首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Ly108 (CD352) is a member of the signaling lymphocyte activation molecule (SLAM) family of receptors that signals through SLAM-associated protein (SAP), an SH2 domain protein that can function by the recruitment of Src family kinases or by competition with phosphatases. Ly108 is expressed on a variety of hematopoietic cells, with especially high levels on developing thymocytes. We find that Ly108 is constitutively tyrosine phosphorylated in murine thymi in a SAP- and Fyn kinase-dependent manner. Phosphorylation of Ly108 is rapidly lost after thymocyte disaggregation, suggesting dynamic contact-mediated regulation of Ly108. Similar to recent reports, we find at least three isoforms of Ly108 mRNA and protein in the thymus, which are differentially expressed in the thymi of C57BL/6 and 129S6 mice that express the lupus-resistant and lupus-prone haplotypes of Ly108, respectively. Notably, the recently described novel isoform Ly108-H1 is not expressed in mice having the lupus-prone haplotype of Ly108, but is expressed in C57BL/6 mice. We further provide evidence for differential phosphorylation of these isoforms; the novel Ly108-H1does not undergo tyrosine phosphorylation, suggesting that it functions as a decoy isoform that contributes to the reduced overall phosphorylation of Ly108 seen in C57BL/6 mice. Our study suggests that Ly108 is dynamically regulated in the thymus, shedding light on Ly108 isoform expression and phosphorylation.  相似文献   

2.
The molecular basis of X-linked lymphoproliferative (XLP) disease has been attributed to mutations in the signaling lymphocytic activation molecule-associated protein (SAP), an src homology 2 domain-containing intracellular signaling molecule known to interact with the lymphocyte-activating surface receptors signaling lymphocytic activation molecule and 2B4. To investigate the effect of SAP defects on TCR signal transduction, herpesvirus saimiri-immortalized CD4 Th cells from XLP patients and normal healthy individuals were examined for their response to TCR stimulation. CD4 T cells of XLP patients displayed elevated levels of tyrosine phosphorylation compared with CD4 T cells from healthy individuals. In addition, downstream serine/threonine kinases are constitutively active in CD4 T cells of XLP patients. In contrast, TCR-mediated activation of Akt, c-Jun-NH(2)-terminal kinases, and extracellular signal-regulated kinases in XLP CD4 T cells was transient and rapidly diminished when compared with that in control CD4 T cells. Consequently, XLP CD4 T cells exhibited severe defects in up-regulation of IL-2 and IFN-gamma cytokine production upon TCR stimulation and in MLRs. Finally, SAP specifically interacted with a 75-kDa tyrosine-phosphorylated protein upon TCR stimulation. These results demonstrate that CD4 T cells from XLP patients exhibit aberrant TCR signal transduction and that the defect in SAP function is likely responsible for this phenotype.  相似文献   

3.
Signaling lymphocyte activation molecule (SLAM) family receptors are critically involved in modulating innate and adaptive immune responses. Several SLAM family receptors have been shown to interact with the adaptor molecule SAP; however, subsequent intracellular signaling is poorly defined. Notably, mutations in SLAM-associated protein (SAP) lead to X-linked lymphoproliferative disease, a rare but fatal immunodeficiency. Although the SLAM family member Ly9 (CD229) is known to interact with SAP, the functions of this receptor have remained elusive. Therefore, we have generated Ly9-/- mice and compared their phenotype with that of SLAM-/- and SAP-/- mice. We report that Ly9-/- T cells exhibit a mild Th2 defect associated with reduced IL-4 production after stimulation with anti-TCR and anti-CD28 in vitro. This defect is similar in magnitude to the previously reported Th2 defect in SLAM-/- mice but is more subtle than that observed in SAP-/- mice. In contrast to SLAM-/- and SAP-/- mice, T cells from Ly9-/- mice proliferate poorly and produce little IL-2 after suboptimal stimulation with anti-CD3 in vitro. We have also found that Ly9-/- macrophages exhibit no defects in cytokine production or bacterial killing as was observed in SLAM-/- macrophages. Additionally, Ly9-/- mice differ from SAP-/- mice in that they foster normal development of NKT cells and mount appropriate T and B cell responses to lymphocytic choriomeningitis virus. We have identified significant phenotypic differences between Ly-9-/- mice as compared with both SLAM-/- and SAP-/- mice. Although Ly9, SLAM, and SAP play a common role in promoting Th2 polarization, Ly-9 is uniquely involved in enhancing T cell activation.  相似文献   

4.
Ly108, a glycoprotein of the signaling lymphocytic activation molecule family of cell surface receptors expressed by T, B, NK, and APCs has been shown to have a role in NK cell cytotoxicity and T cell cytokine responses. In this study, we describe that CD4(+) T cells from mice with a targeted disruption of exons 2 and 3 of Ly108 (Ly108(DeltaE2+3)) produce significantly less IL-4 than wild-type CD4(+) cells, as judged by in vitro assays and by in vivo responses to cutaneous infection with Leishmania mexicana. Surprisingly, neutrophil functions are controlled by Ly108. Ly108(DeltaE2+3) mice are highly susceptible to infection with Salmonella typhimurium, bactericidal activity of Ly108(DeltaE2+3) neutrophils is defective, and their production of IL-6, IL-12, and TNF-alpha is increased. The aberrant bactericidal activity by Ly108(DeltaE2+3) neutrophils is a consequence of severely reduced production of reactive oxygen species following phagocytosis of bacteria. Thus, Ly108 serves as a regulator of both innate and adaptive immune responses.  相似文献   

5.
Neurotrophin signaling plays important roles in regulating the survival, differentiation, and maintenance of neurons in the nervous system. Binding of neurotrophins to their cognate receptors Trks induces transactivation and phosphorylation of the receptor at several tyrosine residues. These phosphorylated tyrosine residues then serve as crucial docking sites for adaptor proteins containing a Src homology 2 or phosphotyrosine binding domain, which upon association with the receptor initiates multiple signaling events to mediate the action of neurotrophins. Here we report the identification of a Src homology 2 domain-containing molecule, SLAM-associated protein (SAP), as an interacting protein of TrkB in a yeast two-hybrid screen. SAP was initially identified as an adaptor molecule in SLAM family receptor signaling for regulating interferon-gamma secretion. In the current study, we found that SAP interacted with TrkA, TrkB, and TrkC receptors in vitro and in vivo. Binding of SAP required Trk receptor activation and phosphorylation at the tyrosine 674 residue, which is located in the activation loop of the kinase domain. Overexpression of SAP with Trk attenuated tyrosine phosphorylation of the receptors and reduced the binding of SH2B and Shc to TrkB. Moreover, overexpression of SAP in PC12 cells suppressed the nerve growth factor-dependent activation of extracellular signal-regulated kinases 1/2 and phospholipase Cgamma, in addition to inhibiting neurite outgrowth. In summary, our findings demonstrated that SAP may serve as a negative regulator of Trk receptor activation and downstream signaling.  相似文献   

6.
Cell surface receptors belonging to the CD2 subset of the Ig superfamily of molecules include CD2, CD48, CD58, 2B4, signaling lymphocytic activation molecule (SLAM), Ly9, CD84, and the recently identified molecules NTB-A/Ly108/SLAM family (SF) 2000, CD84H-1/SF2001, B lymphocyte activator macrophage expressed (BLAME), and CRACC (CD2-like receptor-activating cytotoxic cells)/CS-1. Some of these receptors, such as CD2, SLAM, 2B4, CRACC, and NTB-A, contribute to the activation and effector function of T cells and NK cells. Signaling pathways elicited via some of these receptors are believed to involve the Src homology 2 (SH2) domain-containing cytoplasmic adaptor protein SLAM-associated protein (SAP), as it is recruited to SLAM, 2B4, CD84, NTB-A, and Ly-9. Importantly, mutations in SAP cause the inherited human immunodeficiency X-linked lymphoproliferative syndrome (XLP), suggesting that XLP may result from perturbed signaling via one or more of these SAP-associating receptors. We have now studied the requirements for SAP recruitment to CD84 and lymphocyte activation elicited following ligation of CD84 on primary and transformed human T cells. CD84 was found to be rapidly tyrosine phosphorylated following receptor ligation on activated T cells, an event that involved the Src kinase Lck. Phosphorylation of CD84 was indispensable for the recruitment of SAP, which was mediated by Y(262) within the cytoplasmic domain of CD84 and by R(32) within the SH2 domain of SAP. Furthermore, ligating CD84 enhanced the proliferation of anti-CD3 mAb-stimulated human T cells. Strikingly, this effect was also apparent in SAP-deficient T cells obtained from patients with XLP. These results reveal a novel function of CD84 on human lymphocytes and suggest that CD84 can activate human T cells via a SAP-independent mechanism.  相似文献   

7.
Considerable evidence supports the hypothesis that the nonreceptor protein tyrosine kinase p59fyn participates in signal transduction from the T cell receptor (TCR). To examine this hypothesis in detail, we have produced mice that lack the thymic isoform of p59fyn but retain expression of the brain isoform of the protein. fynTnull mice exhibit a remarkably specific lymphoid defect: thymocytes are refractile to stimulation through the TCR with mitogen or antigen, while peripheral T cells, following what appears to be a normal maturation sequence, reacquire significant signaling capabilities. These data confirm that p59fynT plays a pivotal role in TCR signal transduction and demonstrate that additional developmentally regulated signaling components also contribute to TCR-induced lymphocyte activation.  相似文献   

8.
The signaling lymphocyte-activating molecule (SLAM) family immunoreceptors are expressed in a wide array of immune cells, including both T and B lymphocytes. By virtue of their ability to transduce tyrosine phosphorylation signals through the so-called ITSM (immunoreceptor tyrosine-based switch motif) sequences, they play an important part in regulating both innate and adaptive immune responses. The critical role of the SLAM immunoreceptors in mediating normal immune reactions was highlighted in recent findings that SAP, a SLAM-associated protein, modulates the activities of various immune cells through interactions with different members of the SLAM family expressed in these cells. Importantly, mutations or deletions of the sap gene in humans result in the X-linked lymphoproliferative syndrome. In this review, we summarize current knowledge and survey the latest developments in signal transduction events triggered by the activation of SLAM family receptors in different cell types.  相似文献   

9.
The tyrosine phosphatase CD45 dephosphorylates the negative regulatory tyrosine of the Src family kinase Lck and plays a positive role in TCR signaling. In this study we demonstrate a negative regulatory role for CD45 in CD44 signaling leading to actin rearrangement and cell spreading in activated thymocytes and T cells. In BW5147 T cells, CD44 ligation led to CD44 and Lck clustering, which generated a reduced tyrosine phosphorylation signal in CD45(+) T cells and a more sustained, robust tyrosine phosphorylation signal in CD45(-) T cells. This signal resulted in F-actin ring formation and round spreading in the CD45(+) cells and polarized, elongated cell spreading in CD45(-) cells. The enhanced signal in the CD45(-) cells was consistent with enhanced Lck Y394 phosphorylation compared with the CD45(+) cells where CD45 was recruited to the CD44 clusters. This enhanced Src family kinase-dependent activity in the CD45(-) cells led to PI3K and phospholipase C activation, both of which were required for elongated cell spreading. We conclude that CD45 induces the dephosphorylation of Lck at Y394, thereby preventing sustained Lck activation and propose that the amplitude of the Src family kinase-dependent signal regulates the outcome of CD44-mediated signaling to the actin cytoskeleton and T cell spreading.  相似文献   

10.
Deficiency of SAP (SLAM (signaling lymphocyte activation molecule)-associated protein) protein is associated with a severe immunodeficiency, the X-linked lymphoproliferative disease (XLP) characterized by an inappropriate immune reaction against Epstein-Barr virus infection often resulting in a fatal clinical course. Several studies demonstrated altered NK and T cell function in XLP patients; however, the mechanisms underlying XLP disease are still largely unknown. Here, we show that non-transformed T cell lines obtained from XLP patients were defective in several activation events such as IL-2 production, CD25 expression, and homotypic cell aggregation when cells were stimulated via T cell antigen receptor (TCR).CD3 but not when early TCR-dependent events were bypassed by stimulation with phorbol 12-myristate 13-acetate/ionomycin. Analysis of proximal T cell signaling revealed imbalanced TCR.CD3-induced signaling in SAP-deficient T cells. Although phospholipase C gamma 1 phosphorylation and calcium response were both enhanced in T cells from XLP patients, phosphorylation of VAV and downstream signal transduction events such as mitogen-activated protein kinase phosphorylation and IL-2 production were diminished. Importantly, reconstitution of SAP expression by retroviral-mediated gene transfer completely restored abnormal signaling events in T cell lines derived from XLP patients. In conclusion, SAP mutation or deletion in XLP patients causes profound defects in T cell activation, resulting in immune deficiency. Moreover, these data provide evidence that SAP functions as an essential integrator in early TCR signal transduction.  相似文献   

11.
2B4 is a SLAM-related receptor expressed on natural killer (NK) cells and cytotoxic T cells. It can regulate killing and gamma interferon secretion by NK cells, as well as T-cell-mediated cytotoxicity. There are conflicting data regarding the mechanism of action of 2B4. In these studies, we attempted to understand better the nature and basis of 2B4 signaling. Our studies showed that engagement of 2B4 on NK cells triggered a tyrosine phosphorylation signal implicating 2B4, Vav-1, and, to a lesser extent, SHIP-1 and c-Cbl. Structure-function analyses demonstrated that this response was defined by a series of tyrosine-based motifs in the cytoplasmic region of 2B4 and was not influenced by the extracellular or transmembrane segment of 2B4. In addition, the 2B4-induced signal was absolutely dependent on coexpression of SAP, a Src homology 2 (SH2) domain-containing adaptor associating with SLAM-related receptors and mutated in X-linked lymphoproliferative disease. It was also observed that 2B4 was detectably associated with the Src-related protein tyrosine kinase FynT in an immortalized NK cell line. Mutation of arginine 78 of SAP, a residue critical for binding of SAP to FynT, eliminated 2B4-mediated protein tyrosine phosphorylation, implying that SAP promotes 2B4 signaling most probably by recruiting FynT. Finally, despite the similarities in the signaling modalities of 2B4 and its relative SLAM, the natures of the tyrosine phosphorylation signals induced by these two receptors were found to be different. These differences were not caused by variations in the extent of binding to SAP but rather were dictated by the tyrosine-based sequences in the cytoplasmic domain of the receptors. Taken together, these data lead to a better understanding of 2B4 signaling. Furthermore, they provide firm evidence that the signals transduced by the various SLAM-related receptors are unique and that the specificity of these signals is defined by the distinctive arrays of intracytoplasmic tyrosines in the receptors.  相似文献   

12.
Activating and inhibitory NK receptors regulate the development and effector functions of NK cells via their ITAM and ITIM motifs, which recruit protein tyrosine kinases and phosphatases, respectively. In the T cell lineage, inhibitory Ly49 receptors are expressed by a subset of activated T cells and by CD1d-restricted NKT cells, but virtually no expression of activating Ly49 receptors is observed. Using mice transgenic for the activating receptor Ly49D and its associated ITAM signaling DAP12 chain, we show in this article that Ly49D-mediated ITAM signaling in immature thymocytes impairs development due to a block in maturation from the double negative (DN) to double positive (DP) stages. A large proportion of Ly49D/DAP12 transgenic thymocytes were able to bypass the pre-TCR checkpoint at the DN3 stage, leading to the appearance of unusual populations of DN4 and DP cells that lacked expression of intracellular (ic) TCRβ-chain. High levels of CD5 were expressed on ic TCRβ(-) DN and DP thymocytes from Ly49D/DAP12 transgenic mice, further suggesting that Ly49D-mediated ITAM signaling mimics physiological ITAM signaling via the pre-TCR. We also observed unusual ic TCRβ(-) single positive thymocytes with an immature CD24(high) phenotype that were not found in the periphery. Importantly, thymocyte development was completely rescued by expression of an Ly49A transgene in Ly49D/DAP12 transgenic mice, indicating that Ly49A-mediated ITIM signaling can fully counteract ITAM signaling via Ly49D/DAP12. Collectively, our data indicate that inappropriate ITAM signaling by activating NK receptors on immature thymocytes can subvert T cell development by bypassing the pre-TCR checkpoint.  相似文献   

13.
The Cbl family of proteins negatively regulate signaling from tyrosine kinase-coupled receptors. Among the three members of this family, only c-Cbl and Cbl-b are expressed in hemopoietic cells. To examine the role of c-Cbl and Cbl-b in Fc epsilon RI signaling, mast cell cultures from wild-type, c-Cbl(-/-), and Cbl-b(-/-) mice were generated. Cell growth rates and cell surface expression of Fc epsilon RI were similar in the different cell populations. Compared with control cells, Cbl-b inactivation resulted in increases in Fc epsilon RI-induced Ca(2+) response and histamine release. Fc epsilon RI-induced tyrosine phosphorylation of total cellular proteins, Syk, and phospholipase C-gamma was also enhanced by Cbl-b deficiency, whereas receptor-initiated phosphorylation of Vav, JNK, and p38 kinases was not changed in these cells. In contrast to Cbl-b, c-Cbl deficiency had no detectable effect on Fc epsilon RI-induced histamine release or on the phosphorylation of total cellular proteins or Syk. The absence of c-Cbl increased the phosphorylation of ERK after receptor stimulation, but resulted in slightly reduced p38 phosphorylation and Ca(2+) response. These results suggest that Cbl-b and c-Cbl have divergent effects on Fc epsilon RI signal transduction and that Cbl-b, but not c-Cbl, functions as a negative regulator of Fc epsilon RI-induced degranulation.  相似文献   

14.
Autoantibody production and lymphadenopathy are common features of systemic autoimmune disease. Targeted or spontaneous mutations in the mouse germline have generated many autoimmune models with these features. Importantly, the models have provided evidence for the gene function in prevention of autoimmunity, suggesting an indispensable role for the gene in normal immune response and homeostasis. We describe here pathological and genetic characterizations of a new mutant strain of mice, the mutation of which spontaneously occurred in the Fas-deficient strain, MRL/Mp.Faslpr (MRL/lpr). MRL/lpr is known to stably exhibit systemic lupus erythematosus-like diseases. However, the mutant mice barely displayed autoimmune phenotypes, though the original defect in Fas expression was unchanged. Linkage analysis using (mutant MRL/lpr x C3H/lpr)F2 mice demonstrated a nucleotide insertion that caused loss of expression of small adaptor protein, signaling lymphocyte activation molecule (SLAM)-associated protein (SAP). SAP is known to be a downstream molecule of SLAM family receptors and to mediate the activation signal for tyrosine kinase Fyn. Recent studies have shown pleiotropic roles of SAP in T, B, and NK cell activations and NKT cell development. The present study will provide evidence for an essential role for SAP in the development of autoimmune diseases, autoantibodies, and lymphadenopathy in MRL/lpr lupus mice.  相似文献   

15.
Protein tyrosine phosphatases (PTPs) are crucial components of cellular signal transduction pathways. Here, we report that red blood cells (RBCs) from mice lacking PTPepsilon (Ptpre(-/-)) exhibit (i) abnormal morphology; (ii) increased Ca(2+)-activated-K(+) channel activity, which was partially blocked by the Src family kinases (SFKs) inhibitor PP1; and (iii) market perturbation of the RBC membrane tyrosine (Tyr-) phosphoproteome, indicating an alteration of RBC signal transduction pathways. Using the signaling network computational analysis of the Tyr-phosphoproteomic data, we identified seven topological clusters. We studied cluster 1 containing Fyn, SFK, and Syk another tyrosine kinase. In Ptpre(-/-)mouse RBCs, the activity of Fyn was increased while Syk kinase activity was decreased compared to wild-type RBCs, validating the network computational analysis, and indicating a novel signaling pathway, which involves Fyn and Syk in regulation of red cell morphology.  相似文献   

16.
The adaptor molecule SAP (signaling lymphocytic activation molecule-associated protein) plays a critical role during NK T (NKT) cell development in humans and mice. In CD4(+) T cells, SAP interacts with the tyrosine kinase Fyn to deliver signals required for TCR-induced Th2-type cytokine production. To determine whether the SAP-dependent signals controlling NKT cell ontogeny rely on its binding to Fyn, we used the OP9-DL1 system to initiate structure function studies of SAP in murine NKT cell development. In cultures containing wild-type (WT) hematopoietic progenitors, we noted the transient emergence of cells that reacted with the NKT cell-specific agonist alpha-galactosyl ceramide and its analog PBS57. Sap(-/-) cells failed to give rise to NKT cells in vitro; however, their development could be rescued by re-expression of WT SAP. Emergence of NKT cells was also restored by a mutant version of SAP (SAP R78A) that cannot bind to Fyn, but with less efficiency than WT SAP. This finding was accentuated in vivo in Sap(R78A) knock-in mice as well as Sap(R78A) competitive bone marrow chimeras, which retained NKT cells but at significantly reduced numbers compared with controls. Unlike Sap(R78A) CD4(+) T cells, which produce reduced levels of IL-4 following TCR ligation, alpha-galactosyl ceramide-stimulated NKT cells from the livers and spleens of Sap(R78A) mice produced Th2 cytokines and activated NK cells in a manner mimicking WT cells. Thus, SAP appears to use differential signaling mechanisms in NKT cells, with optimal ontogeny requiring Fyn binding, while functional responses occur independently of this interaction.  相似文献   

17.
We have examined the requirement for intracellular calcium (Ca(2+)) in insulin signal transduction in 3T3-L1 adipocytes. Using the Ca(2+) chelator 1,2- bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid, sodium (BAPTA-AM), we find both augmentation and inhibition of insulin signaling phenomena. Pretreatment of cells with 50 microM BAPTA-AM did not affect tyrosine phosphorylation of insulin receptor substrate (IRS)1/2 or insulin receptor (IR)beta. The decreased mobility of IRS1 normally observed after chronic stimulation with insulin, due to serine phosphorylation, was completely eliminated by Ca(2+) chelation. Correlating with decreased insulin-induced serine phosphorylation of IRS1, phosphotyrosine-mediated protein-protein interactions involving p85, IRS1, IRbeta, and phosphotyrosine-specific antibody were greatly enhanced by pretreatment of cells with BAPTA-AM. As a result, insulin-mediated, phosphotyrosine-associated PI3K activity was also enhanced. BAPTA-AM pretreatment inhibited other insulin-induced phosphorylation events including phosphorylation of Akt, MAPK (ERK1 and 2) and p70 S6K. Phosphorylation of Akt on threonine-308 was more sensitive to Ca(2+) depletion than phosphorylation of Akt on serine-473 at the same insulin dose (10 nM). In vitro 3'-phosphatidylinositol-dependent kinase 1 activity was unaffected by BAPTA-AM. Insulin-stimulated insulin-responsive glucose transporter isoform translocation and glucose uptake were both inhibited by calcium depletion. In summary, these data demonstrate a positive role for intracellular Ca(2+) in distal insulin signaling events, including initiation/maintenance of Akt phosphorylation, insulin-responsive glucose transporter isoform translocation, and glucose transport. A negative role for Ca(2+) is also indicated in proximal insulin signaling steps, in that, depletion of intracellular Ca(2+) blocks IRS1 serine/threonine phosphorylation and enhances insulin-stimulated protein-protein interaction and PI3K activity.  相似文献   

18.
The genetic defect in X-linked lymphoproliferative syndrome (XLP) is the Src homology 2 domain-containing protein SAP. SAP constitutively associates with the cell surface molecule, signaling lymphocytic activation molecule (SLAM), and competes with SH2-domain containing protein tyrosine phosphatase-2 (SHP-2) for recruitment to SLAM. SLAM exhibits homology with the mouse cell surface receptor 2B4. The human homologue of 2B4 has now been identified. It is recognized by the c1.7 mAb, a mAb capable of activating human NK cells. Human 2B4 became tyrosine phosphorylated following pervanadate-treatment of transfected cells and recruited SHP-2. SAP was also recruited to 2B4 in activated cells. Importantly, the 2B4-SAP interaction prevented the association between 2B4 and SHP-2. These results suggest that the phenotype of XLP may result from perturbed signaling not only through SLAM, but also other cell surface molecules that utilize SAP as a signaling adaptor protein.  相似文献   

19.
Slamf1, the NKT cell control gene Nkt1   总被引:1,自引:0,他引:1  
Invariant NKT cells play a critical role in controlling the strength and character of adaptive immune responses. We have previously reported deficiencies in the numbers and function of NKT cells in the NOD mouse strain, which is a well-validated model of type 1 diabetes and systemic lupus erythematosus. Genetic control of thymic NKT cell numbers was mapped to two linkage regions: Nkt1 on distal chromosome 1 and Nkt2 on chromosome 2. In this study, we report the production and characterization of a NOD.Nkrp1(b).Nkt1(b) congenic mouse strain, apply microarray expression analyses to limit candidate genes within the 95% confidence region, identify Slamf1 (encoding signaling lymphocyte activation molecule) and Slamf6 (encoding Ly108) as potential candidates, and demonstrate retarded signaling lymphocyte activation molecule expression during T cell development of NOD mice, resulting in reduced expression at the CD4(+)CD8(+) stage, which is consistent with decreased NKT cell production and deranged tolerance induction in NOD mice.  相似文献   

20.
Src family tyrosine kinases play a key role in T-cell antigen receptor (TCR) signaling. They are responsible for the initial tyrosine phosphorylation of the receptor, leading to the recruitment of the ZAP-70 tyrosine kinase, as well as the subsequent phosphorylation and activation of ZAP-70. Molecular and genetic evidence indicates that both the Fyn and Lck members of the Src family can participate in TCR signal transduction; however, it is unclear to what extent they utilize the same signal transduction pathways and activate the same downstream events. We have addressed this issue by examining the ability of Fyn to mediate TCR signal transduction in an Lck-deficient T-cell line (JCaM1). Fyn was able to induce tyrosine phosphorylation of the TCR and recruitment of the ZAP-70 kinase, but the pattern of TCR phosphorylation was altered and activation of ZAP-70 was defective. Despite this, the SLP-76 adapter protein was inducibly tyrosine phosphorylated, and both the Ras-mitogen-activated protein kinase and the phosphatidylinositol 4, 5-biphosphate signaling pathways were activated. TCR stimulation of JCaM1/Fyn cells induced the expression of the CD69 activation marker and inhibited cell growth, but NFAT activation and the production of interleukin-2 were markedly reduced. These results indicate that Fyn mediates an alternative form of TCR signaling which is independent of ZAP-70 activation and generates a distinct cellular phenotype. Furthermore, these findings imply that the outcome of TCR signal transduction may be determined by which Src family kinase is used to initiate signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号