵母。通过生理生化和分子生物学的鉴定,证实该菌株为Debaryomyces hansenii,保藏编号CICIM Y 0504。研究该酵母摇瓶发酵的主要影响因素,确定其摇瓶发酵条件为:葡萄糖200 g/L,酵母膏10 g/L,初始pH值3,装液量20 mL/250 mL,温度30℃。在此条件下发酵120 h,D-阿拉伯糖醇浓度达90.37 g/L,转化率45.18%。在15 L发酵罐对该酵母进行扩大培养,结果表明,初始葡萄糖浓度200 g/L的分批发酵产D-阿拉伯糖醇64.07 g/L,转化率33.94%;葡萄糖浓度控制在30~50 g/L的分批补料发酵产D-阿拉伯糖醇125 g/L,转化率37.5%。研究结果对葡萄糖发酵生产D-阿拉伯糖醇工业化的实现具有重要启示。  相似文献   

13.
Six different yeasts were used to study their metabolism of glucose and xylose, and mainly their capacity to produce ethanol and xylitol. The strains used were Candida guilliermondii, Debaryomyces hansenii, Saccharomyces cerevisiae, Kluyveromyces marxianus, Meyerozyma guilliermondii and Clavispora lusitaniae, four isolated from a rural mezcal fermentation facility. All of them produced ethanol when the substrate was glucose. When incubated in a medium containing xylose instead of glucose, only K. marxianus and M. guilliermondii were able to produce ethanol from xylose. On the other hand, all of them could produce some xylitol from xylose, but the most active in this regard were K. marxianus, M. guilliermondii, C. lusitaniae, and C. guilliermondii with the highest amount of xylitol produced. The capacity of all strains to take up glucose and xylose was also studied. Xylose, in different degrees, produced a redox imbalance in all yeasts. Respiration capacity was also studied with glucose or xylose, where C. guilliermondii, D. hansenii, K. marxianus and M. guilliermondii showed higher cyanide resistant respiration when grown in xylose. Neither xylose transport nor xylitol production were enhanced by an acidic environment (pH 4), which can be interpreted as the absence of a proton/sugar symporter mechanism for xylose transport, except for C. lusitaniae. The effects produced by xylose and their magnitude depend on the background of the studied yeast and the conditions in which these are studied.  相似文献   

14.
Growth of yeasts on D-xylulose 1   总被引:3,自引:0,他引:3  
Nine of eleven yeasts of different species or genera grew in the presence of air on the intermediate of D-xylose catabolism, D-xylulose (D-threo-pentulose). Growth on this substrate was efficient as judged by the optical density in stationary phase being generally similar to that after growth on glucose. Yeasts which grew on D-xylose also did so on D-xylulose, but among those which grew are included several which utilise neither D-xylose nor xylitol: Saccharomyces cerevisiae, Saccharomyces carlsbergensis, and Schizosaccharomyces pombe. Since catabolism of a sugar generally requires an initial phosphorylation step, growth of these strains suggests that they contain an enzyme which can function as a D-xylulose kinase. The D-xylulose-5-phosphate formed thereby is considered to enter the pentose-phosphate pathway. Glucose-grown inocula of S. carlsbergensis and Schizosaccharomyces pombe, and of several other yeasts, began to grow logarithmically when placed on D-xylulose with no apparent delay, or one which was minimal, suggesting that the D-xylulose kinase was already present in such cells, or was rapidly induced. Petites of S. cerevisiae did not grow on D-xylulose indicating that, in this species, mitochondria are involved in its utilisation.  相似文献   

15.
Xylitol is industrially synthesized by chemical reduction of d-xylose, which is more expensive than glucose. Thus, there is a growing interest in the production of xylitol from a readily available and much cheaper substrate, such as glucose. The commonly used yeast Pichia pastoris strain GS115 was shown to produce d-arabitol from glucose, and the derivative strain GS225 was obtained to produce twice amount of d-arabitol than GS115 by adaptive evolution during repetitive growth in hyperosmotic medium. We cloned the d-xylulose-forming d-arabitol dehydrogenase (DalD) gene from Klebsiella pneumoniae and the xylitol dehydrogenase (XDH) gene from Gluconobacter oxydans. Recombinant P. pastoris GS225 strains with the DalD gene only or with both DalD and XDH genes could produce xylitol from glucose in a single-fermentation process. Three-liter jar fermentation results showed that recombinant P. pastoris cells with both DalD and XDH converted glucose to xylitol with the highest yield of 0.078 g xylitol/g glucose and productivity of 0.29 g xylitol/L h. This was the first report to convert xylitol from glucose by the pathway of glucose–d-arabitol–d-xylulose–xylitol in a single process. The recombinant yeast could be used as a yeast cell factory and has the potential to produce xylitol from glucose.  相似文献   

16.
In Rhizobium trifolii 7000, the polyols myo-inositol, xylitol, ribitol, D-arabitol, D-mannitol, D-sorbital, and dulcitol are metabolized by inducible nicotinamide adenine dinucleotide-dependent polyol dehydrogenases. Five different polyol dehydrogenases were recognized: inositol dehydrogenase, specific for inositil; ribitol dehydrogenase, specific for ribitol; D-arabitol dehydrogenase, which oxidized D-arabitol, D-mannitol, and D-sorbitol; xylitol dehydrogenase, which oxidized xylitol and D-sorbitol; and dulcitol dehydrogenase, which oxidized dulcitol, ribitol, xylitol, and sorbitol. Apart from inositil and xylitol, all of the polyols induced more than one polyol dehydrogenase and polyol transport system, but the heterologous polyol dehydrogenases and polyol transport systems were not coordinately induced by a particular polyol. With the exception of xylitol, all of the polyols tested served as growth substrates. A mutant of trifolii 7000, which was constitutive for dulcitol dehydrogenase, could also grow on xylitol.  相似文献   

17.
Production of ethanol and xylitol from lignocellulosic hydrolysates is an alternative to the traditional production of ethanol in utilizing biomass. However, the conversion efficiency of xylose to xylitol is restricted by glucose repression, causing a low xylitol titer. To this end, we cloned genes CDT-1 (encoding a cellodextrin transporter) and gh1-1 (encoding an intracellular β-glucosidase) from Neurospora crassa and XYL1 (encoding a xylose reductase that converts xylose into xylitol) from Scheffersomyces stipitis into Saccharomyces cerevisiae, enabling simultaneous production of ethanol and xylitol from a mixture of cellobiose and xylose (main components of lignocellulosic hydrolysates). We further optimized the expression levels of CDT-1 and XYL1 by manipulating their promoters and copy-numbers, and constructed an engineered S. cerevisiae strain (carrying one copy of PGK1p-CDT1 and two copies of TDH3p-XYL1), which showed an 85.7% increase in xylitol production from the mixture of cellobiose and xylose than that from the mixture of glucose and xylose. Thus, we achieved a balanced co-fermentation of cellobiose (0.165 g/L/h) and xylose (0.162 g/L/h) at similar rates to co-produce ethanol (0.36 g/g) and xylitol (1.00 g/g).  相似文献   

18.
Xylitol production from D-arabitol by the membrane and soluble fractions of Gluconobacter oxydans was investigated. Two proteins in the soluble fraction were found to have the ability to increase xylitol production. Both of these xylitol-increasing factors were purified, and on the basis of their NH(2)-terminal amino acid sequences the genes encoding both of the factors were cloned. Expression of the cloned genes in Escherichia coli showed that one of the xylitol-increasing factors is the bifunctional enzyme transaldolase/glucose-6-phosphate isomerase, and the other is ribulokinase. Using membrane and soluble fractions of G. oxydans, 3.8 g/l of xylitol were produced from 10 g/l D-arabitol after incubation for 40 h, and addition of purified recombinant transaldolase/glucose-6-phosphate isomerase or ribulokinase increased xylitol to 5.4 g/l respectively, confirming the identity of the xylitol-increasing factors.  相似文献   

19.

Background

This study is the first to investigate the Brazilian Amazonian Forest to identify new D-xylose-fermenting yeasts that might potentially be used in the production of ethanol from sugarcane bagasse hemicellulosic hydrolysates.

Methodology/Principal Findings

A total of 224 yeast strains were isolated from rotting wood samples collected in two Amazonian forest reserve sites. These samples were cultured in yeast nitrogen base (YNB)-D-xylose or YNB-xylan media. Candida tropicalis, Asterotremella humicola, Candida boidinii and Debaryomyces hansenii were the most frequently isolated yeasts. Among D-xylose-fermenting yeasts, six strains of Spathaspora passalidarum, two of Scheffersomyces stipitis, and representatives of five new species were identified. The new species included Candida amazonensis of the Scheffersomyces clade and Spathaspora sp. 1, Spathaspora sp. 2, Spathaspora sp. 3, and Candida sp. 1 of the Spathaspora clade. In fermentation assays using D-xylose (50 g/L) culture medium, S. passalidarum strains showed the highest ethanol yields (0.31 g/g to 0.37 g/g) and productivities (0.62 g/L·h to 0.75 g/L·h). Candida amazonensis exhibited a virtually complete D-xylose consumption and the highest xylitol yields (0.55 g/g to 0.59 g/g), with concentrations up to 25.2 g/L. The new Spathaspora species produced ethanol and/or xylitol in different concentrations as the main fermentation products. In sugarcane bagasse hemicellulosic fermentation assays, S. stipitis UFMG-XMD-15.2 generated the highest ethanol yield (0.34 g/g) and productivity (0.2 g/L·h), while the new species Spathaspora sp. 1 UFMG-XMD-16.2 and Spathaspora sp. 2 UFMG-XMD-23.2 were very good xylitol producers.

Conclusions/Significance

This study demonstrates the promise of using new D-xylose-fermenting yeast strains from the Brazilian Amazonian Forest for ethanol or xylitol production from sugarcane bagasse hemicellulosic hydrolysates.  相似文献   

20.
Xylitol is known to cause hepatic ATP catabolism by inducing the trapping of Pi in the form of glycerol 3-P as a consequence of an increase in the NADH:NAD+ ratio, resulting from the oxidation of xylitol to D-xylulose. The question was therefore raised whether D-xylulose also depletes hepatic ATP. In isolated rat hepatocytes, 5 mM D-xylulose decreased ATP by 80% within 5 min compared to 40% with 5 mM xylitol. Intracellular Pi decreased by 70% within the same time interval with both compounds, but was restored three-fold faster with D-xylulose. The rate of utilization of D-xylulose reached 5 mumol.min-1.g-1 of cells, as compared with 1.5 for xylitol, indicating that reduction of xylitol into D-xylulose is a rate-limiting step in the metabolism of the polyol. D-Xylulose barely modified the concentration of glycerol 3-P but increased xylulose 5-P from 0.02 to 0.5 mumol/g within 5 min. The main cause of the ATP- and Pi-depleting effects of D-xylulose was found to be an accumulation of sedoheptulose 7-P from a basal value of 0.1 to 5 mumol/g of cells after 10 min. Ribose 5-P increased from 0.03 to 0.5 mumol/g at 5 min. Ribose 1-P also accumulated, albeit outside of the cells. This extracellular accumulation can be explained by the release of intracellular purine nucleoside phosphorylase from damaged hepatocytes acting on inosine that had diffused out of the cells. Smaller increases in the concentrations of sedoheptulose 7-P and pentose phosphates were recorded after incubations of the cells with xylitol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号