首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The kinetics of inactivation and reactivation of rabbit skeletal muscle phosphofructokinase have been studied as a function of pH and enzyme concentration at constant temperature in phosphate buffer. From the enzyme concentration dependence, we conclude that the minimal mechanism for inactivation involves a protonation step followed by isomerization to an inactive form and then dissociation to a species of one-half the molecular weight. Other data indicate a subsequent isomerization of the dissociated form. The pH and temperature dependence of the inactivation process shows that it is controlled by ionizable groups, and that the apparent pK for these groups is temperature-dependent in such a way as to make the enzyme show the characteristic of cold lability below pH 7. Reactivation of the inactive enzyme occurs by a kinetically different pathway involving deprotonation of an inactive, dissociated form to a form which may either isomerize to another inactive form, or dimerize to the active enzyme. A general mechanism is postulated in which the inactivation and reactivation processes are different aspects of the same mechanism. This mechanism assumes four species (two containing four subunits and two containing two subunits) each of which can exist in a protonated and unprotonated form. Inactivation or reactivation induced by changes in pH or temperature reflect the kinetic establishment of a new steady state between these forms. How the apparent pK values which control the distribution of the enzyme between protonated and unprotonated forms describe the pH-dependent characteristics of the enzyme is discussed in terms of the proposed mechanism.  相似文献   

2.
《Insect Biochemistry》1987,17(1):77-83
We purified a proteolytic enzyme from pupae of the blowfly Aldrichina grahami. The purification procedure consisted of fractionation with ammonium sulfate, ethanol treatment, affinity chromatography on Con A-Sepharose, and ion exchange chromatography on CM-Sepharose CL-6B. The purified enzyme was very labile. The lability was reduced by the use of MES buffer containing 10% ethanol, which enabled us to purify the enzyme to homogeneity. The lower the polarity of the alcohol added, the more stable the enzyme became. The enzyme had a molecular weight of 41,000, an optimum pH of 3.5, high susceptibility to pepstatin and two pI forms of 5.4 and 6.2. This enzyme resembled cathepsin D, a lysosomal proteinase.  相似文献   

3.
Alkaline isomerization of ferricytochrome C from Euglena gracilis   总被引:1,自引:0,他引:1  
Euglena gracilis ferricytochrome c has a small absorption maximum at about 700 nm having an extinction of 850 ± 10 M?1cm?1. This absorption band is analogous to the more commonly found maximum at 695 nm which is observed in ferricytochromes from other sources and which is characteristic of ligation of methionine 80 with the heme ion. The 700 nm band disappears upon raising the pH to 11 giving a transition involving a single proton having an apparent pK of about 10. These results demonstrate that the phenolic ionization of tyrosine 67 is not required to trigger the alkaline isomerization of ferricytochromes c since Euglena cytochrome has a phenylalanine residue at position 67.  相似文献   

4.
5.
The effects of pH on catalysis and activation characteristics of spinach ribulose 1,5-bisphosphate (RuBP) carboxylase were examined at air level of CO2. Catalysis at limiting CO2 was independent of pH over the range of pH 8.2 to 8.8 However, the kinetics of activation and the apparent equilibrium between the activated and inactivated forms of the enzyme were strongly dependent upon the pH and the presence or absence of the substrate RuBP. When incubated at air level of CO2 at pH 8.2 in the absence of RuBP, the enzyme activation state was approximately 75% of that achieved with saturating CO2 at that pH. The extent of activation increased with pH reaching 100% at pH values of 8.6 or higher. Adding RuBP to the activation medium after equilibrium activation state had been established decreased the apparent equilibrium activation level at pH values below 8.6. This effect was reversed at pH values above 8.6. Activation of inactive enzyme by CO2 and Mg2+ was inhibited dramatically at pH values below 8.6 and less so at pH values above 8.6. Studies showed that binding of RuBP to the inactive form of the enzyme was pH dependent with tighter binding occurring at lower pH values. It is suggested that the tight binding of RuBP to the inactive enzyme tends to decrease the equilibrium concentration of the activated form at pH values less than 8.6. These studies indicate that stromal pH could have a strong effect on the activation state of this enzyme in vivo, and possible feedback interactions which might adjust the apparent Vmax to match the rate of RuBP regeneration are discussed.  相似文献   

6.
The adenosine deaminase of the digestive diverticulum of the bay scallop was purified and electrophoresis of the purified enzyme yielded a single enzymatically active band at several different pH values. A molecular weight of 130,000 was estimated using gel filtration and sucrose density gradient centrifugation. The enzyme had spectral properties typical of simple proteins and its isoelectric point proved to be 4.8. The scallop enzyme was stable at room temperature from pH 5.0 to 7.0, and in this range it was exceptionally resistant to heat inactivation.The effect of the substrate, adenosine, on the reaction velocity was followed over a 10,000-fold concentration range, and no deviation from Michaelis-Menten kinetics was observed. The following rate equation applies to the enzyme: 1^v = (1α[S]) + (1β).The effect of pH on the reaction, using adenosine as the substrate, was studied; and it was found that pH had a much greater effect on the α parameter of the rate equation than on the β parameter and that pH had little effect on the apparent activation energy of either parameter. The apparent activation energy of the β parameter was 12.2 kcal with adenosine as the substrate, while the apparent activation energy of the α parameter was zero. The α parameter of the rate equation, using other substrates, was also insensitive to temperature.  相似文献   

7.
The visible absorption bands in the region 525-575 nm of the catalytic cobalt ion in cobalt(II) horse liver alcohol dehydrogenase show characteristic pH-dependent changes both in the free enzyme and its complexes with nicotinamide adenine dinucleotide (NAD+) and NAD+ plus ethanol or 2,2,2-trifluoroethanol. In the free enzyme, the change of the coordination environment has an apparent pK of about 9.4. In the binary complex with NAD+ the spectral changes are complex, indicating changes in the coordination sphere in a lower pH range with an estimated pK value of about 7.9. The ternary complexes enzyme X NAD+ X ethanol and enzyme X NAD+ X 2,2,2-trifluoroethanol exhibit very similar, characteristic spectral features; their apparent pK values are 6.3 and less than 4, respectively. We ascribe these pK values to the ionization of the alcohol bound in the ternary complexes. The results demonstrate that the catalytic cobalt ion is sensing changes of the ionization state of the protein when going from low pH forms to high pH forms both in the absence and presence of coenzyme and substrate/inhibitor.  相似文献   

8.
9.
The physical properties of purified human plasma lecithin:cholesterol acyltransferase (LCAT) were investigated by techniques including analytical ultracentrifugation, ultraviolet spectroscopy, electrofocusing, and circular dichroism. The partial specific volume of LCAT was determined by sedimentation equilibrium ultracentrifugation experiments in H2O and D2O solutions (0.702 ml/g). The Mr was 67,000 by sodium dodecyl sulfate (SDS)-gel electrophoresis and 60,000 by sedimentation equilibrium ultracentrifugation. The discrepancy between the two sets of data presumably arose from the glycoprotein nature of the enzyme. Studies of the ultraviolet spectrum indicated that LCAT contained 6.5% (ww) tyrosine which corresponds to approximately 18 tyrosine residues/mol of LCAT (polypeptide Mr 45,000). Spectrophotometric titration of the ionizable phenolic side chains indicated that nearly all the tyrosine residues were buried at neutral pH while they became gradually exposed at higher pH. The apparent pK of this transition was about 12.0 contrasted with 9.8, the apparent pK of ionization of the free tyrosyl groups.  相似文献   

10.
The kinetics of the reverse reaction catalyzed by Escherichia coli phosphofructokinase, i.e., the synthesis of ATP and fructose-6-phosphate from ADP and fructose-1,6-bisphosphate, have been studied at different pH values, from pH 6 to pH 9.2. Hyperbolic saturations of the enzyme are observed for both substrates. The affinity for fructose-1,6-bisphosphate decreases with pH following the ionization of a group with a pK of 6.6, whereas the catalytic rate constant and perhaps the affinity for ADP are controlled by the ionization of a group with a pK of 6. Several arguments show that the pK of 6.6 is probably that of the carboxyl group of Asp 127, whereas the pK of 6 is tentatively attributed to the carboxyl group of Asp 103. The pK of 6.6 is assigned to the carboxyl group of Asp 127 in the free enzyme, and a simple model suggests that the same group would have an abnormally high pK, above 9.6, in the complex between phosphofructokinase and fructose-1,6-bisphosphate. It is proposed that the large pK shift of more than 3 pH units upon binding of fructose-1,6-bisphosphate is due to an electrostatic repulsion that could exist between the 1-phosphate group and the carboxyl group of Asp 127, which are close to each other in the crystal structure of phosphofructokinase (Shirakihara, Y. & Evans, P.R., 1988, J. Mol. Biol. 204, 973-994). The same interpretation would also explain the much higher affinity of the enzyme for fructose-1,6-bisphosphate when Asp 127 is protonated.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
12.
The dependence on pH of the kinetic parameters for the hydrolysis of phenyl acetate catalyzed by pig liver carboxylesterase was examined for purified high-isoelectric point and low-isoelectric point fractions of enzyme that were separated by isoelectric focusing. The values of kcat are half-maximal at pH 4.3 and 5.1 for the high- and low-isoelectric point forms, respectively, and show a shallow dependence on pH with a value of n = 0.5. The absence of a change in the pH dependence of kcat for the high-isoelectric point enzyme in the presence of high concentrations of methanol, which reacts with the acetyl-enzyme intermediate to give methyl acetate, provides evidence that the pH dependence is not caused by a change in rate-determining step. This means that if an imidazole group is involved in catalysis its pK must be perturbed downward by 2–3 units. The pH dependence of kcatKm is biphasic with apparent pK values for dissociations of the free enzyme near 7 and 4 for both the high- and low-isoelectric point enzymes. Inhibition by a second molecule of substrate and by methanol are strongest for high-pH forms of the enzyme.  相似文献   

13.
The active site of wheat germ lipase was studied by the Dixon method and chemical modification. The profile of curve log V = f(pH), pK and ionization heat values, lipase photoinactivation, and lipase inactivation with diethylpyrocarbonate and dicyclohexylcarbodiimide led us to assume that the active site of the enzyme comprises the carboxylic group of aspartic or glutamic acid and the imidazole group of histidine. Apparently, the OH-group of serine plays a key role in catalysis: as a result of incubation for 1 h in the presence of phenylmethylsulfonyl fluoride, the enzyme activity decreased by more than 70%. It is shown that ethylenediamine tetraacetate is a noncompetitive inhibitor of lipase.  相似文献   

14.
15.
16.
myo-Inositol:NAD(P)+ oxidoreductase (myo-inositol oxidoreductase) has been identified in bovine brain. This enzyme elutes from DEAE cellulose with 0.3 M KCl in 50 mM Tris buffer, pH 7.5. Using NADH as cofactor myo-inosose-2 is reduced selectively to myo-inositol. With NADPH the enzyme forms both myo-inositol and scyllo-inositol, however, at a lower rate. The enzyme was chromatographed on G-100 Sephadex and found to have an apparent molecular weight of 74,000. This enzyme differs in DEAE binding, molecular weight and cofactor specificity from the previously described scyllo-inositol oxidoreductase which utilizes NADPH exclusively to produce 3 fold more scyllo-inositol than myo-inositol.  相似文献   

17.
Initial rate, product inhibition, and isotope rate kinetic studies of pig heart mitochondrial and supernatant malate dehydrogenases, acting upon the nonphysiological substrates, meso-tartrate and 2-keto-3-hydroxysuccinate, are reported. The measured spontaneous keto-enol equilibrium for 2-keto-3-hydroxysuccinate in 0.05 m Tris-acetate (pH 8.0) at 25 °C favors the enol form, dihydroxyfumarate, with an apparent equilibrium constant of 0.036. The enzyme-catalyzed reaction favors meso-tartrate with an apparent equilibrium constant of 1.25 × 10?6, M?1 at pH 8.0. The mechanism apparently remains ordered bi bi for both enzymes when these nonphysiological substrates are used, and the chemical-converting hydride transfer step becomes more rate limiting for both enzymes. This conclusion is supported by VHVD and (VHKH)VDKD values of 2.6 and 3.1, respectively, for the mitochondrial enzyme and 1.9 and 2.9, respectively, for the supernatant enzyme.  相似文献   

18.
A biphasic decay of the thiol modulated ATPase activity is observed at fast deenergization of the thylakoids achieved by turning off the light and simultaneous injection of the uncoupler nigericin. Most likely the rapid phase (1/2 = 5 s) represents an unstable, active Ef-form of the enzyme which decays to a less active, but more stable Es-form. The two forms have different substrate affinities. Deactivation and reactivation kinetics indicate that the transition from the Ef- to the Es-form is reversible, requires a low proton gradient (1 to 2 pH units) and most probably involves the release and binding, respectively, of two protons from the thylakoid lumen phase to sites which have an apparent pK of 6.6. The Es-form decays to the inactive Ei-form with a half time of 90 s. Reactivation of the completely deactivated enzyme is a two-stage process comprising protonation of sites with a pK of 6.8 followed by protonation of sites of pK 4.9. The intermediate Es'-form has a decay time which is similar to that of the Es-form, but a different Km for ATP. Therefore we conclude that activation is not the exact reversal of deactivation. The results are discussed in terms of a model of H+-linked activation/deactivation.  相似文献   

19.
The pH dependence of the activity of the allosteric phosphofructokinase from Escherichia coli has been studied in the pH range from 6 to 9, in the absence or presence of allosteric effectors. The sigmoidal cooperative saturation of phosphofructokinase by fructose 6-phosphate has been analyzed according to the Hill equation, and the following results have been obtained: (i) the apparent affinity for Fru-6P, as measured by the half-saturating concentration, [Fru-6P]0.5, does not change with pH; (ii) the cooperativity, as measured empirically by the Hill coefficient, nH, increases markedly with pH and reaches a value of 5.5-6 at pH 9; (iii) the catalytic rate constant, kcat, is controlled by the ionization of a critical group which has a pK of 7 in the absence of effector and must be deprotonated for phosphofructokinase to be active. The observation that pH affects both the cooperativity and the maximum velocity suggests that the catalytic efficiency of a given active site could be modified by the binding of fructose 6-phosphate to other remote sites. Finding values of the cooperativity coefficient larger than the number of substrate binding sites indicates that slow conformational changes may occur in phosphofructokinase. The cooperative saturation of phosphofructokinase by fructose 6-phosphate appears more complex than described by the classical concerted model at steady state and could involve two slowly interconverting states which differ in both their turnover rate constants and their affinities for fructose 6-phosphate. The presence of GDP shifts the pK of the critical group which controls kcat from 7 to 6.6.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Homogenate preparations of human liver have been prepared and over 75% of the particulate neuraminidase activity (which comprises approx. 90% of the total activity) has been solubilized using 0.85% (w/v) Triton X-100 in 25 mM phosphate buffer (pH 6.8). The solubilized neuraminidase activity is extremely labile, but can be stabilized for at least 4 weeks at 2–4°C, using 10 mM N-acetylneuraminic acid. Kinetic characterization of homogenate and solubilized supernatant fluid neuraminidase activities indicated comparable pH optimum curves (maximum activity at pH 4.5–4.7) and apparent Km values (0.2–0.4 mM) for the synthetic fluorometric substrate 4-methylbelliferyl-α-D-N-acetylneuraminic acid. Isoelectric focusing has been performed on human liver homogenates and Triton X-100-solubilized neuraminidase activities, and the presence of several forms (4–6) with isoelectric points (pI values) between 4.4 and 5.2 has been demonstrated in both preparations. The similar kinetic and isoelectric focusing properties of the two preparations suggest that the solubilized enzyme activity is representative of the homogenate activity and that the solubilized enzyme is suitable for purification purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号