首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 724 毫秒
1.
An on-farm blood progesterone enzymeimmunoassay (EIA) was evaluated as a diagnostic test to predict the time of calving within a 24-hour period in near-term dairy cows. Blood samples were taken daily from 45 cows beginning 5 days prior to their expected due dates until calving, and plasma was stored at -20 degrees C until all cows had calved. The EIA test was performed on frozen-thawed plasma samples, and progesterone concentrations were determined to be low (positive test for calving within 24 hours) or high (negative test for calving within 24 hours). Sensitivity, specificity and predictive value of the EIA to accurately determine parturition within 24 hours were 86.7, 90.8 and 75.0%, respectively. The EIA correctly predicted the day of parturition in 168 of 187 (89.8%) plasma samples. Ten additional cows were similarly monitored except the EIA was performed on whole blood immediately after collection, and the sensitivity, specificity and predictive value of the test were 80.0, 97.6 and 88.9%, respectively. The day of parturition was correctly predicted in 49 of 52 (94.2%) whole blood samples. More than 95% of the cows calved within 24 hours when their plasma progesterone reached < 1.3 ng/ml. When results of the EIA were compared with those of a radioimmunoassay (RIA), the EIA findings were used to correctly classify 190 of 232 (81.9%) plasma samples as having low (< 2.0 ng/ml) or high (>/= 2.0 ng/ml) concentrations of progesterone. The EIA test was found to be a quick, practical means of estimating progesterone concentrations in bovine plasma or whole blood and was a useful test for predicting the day of parturition in cows.  相似文献   

2.
The objectives of the present study were to determine the effects of resynchronization with GnRH on Day 21 after artificial insemination (AI) on pregnancy rate and losses of pregnancy in lactating dairy cows. Holstein cows (n=585) on two dairy farms were assigned to one of two treatments in a randomized complete block design. On Day 21 after a pre-enrollment AI, animals assigned to the resynchronization (RES) group received 100 microg of GnRH i.m., whereas animals in the control (CON) group received no treatment. All animals were examined ultrasonographically on Days 21 and 28 after AI, and blood samples were taken for progesterone measurement on Day 21. Pregnancy was diagnosed on Day 28 and reconfirmed 14 days later. Nonpregnant cows on Day 28 were inseminated using timed AI after the completion of the Ovsynch protocol 10 and 17 days after enrollment in the study for RES and CON groups, respectively. Progesterone concentration > or =2.35 ng/ml was used as an indicator of pregnancy on Day 21. For RES and CON cows, pregnancy rate at Days 21 (70.9% versus 73.0%, P<0.56), 28 (33.1% versus 33.6%; P<0.80) and 42 (27.0% versus 26.8%; P<0.98) after the pre-enrollment AI did not differ. Administration of GnRH on Day 21 after AI had no effect on pregnancy loss in RES and CON groups from days 21 to 28 (53.2% versus 53.5%; P<0.94) and days 28 to 42 (17.9%; P<0.74) after AI. Pregnancy rate after the resynchronization period was similar for both treatment groups. Resynchronization with GnRH given on Day 21 after AI for initiation of a timed AI protocol prior to pregnancy diagnosis does not affect pregnancy rate and pregnancy loss in lactating dairy cows.  相似文献   

3.
Pregnancy per artificial insemination (AI) was evaluated in dairy cows (Bos taurus) subjected to synchronization and resynchronization for timed AI (TAI). Cows (n = 718) received prostaglandin F (PGF) on Days –38 and –24 (Days 39 and 53 postpartum), gonadotropin-releasing hormone (GnRH) on Day –10, PGF on Day –3, and GnRH and TAI on Day 0. Between Days –10 and –3, cows received a progesterone intravaginal insert (CIDR group) or no CIDR (Control group). Between Days 14 and 23, cows received a CIDR (Resynch CIDR group) or no CIDR (Resynch control group), GnRH on Day 23, with pregnancy diagnosis on Day 30. Cows in estrus (between Days 0 and 30) were re-inseminated at detected estrus (RIDE). Nonpregnant cows received PGF on Day 30 and GnRH and TAI on Day 33. Plasma progesterone was determined to be low or high on Days –24 and –10. Pregnancy rates were evaluated 30 and 55 d after AI. The CIDR insert included in the Presynch-Ovsynch protocol did not increase overall pregnancy per AI for first service (36.1% and 33.6% for CIDR; 34.1% and 28.8% for Control) but did decrease pregnancy loss (7.0% for CIDR and 15.6% for Control). The CIDR insert increased pregnancy per AI in cows with high progesterone at the time the CIDR insert was applied. Administration of a CIDR insert between Days 14 and 23 of the estrous cycle after first service did not increase overall pregnancy per AI to second service (24.7% and 22.7% for Resynch CIDR; 28.6% and 25.3% for Resynch control). For second service, RIDE cows had lower pregnancy rates in the Resynch CIDR group than in the Resynch control group. Cows with a CL (corpus luteum) at Day 30 had higher pregnancy rates in the Resynch CIDR group than those in the Resynch control group.  相似文献   

4.
Conception rates (CR) are low in dairy cows and previous research suggests that this could be due to impaired early embryonic development. Therefore, we hypothesized that CR could be improved by embryo transfer (ET) compared with AI. During 365 days, 550 potential breedings were used from 243 lactating Holstein cows (average milk production, 35 kg/day). Cows had their ovulation synchronized (GnRH-7d-PGF(2alpha)-3d-GnRH) and they were randomly assigned for AI immediately after the second GnRH injection (Day 0) or for transfer of one embryo 7 days later. Circulating progesterone concentrations and follicular and luteal size were determined on Days 0 and 7. Pregnancy diagnosis was performed on Days 25 or 32 and pregnant cows were reevaluated on Days 60-66. Single-ovulating cows with synchronized ovarian status had similar CR on Days 25-32 with ET (n = 176; 40.3%) and AI (n = 160; 35.6%). Pregnancy loss between Days 25-32 and 60-66 also did not differ (P = 0.38) between ET (26.2%) and AI (18.6%). When single (n = 334) and multiple (n = 57) ovulators were compared, independent of treatment, multiple ovulators had greater (P < 0.001) circulating progesterone concentrations on Day 7 (2.7 ng/ml versus 1.9 ng/ml) and there was a tendency (P = 0.10) for a greater CR in multiple ovulators (50.9% versus 38.1%). However, there was no difference in CR between AI and ET cows with multiple ovulations (50.0% versus 51.7%). In single-ovulating cows, CR tended to be lower for AI than ET in cows ovulating smaller follicles (diameter < or = 15 mm; 23.7% versus 42.3%; P = 0.06) but not average-diameter follicles (16-19 mm; 41.2% versus 37.3%; P = 0.81) or larger (> or =20 mm; 34.3 versus 51.0%; P = 0.36) follicles. Thus, although ET did not improve overall CR in lactating cows, follicle diameter and number of ovulating follicles may determine success with these procedures.  相似文献   

5.
Four trials were completed to study the effects of a single intramuscular injection of 5 μg of an agonist of gonadotrophin releasing hormone (Hoe 766) on plasma concentrations of LH and progesterone, and on oestrous cycle length in normally cycling dairy cows.The first trial (four cows) showed that a mid-cycle injection of Hoe 766 temporarily increases plasma LH from less than 5 ng/ml to over 20 ng/ml within 2.5 h. Average plasma progesterone concentrations ranged from 4.8 to 7.0 ng/ml compared to 3.3 ng/ml in the control animal.The second trial (22 cows) showed that an injection of Hoe 766 on Cycle Day 3, 6 or 9 (Oestrus = Cycle Day 0) increased average plasma progesterone concentrations during Cycle Days 13, 14 and 15 by 1.2 ng/ml. Each of three cows injected on Cycle Day 16 maintained plasma concentrations above 3.9 ng/ml until Cycle Day 19 and corpus luteum (CL) size was maintained until Cycle Day 21. Except for the group of cows injected on Cycle Day 3, all other groups had temporarily reduced concentrations of plasma progesterone when sampled 24 h after Hoe 766 administration.The third trial (216 cows) showed that a single injection of Hoe 766 made between Cycle Day 1 and 10 did not alter oestrous cycle length (21.5 vs 21.3 days). In contrast, in the fourth trial (371 cows), a single injection of Hoe 766 between Cycle Days 12 to 16 altered the distribution of cycle lengths of 17–29 days, the average cycle length and the incidence of ovulation without detected oestrus. Compared to matched control cows, fewer Hoe 766-treated cows were detected in oestrus (73.9% vs 90%), or had cycle lengths of less than 20 days (4.7% vs 22.2%). These effects were most pronounced among cows injected on Cycle Day 16 when only 51.7% were detected in oestrus and their average cycle length was 24.1 days.These effects were not due to the formation of a secondary CL. Rather, the injection of Hoe 766 stimulated CL function and appeared to prevent or delay normal luteolysis when administered from Cycle Day 12.  相似文献   

6.
It is desirable to determine wheter a cow has failed to become pregnant as early as possible, preferably prior to 50 d after insemination. Although palpation per rectum has been the generally accepted method of pregnancy diagnosis in cattle, the procedure may be a significant iatrogenic cause of fetal attrition. In a study conducted at a North Florida dairy from January through June 1982, pregnancy was determined in 192 Holstein-Friesian cows by measuring low milk progesterone (P4) content on day of insemination (Day 0) and elevated P4 on Days 21 and 24. Pregnant cows were randomly assigned to a treatment and a control group. Cows in the treatment group (n = 85) were palpated per rectum twice between Days 42 and 46 after insemination. Cows in the control group (n = 107) were not palpated until both groups were palpated at Day 90. Palpation, done by two experienced clinicians, consisted of palpation of fetal fluid fluctuation, identification of the amniotic vesicle, and slipping of the chorioallantoic membranes. In both groups of cows fetal viability was monitored by milk P4 content. Last milk (5 to 15 ml) was collected from one front quarter on Days 0, 21, and 24 and twice weekly thereafter through Day 63. Milk was defatted by centrifugation and the fat-free milk progesterone content measured by a radioimmunoassay without extraction. The milk P4 test was 80.0% accurate in determining pregnancy in the palpated and nonpalpated cows. In the cows palpated on Days 42 to 46, pregnancy rates declined by 7.5% as determined by palpation at Day 90, or by 11.4% as determined by milk P4 content through Day 63 (both values P < 0.05). Cows that were not palpated on Days 42 to 46 showed a 1.9% increase or a 4.3% decline in pregnancy rates as determined by the same criteria. Before palpation, at Days 42 to 46, pregnancy rates were better in cows that were inseminated in winter (January to March) than in spring (April to June) (82.3% vs 61.6%; P < 0.05); P4 content was higher (winter > spring = 2.13 ng/ml vs 1.38 ng/ml; P < 0.05). First-lactation cows had higher P4 values on Days 21 and 24 than older cows (P < 0.01).  相似文献   

7.
Serum samples from progesterone-oestrogen-treated ovariectomized Holstein cows (N = 4) were compared with samples from control ovariectomized Holstein cows (N = 4) to determine the effects of physiological levels (0-6 ng/ml) of circulating progesterone. The average progesterone level in treated animals rose from 1 ng/ml (Day 0) to plateau at 5 ng/ml (Days 12 to 36). Sera from progesterone-oestrogen-treated cows during Days 4 to 10 significantly suppressed stimulation of lymphocytes by phytohaemagglutinin as compared with sera from control cows (P = 0.02), whereas no differences were detected in serum samples from Days 12 to 36. Serum samples from progesterone-oestrogen-treated or control cows did not affect the stimulation of lymphocytes by pokeweed mitogen. Sialyltransferase activity (P = 0.0002) and sialic acid content (P = 0.006) were both significantly elevated in serum from progesterone-oestrogen-treated animals compared with controls during Days 8 to 16, whereas no significant differences were observed at later times. The results suggest that suppression of phytohaemagglutinin-induced stimulation, sialic acid content, and sialyltransferase activity are sensitive not to the circulating level of progesterone but rather to increases in progesterone concentration, with maximal effects observed at Days 8, 12 and 12, respectively, after the start of progesterone treatment. The work provides a preliminary basis for further studies on the mechanism of immunosuppression by steroids and during pregnancy.  相似文献   

8.
The essential role played by progesterone in the maintenance of pregnancy is unequivocal; however, the effects of progesterone on the secretory patterns of placental and pituitary molecules during the gestation period are not well defined. The objective of this study was to describe pregnancy-associated glycoprotein (PAG) concentrations (measured by RIA-497 and RIA-Pool) in pregnant females with progesterone concentrations lower (low-P4 group, n=20) or higher (high-P4 group, n=17) than the mean of 8.74 ng/mL on Day 21 (AI=Day 0). Luteinizing hormone (LH) and prolactin concentrations were also measured in both groups. Throughout the study period, blood samples were collected on Days 0, 21, 45, 60, and 80 from 37 females that were confirmed to be pregnant. PAG concentrations measured by both RIA-497 and RIA-Pool tended to be higher in high-P4 group than in low-P4 group from Day 30 until Day 80. On Day 80, plasma PAG concentrations that were measured using RIA-497 were observed to be higher (P<0.05) in the high-P4 group than in the low-P4 group (10.2+/-8.7 ng/mL versus 6.9+/-3.8 ng/mL). Concentrations of LH on Day 60 and prolactin on Day 80 were observed to be significantly lower (P<0.05) in the high-P4 group. There was a tendency for the concentrations of LH (Days 45 and 80) and prolactin (Days 30, 45, and 60) to be lower in cows in the high-P4 group than in the low-P4 group. Our results suggest the existence of a relationship among the concentration levels of progesterone, PAG, LH, and prolactin during early pregnancy.  相似文献   

9.
Blood samples were collected for the measurement of progesterone concentrations from 320 Holstein-Friesian heifers on Days 7 and 21 post-estrus. All animals were the recipients of either a fresh or previously frozen embryo on Day 7 and were palpated for pregnancy on Day 60 post-estrus. At the time of transer, progesterone levels were highly variable and were not strongly related to subsequent pregnancy status. There was a tendency for lower pregnancy rates in heifers receiving fresh embryos if progesterone levels were less than 1 ng/ml (33 vs 64% overall), and for previously frozen embryos when progesterone concentrations were less than 3 ng/ml (34 vs 44% overall). Progesterone concentrations were not related to subjective evaluation of corpus luteum quality by palpation per rectum. No heifers which maintained pregnancy had progesterone levels less than 1 ng/ml on Day 21. Only 41% of 247 heifers receiving either fresh or previously frozen embryos that were not pregnant on Day 60 had progesterone concentrations less than 1 ng/ml on Day 21. These data suggest that many recipients that do not maintain a pregnancy will experience an extended estrous cycle after transfer.  相似文献   

10.
The objective was to evaluate the effect of equine chorionic gonadotropin (eCG) and hCG post artificial insemination (AI) on fertility of lactating dairy cows. In Experiment 1, cows were either treated with eCG on Day 22 post AI (400 IU; n = 80) or left untreated (n = 84). On Day 29, pregnant cows were either treated with hCG (2500 IU; n = 32) or left untreated (n = 36). Pregnancy and progesterone were evaluated on Days 29 and 45. In Experiment 2, cows (n = 28) were either treated with eCG on Day 22 (n = 13) or left untreated (n = 15) and either treated with hCG on Day 29 (n = 14) or left untreated (n = 14). Blood sampling and ultrasonography were conducted between Days 22 and 45. In Experiment 3, cows were either treated with eCG on Day 22 post AI (n = 229) or left untreated (n = 241). Pregnancy was evaluated on Days 36 and 85. In Experiment 1, eCG on Day 22 increased (P < 0.02) the number of pregnant cows on Day 29 (50.0 vs. 33.3%) and on Day 45, the increase was higher (P < 0.01) in cows with timed AI (41.2 vs. 6.5%) than in cows AI at detected estrus (50.0 vs. 37.8%). Pregnancy losses were reduced by eCG and hCG, but increased in cows that did not receive eCG but were given hCG (P < 0.01). Treatment with hCG tended (P < 0.06) to increase progesterone in control cows, but not in cows treated with eCG. In Experiment 2, hCG increased (P < 0.01) the number of accessory CLs on Day 35 (28.5 vs. 0.0%) and tended (P < 0.07) to increase progesterone. In Experiment 3, eCG increased the number of pregnant cows (P < 0.05) on Days 36 and 85, but only in cows with low body condition (eCG = 45.6 and 43.5%; Control = 22.9 and 22.9%). In conclusion, eCG at 22 days post insemination increased fertility, primarily in cows with low body condition and reduced pregnancy losses when given 7 days before hCG; hCG induced accessory CLs and slightly increased progesterone, but hCG given in the absence of a prior eCG treatment reduced fertility.  相似文献   

11.
Poor conception rates in highly productive lactating cattle is especially prevalent in large, intensively-managed commercial herds. One of the causative factors is sub-optimal pre-implantation embryonic development which appears to result from inadequate circulating concentrations of progesterone. In the present study, the efficacy of very modest progesterone supplementation, between Days 3.5 and 10 post-AI, on pregnancy rates was determined in a commercial herd where bovine somatotropin (bST) was used as a management tool. All lactating cattle that were deemed to be in estrus and inseminated over a 4-week period were randomly assigned to either a control group (no treatment) or CIDR-1.9g (previously used for estrous synchronization) treatment from Day 3.5 to Day 10 post-AI. Milk samples were collected four times: on the day of AI, at Day 2 or 3, at Day 4 and at Day 22 post-AI and were analyzed for progesterone content. Data from a total of 130 breedings were used in the final analysis. The CIDR treatment increased circulating concentrations of progesterone in treated animals over those of control animals on Day 4 by 0.7ng/ml (P<0.05) and increased pregnancy rate from 35% (22/63) to 48% (32/67) (P=0.068). The effect of treatment was greater in first and second lactation cows, where pregnancy rates were 33% (18/55) in controls and 51% (31/61) in treated animals (P=0.03). The results of this study indicate that the timing of onset of the progesterone influence is important for successful pregnancy outcome, particularly in first and second lactation cows.  相似文献   

12.
The objective of this study was to evaluate the effects of GnRH administered at Day 12 post-AI on the reproductive performance of dairy cows. Holstein-Friesian dairy cows (n=103) on a large Hungarian dairy farm were allocated randomly to treated (n=54) or control (n=49) groups. Twelve days after AI, treated cows received a GnRH agonist i.m., while the control group received a placebo (physiological saline). Progesterone radioimmunoassay was used to determine the correct timing of artificial insemination (Day 0) and the incidence of luteal insufficiency on Day 12. Ultrasonography and radioimmunoassay for pregnancy-associated glycoprotein were used to detect pregnancy and late embryonic/fetal mortality between Days 32 and 55 after AI. Three cows from each group were inseminated when progesterone concentrations were >1.0 ng/mL, and six cows (four from the treated and two from the control group) had luteal insufficiency (progesterone<1.0 ng/mL) on Day 12. Late embryonic/fetal mortality occurred in three treated cows and in two control cows. When these cows were removed from the model, calving rates after first service were 59.6% (28/47) and 59.1% (26/44) for treated and control cows, respectively (P>0.05). There was no significant difference between treated and control cows when they were inseminated before or after Day 100 from calving. In summary, administration of a GnRH agonist on Day 12 after AI did not improve reproductive performance in dairy cows. However, our approach may be used for the field evaluation of different treatment protocols.  相似文献   

13.
Administration of 10 mg estradiol valerate (EV) to nonlactating Holstein cows on Days 16 of the estrous cycle prevented ovulation in 7 of 8 cows for 14 days post-injection. In these 7 cows, the timing of luteolysis and the luteinizing hormone (LH) surge was variable but within the normal range. At 14 days post-treatment, each of these cows had a large (greater than 10 mm) follicle, with 558 +/- 98 ng/ml estradiol-17 beta, 120 +/- 31 ng/ml testosterone, and 31 +/- 2 ng/ml progesterone in follicular fluid (means +/- SE). A second group of animals was then either treated with EV as before (n = 22), or not injected (control, n = 17) and ovariectomized on either Day 17, Day 18.5, Day 20, or Day 21.5 (24, 60, 96, or 132 h post-EV). Treatment with EV did not influence the timing of luteolysis, but surges of LH occurred earlier (59 +/- 8 h post-EV vs. 100 +/- 11 h in controls). The interval from luteolysis to LH peak was reduced from 44 +/- 6 h (controls) to 6.9 +/- 1.5 h (treated). Histologically, the largest follicle in controls tended to be atretic before luteolysis, but nonatretic afterwards, whereas the largest follicle in treated animals always tended to be atretic. Nonatretic follicles contained high concentrations of estradiol (408 +/- 59 ng/ml) and moderate amounts of testosterone (107 +/- 33 ng/ml) and progesterone (101 +/- 21 ng/ml), whereas atretic follicles contained low concentrations of estradiol (8 +/- 4 ng/ml) and testosterone (12 +/- 4 ng/ml), and either low (56 +/- 24 ng/ml) or very high (602 +/- 344 ng/ml) concentrations of progesterone. This study suggests that EV prevents ovulation by inducing atresia of the potential preovulatory follicle, which is replaced by a healthy large follicle by 14 days post-treatment.  相似文献   

14.
We hypothesized that reducing the size of the ovulatory follicle using aspiration and GnRH would reduce the size of the resulting CL, reduce circulating progesterone concentrations, and alter conception rates. Lactating dairy cows (n=52) had synchronized ovulation and AI by treating with GnRH and PGF2alpha as follows: Day -9, GnRH (100 microg); Day -2, PGF2alpha (25 mg); Day 0, GnRH (100 microg); Day 1, AI. Treated cows (aspirated group; n=29) had all follicles > 4 mm in diameter aspirated on Days -5 or -6 in order to start a new follicular wave. Control cows (nonaspirated group: n=23) had no follicle aspiration. The size of follicles and CL were monitored by ultrasonography. The synchronized ovulation rate (ovulation rate to second GnRH injection: 42/52=80.8%) and double ovulation rate of synchronized cows (6/42=14.3%) did not differ (P > 0.05) between groups. Aspiration reduced the size of the ovulatory follicle (P < 0.0001; 11.5 +/- 0.2 vs 14.5 +/- 0.4 mm), and serum estradiol concentrations at second GnRH treatment (P < 0.0002; 2.5 +/- 0.4 vs 5.7 +/- 0.6 pg/mL). The volume of CL was less (P < 0.05) for aspirated than nonaspirated cows on Day 7 (2,862 +/- 228 vs 5,363 +/- 342 mm3) or Day 14 (4,652 +/- 283 vs 6,526 +/- 373 mm3). Similarly, serum progesterone concentrations were less on Day 7 (P < 0.05) and Day 14 (P < 0.10) for aspirated cows. Pregnancy rate per AI for synchronized cows was lower (P < 0.05) for aspirated (3/21=14.3%) than nonaspirated (10/21=47.6%) cows. In conclusion, ovulation of smaller follicles produced lowered fertility possibly because development of smaller CL decreased circulating progesterone concentrations.  相似文献   

15.
The objective of this study was to identify factors affecting variation in conception rate to first artificial inseminations (AI) (CR: number of pregnant cows on D80-100/inseminated cows) and the incidence of embryonic/foetal loss (LEM) between 21 and 80 days of pregnancy (number of cows non-pregnant on D80-100/pregnant on D21) in 44 low fertility dairy herds of the west-central region of France. Reproductive status was assessed using progesterone milk concentration on D0 = Day of AI and D21-24, plasma PSPB concentration on D30-35, rectal palpation on D80-100 and observed return to oestrous. The final data set contained 1285 Prim'Holstein cows, 5.0% (64/1285) were inseminated in the luteal phase (progesterone > or = 3 ng/ml on D0), 61.3% (787/1285) were pregnant on D21-24 (progesterone < 3 ng/ml on D0 and > or = 5 ng/ml on D21-24), 15.4% lost their embryo/foetus between D21-24 and D80-100 (198/1285) and 45.8% (589/1285) were pregnant on D80-100. The incidence of late embryonic/foetal loss (LEM) was 25.2% (198/787). Multivariate logistic regression models including the random herd effect were used to analyse the relationship between AI centre, AI sire, cow's sire, parity, interval between calving and AI, milk production, milk protein content, body condition score (BCS) on D0, season of calving, season of AI, estimated genetic index on CR and LEM incidence. CR was significantly related to parity (p < 0.05), milk production after calving (p < 0.05) and estimated genetic value (p < 0.01). A significant difference in CR was observed for calving to AI interval > or = 70 days versus > or = 90 days, but the overall effect of the interval was not significant (p = 0.11). LEM incidence was affected by period of AI (p < 0.05), milk production (p < 0.05) and BCS (p < 0.05), but was not related to estimated genetic index. In conclusion, in these low fertility herds, the incidence of LEM was high and 25% of the cows lost their embryo after 21 days of pregnancy. LEM was affected by specific factors (season, BCS), which were not related to CR. The absence of a relationship between estimated genetic index and LEM in spite of its effect on CR indicates that estimated genetic merit has a greater effect on early embryonic loss or fertilisation failure than on later stages of embryo development.  相似文献   

16.
Utt MD  Johnson GL  Beal WE 《Theriogenology》2009,71(4):707-715
The objective of this experiment was to evaluate corpus luteum blood flow (CLBF) as an early indicator of pregnancy status in bovine embryo recipients. Fifty crossbred beef cows were submitted to embryo transfer on Day 7 after estrus. On Days 7, 11, 13, 15, 17, 19, 21, 26, 33, and 40, a blood sample was taken, the CL examined using a color-flow Doppler ultrasound scanner, and video was recorded of each scanning session. Ultrasound data were grouped by the first day progesterone concentrations were <1 ng/mL (indicating early embryo loss, EEL) through Day 21 (EEL-17, n = 3; EEL-19, n = 9; EEL-21, n = 3), absence of an embryo on Days 26, 33, or 40 (late embryo loss; LEL; n = 12), or remained pregnant (P; n = 23). The first decrease in CLBF of EEL-17, EEL-19, and EEL-21 cows compared to P cows occurred on Days 17, 19, and 21, respectively (P < 0.05). There was no difference in CLBF between LEL and P cows on Days 17, 19, and 21. Six evaluators diagnosed pregnancy from randomized video clips on Days 17, 19, and 21. Evaluators made more (P < 0.004) correct diagnoses on Day 19 than Day 17. Sensitivity (82.9 ± 10.1%) was not affected by day. From Days 17 to 19, diagnostic specificity increased (P = 0.046) from 43.2 ± 3.0 to 54.3 ± 3.0% but remained unchanged thereafter. Due to low specificity and sensitivity, evaluation of CLBF alone was insufficient for early pregnancy diagnosis.  相似文献   

17.
Lactating Holstein cows were used to determine if pregnancy rate from embryo transfer (n = 113) differed from contemporary control cows (n = 524) that were artificially inseminated (AI). Holstein heifers (n = 55) were superovulated with FSH-P (32 mg total) and inseminated artificially during estrus and subsequently managed under shade structures. On Day 7 post estrus, embryos were recovered, and primarily excellent to good quality embryos (90.3%) were transferred to estrus-synchronized lactating cows. Cows were managed under conditions of exposure to summer heat stress. Pregnancy status was determined by milk progesterone concentrations at Day 21 and palpation per rectum at 45 to 60 d post estrus. Pregnancy rates of cows presented for AI (Day 21, 18.0%; Days 45 to 60, 13.5%) were typical for lactating cows inseminated during periods of summer heat stress in Florida. Pregnancy rates of embryo recipient cows were higher (P<0.001) than those of control cows (Day 21, 47.6%; Days 45 to 60, 29.2%). Summer heat stress had no adverse effect on heifer superovulatory response, but it increased (P<0.05) the incidence of retarded embryos (相似文献   

18.
The accuracy and efficiency of progesterone (P4) and bovine pregnancy-specific protein B (bPSPB) radioimmunoassays (RIA) in detecting pregnant and nonpregnant dairy cows were compared at different stages of pregnancy. The study included 145 French Friesian heifers and cows from a single herd. A total of 175 artificial insemination (A.I.) and blood sampling procedures were performed. Animals were bled 24 d post AI for P4 RIA. They were bled at 24, 26, 30 to 35, and 70 +/- 9 after AI for bPSPB RIA. Females were declared nonpregnant when plasma P4 concentrations were lower than 1.5 ng/ml. With the bPSPB RIA, cows were nonpregnant when at least one of the B Bo x 100 replicates was higher than 95% in the RIA. When compared with palpations per rectum at 70 d, the accuracy of positive diagnoses (no. positive and pregnant/no. positive diagnoses) by P4 RIA at Day 24 was 67.2% (82 122 ). The accuracy of negative diagnoses was 98% (52 53 ). Accuracy of positive diagnoses by bPSPB RIA increased with gestation age (P<0.05) from 86.2% (50 58 ) on Day 24 to 98.8% (83 84 ) at time of palpation per rectum. Accuracy of negative diagnoses increased (P< 0.001) from Day 24 (71.8%; 84 117 ) to Days 30 to 35 (100%, 83 83 ). Efficiency in detecting nonpregnant females was much higher (P < 0.001) with the bPSPB RIA on Days 30 to 35 (90.2%; 83 92 ) than with the P4 RIA on Day 24 (56.5%, 52 92 ). It is concluded that 30 days after AI, the bPSPB RIA is an efficient test both for pregnancy prediction and detection of nonpregnant dairy cows.  相似文献   

19.
Four experiments were conducted to investigate modifications to gonadotropin releasing hormone (GnRH)-based fixed-time Al protocols in beef cattle. In Experiment 1, the effect of reducing the interval from GnRH treatment to prostaglandin (PGF) was examined. Lactating beef cows (n = 111) were given 100 mg gonadorelin (GnRH) on Day 0 (start of treatment) and either 500 microg cloprostenol (PGF) on Day 6 with Al and 100 microg GnRH 60 h later, or PGF on Day 7 with Al and GnRH 48 h later (6- or 7-day Co-Synch regimens). Pregnancy rates were 32/61 (53.3%) versus 26/50 (52.0%), respectively (P = 0.96). In Experiment 2. cattle (n = 196) were synchronized with a 7-day Co-Synch regimen and received either no further treatment or a CIDR-B device (Days 0-7). Pregnancy rates were 32/71 (45.1%) versus 33/77 (42.9%) in cows (P < 0.8), and 9/23 (39.1 %) versus 17/25 (68.0%) in heifers (P < 0.05). In Experiment 3, 49 beef heifers were randomly assigned to receive 12.5 mg pLH on Day 0, PGF on Day 7 and 12.5 mg of pLH on Day 9 with Al 12 h later (pLH Ovsynch), or similar treatment plus a CIDR-B device from Days 0 to 7 (pLH Ovsynch + CIDR-B), or 1 mg estradiol benzoate (EB) and 100 mg progesterone on Day 0, a CIDR-B device from Days 0 to 7 (EB/ P4 + CIDR-B), PGF on Day 7 (at the time of CIDR-B removal) and 1 mg i.m. EB on Day 8 with AI on Day 9 (52 h after PGF). Pregnancy rate in the EB/P4 + CIDR-B group (75.0%) was higher (P < 0.04) than in the pLH Ovsynch group (37.5%): the pLH Ovsynch + CIDR-B group was intermediate (64.7%). In Experiment 4, 266 non-lactating cows were allocated to a 7-day Co-Synch protocol (Co-Synch), a 7-day Co-Synch plus 0.6 mg per head per day melengestrol acetate (MGA) from Days 0 to 6 inclusive (Co-Synch + MGA) or MGA (Days 0-6) plus 2 mg EB and 50 mg progesterone on Day 0. 500 microg PGF on Day 7, 1 mg EB on Day 8 and fixed-time Al 28 h later (EB/ P4 + MGA). Pregnancy rates (P < 0.25) were 44.8% (39/87: Co-Synch), 47.8% (43/90; Co-Synch + MGA), and 60.7% (54/89: EB/P4 + MGA). In conclusion, a 6- or 7-day interval from GnRH to PGF in a Co-Synch regimen resulted in similar pregnancy rates in cows. The addition of a progestin to a Co-Synch or Ovsynch regimen significantly improved pregnancy rates in heifers but not in cows. Progestin-based regimens that included EB consistently resulted in high pregnancy rates to fixed-time Al.  相似文献   

20.
Hommeida A  Nakao T  Kubota H 《Theriogenology》2004,62(1-2):217-225
The objective of this study was to investigate the types and incidence of luteal sub-function in lactating cows after artificial insemination (AI) and their relationship with pregnancy, and to clarify the relationship between luteal function and parity, body condition score (BCS), milk yield, and dietary intake. In 19 cows, milk samples were collected daily from AI to confirmation of pregnancy. Milk progesterone concentrations were determined by EIA. Based on peak progesterone concentration and the day of onset of luteal phase, 15 of 30 progesterone profiles (50%) were normal, with progesterone concentration reaching 1.0 ng/ml within 5 days after insemination and > or =2.0 ng/ml thereafter. In addition, 6 (20%) were insufficient, (progesterone concentration remained < 2.0 ng/ml), 5 (17%) were delayed (progesterone reached 1.0 ng/ml after 5 days), 2 (7%) were both delayed and insufficient, one (3%) was short (progesterone >1.0 ng/ml for only 7 days), and one (3%) remained basal. Cows with a normal profile had a higher (P < 0.05) pregnancy rate than those with an abnormal profile (87% versus 33%, respectively). The amount of progesterone secreted in milk after first AI, as indicated by progesterone area under curve (AUC), was negatively correlated with milk yield (r = -0.83, P < 0.01), dry matter intake (r = -0.81, P < 0.05), total digestible nutrients (r = -0.82, P< 0.05), and digestible crude protein (r = -0.79, P <0.05). Cows that produced more milk and consumed more dry matter had less progesterone during the luteal phase. In conclusion, abnormal luteal function was associated with reduced pregnancy rates and high milk production and increased dietary intake during breeding were associated with reduced progesterone concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号