首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Allyn C. Howlett 《Life sciences》1984,35(17):1803-1810
This study was undertaken to ascertain the effects of cannabinoid drugs on prostanoid-stimulated adenylate cyclase in neuroblastoma cells. This report demonstrates that Δ9-tetrahydrocannabinol (THC) and levonantradol could decrease initial rate cyclic AMP accumulation in response to prostacyclin in intact cells. Basal accumulation was also diminished. Prostanoid-stimulated adenylate cyclase in a membrane preparation from these cells was inhibited by cannabinoid and nantradol compounds. However, this inhibition was not competitive with prostaglandin E1 or prostacyclin. Further, inhibition was also observed when the enzyme was stimulated by peptide hormones at the secretin receptor. In contrast, enzyme activated by NaF was not inhibited by cannabinoid compounds. Cyclic AMP phosphodiesterase activity in subcellular fractions was unaltered by these agents. These data demonstrate that cannabinoid and nantradol compounds decrease cyclic AMP accumulation in neuronally derived cells, and that this results from an inhibition of basal and hormone-stimulated adenylate cyclase activity.  相似文献   

2.
Chen Y  Banerjee A  Hess GP 《Biochemistry》2004,43(31):10149-10156
The nicotinic acetylcholine receptor (nAChR) belongs to a group of five structurally related membrane proteins that play a major role in the communication between approximately 10(12) cells of the mammalian nervous system. The receptor is inhibited by both abused drugs and therapeutic agents. During the past two decades, many attempts have been made to find compounds that prevent cocaine inhibition of this protein. The use of newly developed transient kinetic techniques in investigations of the inhibition of the receptor by cocaine and MK-801 led to an inhibition mechanism not previously proposed. It was observed that the receptor contains two inhibitory sites: one that equilibrates with the tested noncompetitive inhibitors within approximately 50 ms, and a second site that equilibrates with inhibitors within approximately 1 s. The mechanism of inhibition of the rapidly equilibrating inhibitory site has been investigated, and based on that mechanism, the first evidence that small organic molecules exist that prevent inhibition of the rapidly equilibrating inhibitory site was obtained. These compounds did not prevent the inhibition due to the slowly equilibrating inhibitory site. Here, we present the first evidence that a compound (3-acetoxy ecgonine methyl ester) exists that prevents inhibition of the slowly equilibrating inhibitory site and that the mechanism of inhibition of this site differs from that of the rapidly equilibrating site. BC3H1 cells containing a fetal mouse muscle-type nAChR were used, and the receptor was activated by carbamoylcholine. The resulting whole-cell current due to the nondesensitized nAChR was determined. Because the nAChR desensitizes rapidly, the measurements required the use of a transient kinetic technique with a time resolution of 10 ms; the cell-flow technique was used. Inhibitors and compounds that alleviate inhibition were tested by determining their effects on the whole-cell current due to activation of the nAChR by carbamoylcholine.  相似文献   

3.
The UV-sensitivity ofEscherichia coli 15 T, U, his cells after a 45 minutes glucose, thymine uracil, or histidine pre-irradiation starvation, as well as the course of DNA, RNA, and protein synthesis during starvation and during a 60 minute post-treatment in a complete medium were investigated. An increased radioresistance was observed when starvation for some compounds resulted in a consequent inhibition of protein synthesis, as it was observed in the case of glucose, histidine, or uracil starvation. During thymine starvation, which led to a decreased resistance, no inhibition of protein synthesis was recorded. The postirradiation time-course of DNA synthesis did not show any correlation with the increased rate of resistance. The DNA synthesis after U pre-treatment was greatly delayed, however, after glucose pre-treatment no retardation was observed although both factors increased the rate of surviving cells approximately to the same extent. We assume that the factors which increase the radio-resistance could act by a similar mechanism which would take part in the inhibition of protein synthesis. This mechanism could consist in a decrease of the m-RNA turnover.  相似文献   

4.
Diabetic plasma contains elevated levels of glucose and various low-molecular-weight carbonyl compounds derived from the metabolism of glucose and related materials. These compounds react with protein side chains (Arg, Lys, Cys, and His) to give glycated materials and advanced glycation end products. In this study, we have examined the effect of glucose and carbonyl compounds (methylglyoxal, glyoxal, glycolaldehyde, and hydroxyacetone), and glycation products arising from reaction of these materials with model proteins, on the activity of three key cellular enzymes: glyceraldehyde-3-phosphate dehydrogenase (GAPDH), glutathione reductase, and lactate dehydrogenase, both in isolation and in cell lysates. In contrast to glucose (1M, both fresh and aged for 8 weeks), which had no effect, marked inhibition of all three enzymes was observed with methylglyoxal and glyoxal. GAPDH was also inhibited by glycolaldehyde and hydroxyacetone. Incubation of these enzymes with proteins that had been preglycated with methylglyoxal, but not glucose, also resulted in significant time- and concentration-dependent inhibition with both isolated enzymes and cell lysates. This inhibition was not metal ion, oxygen, superoxide dismutase, or catalase dependent, suggesting that inhibition is not radical mediated. These effects are suggested to be due to direct adduction of the free- or protein-bound carbonyls with the target enzyme. Such an interpretation is supported by the detection of the loss of thiol groups on GAPDH and the detection of cross-linked materials on protein gels. Though direct comparison of the extent of inhibition induced by free versus protein-bound carbonyls was not possible, the significantly higher concentrations of the latter materials over the former in diabetic plasma and cells lead us to suggest that alterations in the activity of key cellular enzymes induced by glycated proteins may play a significant role in the development of diabetic complications.  相似文献   

5.
Uniformly modified oligonucleotide N3'-->P5' phosphoramidates, where every 3'-oxygen is replaced by a 3'-amino group, were synthesized. These compounds have very high affinity to single-stranded RNAs and thus have potential utility as antisense agents. As was shown in this study, the oligonucleotide phosphoramidates are resistant to digestion with snake venom phosphodiesterase, to nuclease activity in a HeLa cell nuclear extract, or to nuclease activity in 50% human plasma, where no significant hydrolysis was observed after 8 h. These compounds were used in various in vitro cellular systems as antisense compounds addressed to different targeted regions of c-myb, c-myc and bcr-abl mRNAs. C-myb antisense phosphoramidates at 5 microM caused sequence and dose-dependent inhibition of HL-60 cell proliferation and a 75% reduction in c-myb protein and RNA levels, as determined by Western blot and RT-PCR analysis. Analogous results were observed for anti-c-myc phosphoramidates, where a complete cytostatic effect for HL-60 cells was observed at 1 microM concentration for fully complementary, but not for mismatched compounds, which were indistinguishable from untreated controls. This was correlated with a 93% reduction in c-myc protein level. Moreover, colony formation by the primary CML cells was also inhibited 75-95% and up to 99% by anti-c-myc and anti-bcr-abl phosphoramidate oligonucleotides, respectively, in a sequence- and dose-dependent manner within a 0.5 nM-5 microM dose range. At these concentrations the colony-forming ability of normal bone marrow cells was not affected. The presented in vitro data indicate that oligonucleotide N3'-->P5' phosphoramidates could be used as specific and efficient antisense agents.  相似文献   

6.
To gain insight into the mechanism of action and selectivity of the insecticidal activity of pyridalyl, the cytotoxicity of pyridalyl against various insect and mammalian cell lines was characterized by measuring the inhibition of cellular protein synthesis. When the effect of pyridalyl on the cellular protein synthesis in Sf9 cells was evaluated by measuring the incorporation of [(3)H]leucine, rapid and significant inhibition of protein synthesis was observed. However, pyridalyl did not inhibit protein synthesis in a cell-free protein synthesis system, indicating that pyridalyl does not directly inhibit protein synthesis. No obvious cytotoxicity was observed against any of the mammalian cell lines tested. In the case of insect cell lines, remarkable differences in the cytotoxicity of pyridalyl were observed: the highest cytotoxicity (IC50 mM) was found against Sf9 cells derived from Spodoptera frugiperda, whereas no obvious cytotoxicity was observed against BmN4 cells derived from Bombyx mori. Measurements of the insecticidal activity of pyridalyl against Spodoptera litura and B. mori revealed a correlation between the cytotoxicity against cultured cell lines and the insecticidal activity. From these observations, it was concluded that the selective inhibition of cellular protein synthesis by pyridalyl might contribute significantly to the insecticidal activity and the selectivity of this compound.  相似文献   

7.
目的:初步评价经计算机模拟筛选的Fs系列化合物对A549细胞的增殖抑制作用与对热休克蛋白90活性的抑制。方法:首先采用SRB(磺基罗丹明B)法观察26个化合物对A549肿瘤细胞增殖抑制活性,再进一步应用Western Blot方法对此类化合物在蛋白水平上对热休克蛋白90活性的抑制进行评价。以热休克蛋白70的表达增加作为热休克蛋白90活性是否被抑制的参考指标。结果:在Fs系列化合物中Fs-1、Fs-8、Fs-24对A549细胞增殖有明显抑制,且能明显上调Hsp70蛋白的表达,但同时Hsp90蛋白的表达量并不受影响。其余化合物在两种方法中显示均无明显抑制作用。结论:在经计算机模拟筛选出的26种Fs系列化合物中Fs-1、Fs-8、Fs-24可抑制A549细胞的增殖,可能是通过对Hsp90活性的抑制而发挥作用,经筛选其余Fs系列化合物抑制A549细胞增殖与抑制Hsp90活性作用均不显著。Fs-1、Fs-8、Fs-24类化合物作用的初步探索将为研制Hsp90靶向抑制剂类药物开辟新途径。  相似文献   

8.
The effect of phorbol ester tumor promoters on the communication between individual cells in confluent culture was studied using a fluorescent dye transfer method. Cell-cell communication between mouse Balb/c 3T3 cells and between Chinese hamster V79 cells was inhibited almost completely by tumor-promoting phorbol esters, but not by nonpromoting derivatives; the effect was reversed upon removal of the promoter. Intercellular communication between Balb/c 3T3 cells, but not Chinese hamster V79 cells, was increased significantly in the presence of dbcAMP and caffeine, and these compounds counteracted the effects of tumor promoters. Inhibition of cell communication by phorbol esters appears to be receptor-mediated, since specific binding of 3H-phorbol-12,13-dibutyrate to Balb/c 3T3 cells was inhibited only by compounds that also inhibit intercellular dye transfer. A study with cycloheximide suggests that the reversible inhibition of intercellular communication by phorbol esters may not need de novo protein synthesis, while upregulation of communication by cAMP requires protein synthesis.  相似文献   

9.
Here, we report the identification and characterization of five ortho-quinone inhibitors of PTPalpha. We observed that the potency of these compounds in biochemical assays was markedly enhanced by the presence of DTT. A kinetic analysis suggested that they were functioning as irreversible inhibitors and that the inhibition was targeted to the catalytic site of PTPalpha. The inhibition observed by these compounds was sensitive to superoxide dismutase and catalase, suggesting that reactive oxygen species may be mediators of their inhibition. We observed that in the presence of DTT, these compounds would produce up to 2.5mM hydrogen peroxide (H(2)O(2)). The levels of H(2)O(2) produced were sufficient to completely inactivate PTPalpha. In contrast, without a reducing agent the compounds did not generate H(2)O(2) and showed little activity towards PTPalpha. In addition, these compounds inhibited PTPalpha-dependent cell spreading in NIH 3T3 cells at concentrations that were similar to their activity in biochemical assays. The biological implications of these results are discussed as they support growing evidence that H(2)O(2) is a key regulator of PTPs.  相似文献   

10.
Various derivatives of thiazolidine-diones have been identified as tyrosine protein kinase inhibitors. The epidermal growth factor (EGF) receptor kinase and c-src kinase were inhibited in vitro with IC50 values in the range of 1-7 microM. The v-abl tyrosine protein kinase was not inhibited by thiazolidine-diones. Inhibition was found to be specific for tyrosine protein kinases. Inhibition of serine/threonine protein kinases was not observed. The active derivatives were shown to inhibit EGF-induced receptor autophosphorylation, either in vitro or in intact cells, and were also found to inhibit growth of the EGF-dependent BALB/MK and A431 cell lines (IC50 1-3 microM). Growth of the interleukin-3-dependent myeloid cell line FDC-P1 was inhibited with equal efficiency. Thus, in these cell lines, members of the c-src kinase family are also potential targets for inhibition by the compounds.  相似文献   

11.
Poliovirus 2B protein is a well‐known viroporin implicated in plasma membrane permeabilization to ions and low‐molecular‐weight compounds during infection. Translation in mammalian cells expressing 2B protein is inhibited by hygromycin B (HB) but remains unaffected in mock cells, which are not permeable to the inhibitor. Here we describe a previously unreported bystander effect in which healthy baby hamster kidney (BHK) cells become sensitive to HB when co‐cultured with a low proportion of cells expressing poliovirus 2B. Viroporins E from mouse hepatitis virus, 6K from Sindbis virus and NS4A protein from hepatitis C virus were also able to permeabilize neighbouring cells to different extents. Expression of 2B induced permeabilization of neighbouring cell lines other than BHK. We found that gap junctions are responsible mediating the observed bystander permeabilization. Gap junctional communication was confirmed in 2B‐expressing co‐cultures by fluorescent dye transfer. Moreover, the presence of connexin 43 was confirmed in both mock and 2B‐transfected cells. Finally, inhibition of HB entry to neighbouring cells was observed with 18α‐glycyrrhethinic acid, an inhibitor of gap junctions. Taken together, these findings support a mechanism involving gap junctional intercellular communication in the bystander permeabilization effect observed in healthy cells co‐cultured with poliovirus 2B‐expressing cells.  相似文献   

12.
Daphnetin, one of coumarin derivatives, is a protein kinase inhibitor.   总被引:7,自引:0,他引:7  
Protein kinases play key roles in the control of cell proliferation, differentiation and metabolism. In this work, we studied the effect of coumarin and its derivatives, including daphnetin, esculin, 2-OH-coumarin, 4-OH-coumarin and 7-OH-coumarin, on the activity of protein kinases. It was found that, in these compounds, only daphnetin was a protein kinase inhibitor. This compound inhibited tyrosine-specific protein kinase, EGF receptor (IC(50) = 7.67 microM), and serine/threonine-specific protein kinases, including cAMP-dependent protein kinase (PKA) (IC(50) = 9.33 microM) and protein kinase C (PKC) (IC(50) = 25.01 microM) in vitro. The inhibition of EGF receptor tyrosine kinase by daphnetin was competitive to ATP and non-competitive to the peptide substrate. The inhibition of EGF-induced tyrosine phosphorylation of EGF receptor by daphnetin was not observed in human hepatocellular carcinoma HepG2 cells. The structural comparison of daphnetin with coumarin and other coumarin derivatives suggests that the hydroxylation at C8 may be required for daphnetin acting as a protein kinase inhibitor.  相似文献   

13.
BACKGROUND: Farnesyl protein transferase inhibitors have emerged as promising novel agents for combating cancerous disease. Nevertheless, the importance for farnesyl protein transferase enzymatic activity for cellular physiology of untransformed cells remains poorly investigated. MATERIALS AND METHODS: Peripheral blood monocytes, isolated from the blood of eight healthy volunteers, were treated with a farnesyl protein transferase inhibitor (FTI 744,832) or vehicle control for 16 hr. Subsequently cells were challenged with different concentrations of lipopolysaccharide (LPS), colony stimulating factor-1 (CSF-1), or phorbol esters for 10 min, after which the activation state of p42/p44 MAP kinase, p38 MAP kinase, and Jun-N-terminal kinase was investigated using Western blotting and phosphospecific antibodies. RESULTS: We observed that farnesyl protein transferase inhibition abrogated activation of p38 MAP kinase by LPS, CSF-1, and phorbol esters. Also the activation of Jun-N-terminal kinase by LPS was not seen after farnesyl protein transferase inhibition. Finally, stimulation of p42/p44 MAP kinase with CSF-1 was strongly reduced by farnesyl protein transferase inhibition, whereas activation of p42/p44 MAP kinase by phorbol ester was only slightly effected. CONCLUSIONS: Farnesyl protein transferase enzymatic activity is required for proper activation of all major members of the MAP kinase family. The observation that activation the p38 MAP kinase and Jun-N-terminal kinase is sensitive to farnesyl protein transferase inhibition raises the possibility that, in addition to cancerous disease, farnesyl protein transferase inhibitors may be useful compounds in combating inflammatory disease.  相似文献   

14.
15.
Kainate receptors (KARs) have been described as modulators of synaptic transmission at different synapses. However, this role of KARs has not been well characterized in the amygdala. We have explored the effect of kainate receptor activation at the synapse established between fibers originating at medial geniculate nucleus and the principal cells in the lateral amygdala. We have observed an inhibition of evoked excitatory postsynaptic currents (eEPSCs) amplitude after a brief application of KARs agonists KA and ATPA. Paired-pulse recordings showed a clear pair pulse facilitation that was enhanced after KA or ATPA application. When postsynaptic cells were loaded with BAPTA, the depression of eEPSC amplitude observed after the perfusion of KAR agonists was not prevented. We have also observed that the inhibition of the eEPSCs by KARs agonists was prevented by protein kinase A but not by protein kinase C inhibitors. Taken together our results indicate that KARs present at this synapse are pre-synaptic and their activation mediate the inhibition of glutamate release through a mechanism that involves the activation of protein kinase A.  相似文献   

16.
We developed 1-[4-(N-benzylamino)phenyl]-3-phenylurea derivative 4 (GN6958) as a non-peptidic selective SUMO-sentrin specific protease (SENP)1 protease inhibitor based on the hypoxia inducible factor (HIF)-1α inhibitor 1 (GN6767). The direct interaction of compound 1 with SENP1 protein in cells was observed by the pull-down experiments using the biotin-tagged compound 2 coated on the streptavidin affinity column. Among the various 1-[4-(N-benzylamino)phenyl]-3-phenylurea derivatives tested, compounds 3 and 4 suppressed HIF-1α accumulation in a concentration-dependent manner without affecting the expression level of tubulin protein in HeLa cells. Both compounds inhibited SENP1 protease activity in a concentration-dependent manner, and compound 4 exhibited more potent inhibition than compound 3. Compound 4 exhibited selective inhibition against SENP1 protease activity without inhibiting other protease enzyme activities in vitro.  相似文献   

17.
The mode of action of helenalin and bis(helenalinyl) malonate as protein synthesis inhibitors of P-388 lymphocytic leukemia cells was investigated. The initial characterizations were carried out in crude lysates of the P-388 cells. In the lysate, there was a 4 min lag after the addition of drug before inhibition of protein synthesis occurred. Both drugs allowed run-off of preformed polysomes, but did significantly inhibit the formation of the 80 S initiation complex suggesting a preferential inhibition of one or more initiation reactions. The effect of these drugs on inhibition of both elongation and initiation reactions was further investigated using more fractionated systems prepared from P-388 cells. Poly(U)-directed polyphenylalanine synthesis was marginally inhibited by both drugs, but the degree of inhibition was not sufficient to explain the inhibition observed in either the lysate or in whole cell preparations of P-388. The formation of the ternary initiation complex was not significantly inhibited by either drug, but the conversion of this complex to the 48 and 80 S initiation complexes was inhibited. The inhibition of 48 S initiation complex formation by both drugs was sufficient to explain their inhibition of protein synthesis in whole cells.  相似文献   

18.
Effect of pH on the Protective Action of Interferon in L Cells   总被引:2,自引:0,他引:2       下载免费PDF全文
The pH of the solution in which interferon was applied to L cells determined the level of resistance developed against challenge with vesicular stomatitis virus (VSV). No inhibition of challenge virus was observed when interferon was applied to cells at pH 6.0. At pH 6.5, partial inhibition of VSV replication was observed and inhibition was maximum at pH 7.0. Evidence was obtained that interferon interacted with L cells at pH 6.0, but that resistance did not develop until the cells were placed in a medium at pH 7.0. These effects were explained by data showing that exposure of cells to a medium at pH 6.0 reversibly inhibited both ribonucleic acid and protein synthesis.  相似文献   

19.
Triethyllead and tripropyllead cations affected growth, energy metabolism and ion transport in Escherichia coli K12. The tripropyllead compound was more liposoluble than the triethyl analogue and was also more effective in inhibiting cell growth and the oxygen uptake of both intact cells and membrane particles. Triethyllead acetate (5 microM) inhibited growth on non-fermentable carbon sources, such as glycerol and succinate, more markedly than on glucose. At higher concentrations, triethyllead caused significant inhibition of respiration rates of intact cells; the concentration giving 50% inhibition was 60 microM for glycerol-grown cells and 150 microM for glucose-grown cells. Oxidation of succinate by membrane particles was less sensitive to inhibition by the tripropyl- or triethyllead compounds than were the oxidations of DL-lactate or NADH. Triethyllead acetate [1.9 mumol (mg membrane protein)-1] inhibited the reduction by NADH of cytochromes; evidence for more than one site of inhibition in the respiratory chain was obtained. Membrane-bound ATPase activity was strongly inhibited by triethyllead acetate in the absence or presence of Cl-. The concentration of inhibitor giving 50% inhibition [0.02 mumol (mg membrane protein)-1] was about two orders of magnitude lower than that required for 50% inhibition of substrate oxidation rates in membranes. Triethyllead acetate (1 microM) induced swelling of spheroplasts in iso-osmotic solutions of either NH4Cl or NH4Br, presumably as a result of the mediation by the organolead compound of Cl-/OH- and Br-/OH- antiports across the cytoplasmic membrane. Similar exchanges of OH- for F-, NO3- or SO4(2)- or the uniport of H+ could not be demonstrated. Comparisons are drawn between the effects of trialkyllead compounds and those of the more widely studied trialkyltin compounds.  相似文献   

20.
Cannabinoid compounds inhibit the cAMP signalling cascade in leukocytes. One of these compounds, cannabinol (CBN) has been shown to inhibit interleukin-2 (IL-2) expression and the activation of cAMP response element binding protein (CREB) and nuclear factor for immunoglobulin kappa chain in B cells (NF-kappaB) following phorbol-12-myristate-13 acetate (PMA) plus ionomycin (Io) treatment of thymocytes. Therefore, the objective of the present studies was to determine the role of cAMP and protein kinase A (PKA) in the CBN-mediated inhibition of IL-2, CREB, and NF-kappaB in PMA/Io-activated thymocytes. The inhibition of CREB/ATF-1 phosphorylation, or cAMP response element (CRE) or kappaB DNA binding activity produced by CBN in PMA/Io-activated thymocytes, could not be reversed by DBcAMP costimulation. Furthermore, DBcAMP failed to reverse the concentration-dependent inhibition of IL-2 protein secretion by CBN. Pretreatment of thymocytes with H89 produced a modest inhibition of PMA/Io-induced CREB/ATF-1 phosphorylation and CRE DNA binding activity but H89 had no effect on protein binding to a kappaB motif. Additionally, H89 modestly inhibited PMA/Io-induced IL-2 secretion. In light of the modest involvement of the cAMP pathway in CBN-mediated inhibition of CREB and IL-2 in PMA/Io-activated thymocytes, PD098059 (PD), the MEK inhibitor, was utilized to determine the role of ERK MAP kinases in thymocytes. ERKs play a critical role in IL-2 production but not for CREB phsophorylation. Collectively, these findings suggest that CBN may modulate several signalling pathways in activated T cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号