首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Sulfonylureas are widely used oral drugs in the treatment of diabetes mellitus. They function by the inhibition of ATP-sensitive K+ channels in pancreatic β-cells, which are thus considered the 'classical' sulfonylurea receptor. Next to the ATP-sensitive K+ channels, additional sulfonylurea-interacting proteins were identified, which might contribute to the physiological effects of this drug family. Most recently, Epac2 (exchange protein directly activated by cAMP 2) was added to the list of sulfonylurea receptors. However, this finding caused controversy in the literature. The critical discussion of the present paper comes to the conclusion that sulfonylureas are not able to activate Epac2 directly and are unlikely to bind to Epac2. Increased blood glucose levels after food intake result in the secretion of insulin from pancreatic β-cells. Glucose levels are detected 'indirectly' by β-cells: owing to increased glycolysis rates, the ratio of cellular ATP/ADP increases and causes the closure of ATP-sensitive K+ channels. In consequence, cells depolarize and voltage-dependent Ca2+ channels open to cause an increase in the cellular Ca2+ concentration. Finally, Ca2+ induces the fusion of insulin-containing granules with the plasma membrane. Sulfonylureas, such as tolbutamide, glibenclamide or acetohexamide, form a class of orally applicable drugs used in the treatment of non-insulin-dependent diabetes mellitus.  相似文献   

2.
Both avian and mammalian heart cells have high affinity receptors for antidiabetic sulfonylureas. The biochemical identification of these receptors has been carried out with [3H]glibenclamide. The Kd values for the most potent sulfonylureas, such as glibenclamide itself, are in the nanomolar range. Comparative studies of structure-function relationships indicate high similarities of binding properties between the sulfonylurea receptors in cardiac cells and insulinoma cells, respectively. The duration of the action potential of guinea pig cardiac cells was drastically reduced by decreasing intracellular ATP concentrations by perfusion or by blockade of oxidative phosphorylation. Glibenclamide was found to restore normal or nearly normal action potential properties in [ATP]in-depleted cardiac cells. Single channel recording using the patch-clamp technique has shown that this effect is associated with high affinity blockade of ATP-sensitive K+ channels by sulfonylureas.  相似文献   

3.
In animal cells, ATP binding cassette (ABC) proteins are a large family of transporters that includes the sulfonylurea receptor and the cystic fibrosis transmembrane conductance regulator (CFTR). These two ABC proteins possess an ion channel activity and bind specific sulfonylureas, such as glibenclamide, but homologs have not been identified in plant cells. We recently have shown that there is an ABC protein in guard cells that is involved in the control of stomatal movements and guard cell outward K+ current. Because the CFTR, a chloride channel, is sensitive to glibenclamide and able to interact with K+ channels, we investigated its presence in guard cells. Potent CFTR inhibitors, such as glibenclamide and diphenylamine-2-carboxylic acid, triggered stomatal opening in darkness. The guard cell protoplast slow anion current that was recorded using the whole-cell patch-clamp technique was inhibited rapidly by glibenclamide in a dose-dependent manner; the concentration producing half-maximum inhibition was at 3 &mgr;M. Potassium channel openers, which bind to and act through the sulfonylurea receptor in animal cells, completely suppressed the stomatal opening induced by glibenclamide and recovered the glibenclamide-inhibited slow anion current. Abscisic acid is known to regulate slow anion channels and in our study was able to relieve glibenclamide inhibition of slow anion current. Moreover, in epidermal strip bioassays, the stomatal closure triggered by Ca2+ or abscisic acid was reversed by glibenclamide. These results suggest that the slow anion channel is an ABC protein or is tightly controlled by such a protein that interacts with the abscisic acid signal transduction pathway in guard cells.  相似文献   

4.
Myocardial ATP-sensitive potassium (K(ATP)) channels have been implicated in attenuating cardiac hypertrophy by modulating endothelin-1 concentrations. Sulfonylureas differ in their affinity for cardiac K(ATP) channels and therefore may vary in their effects on left ventricular (LV) mass. We sought to determine the differential effects of sulfonylureas on LV mass in type 2 diabetic patients. All patients had been taking glibenclamide for more than 3 mo before being randomized to either switch to an equipotent dose of gliclazide or continue glibenclamide. A total of consecutive 240 diabetic patients were randomized into glibenclamide, gliclazide, a combination of glibenclamide and nicorandil, or gliclazide and nicorandil for 6 mo. In the gliclazide-treated group, the LV mass index was significantly decreased compared with that in the glibenclamide-treated groups. Nicorandil administration significantly reduced LV mass in glibenclamide-treated patients compared with patients treated with glibenclamide alone. Measurements of endothelin-1 concentrations mirrored the functional status of K(ATP) channel. Multivariate analysis revealed that regression of LV mass was significantly correlated only with the changes in endothelin-1 (P < 0.0001). Our results show that K(ATP) channels may play a pathogenetic role, probably through an endothelin-1-dependent pathway, in diabetes mellitus-related ventricular hypertrophy. Patients treated with gliclazide may have a beneficial effect in attenuating ventricular mass.  相似文献   

5.
H Bernardi  M Fosset  M Lazdunski 《Biochemistry》1992,31(27):6328-6332
Covalent labeling of nucleotide binding sites of the purified sulfonylurea receptor has been carried out with alpha-32P-labeled oxidized ATP. The main part of 32P incorporation is in the 145-kDa glycoprotein that has been previously shown to be the sulfonylurea binding protein (Bernardi et al., 1988). ATP and ADP protect against this covalent labeling with K0.5 values of 100 microM and 500 microM, respectively. Non-hydrolyzable analogs of ATP also inhibit 32P incorporation. Interactions between nucleotide binding sites and sulfonylurea binding sites have then been observed. AMP-PNP, a nonhydrolyzable analog of ATP, produces a small inhibition of [3H]glibenclamide binding (20-25%) which was not influenced by Mg2+. Conversely, ADP, which also produced a small inhibition (20%) in the absence of Mg2+, produced a large inhibition (approximately 80%) in the presence of Mg2+. This inhibitory effect of the ADP-Mg2+ complex was observed with a K0.5 value of 100 +/- 40 microM. All the results taken together indicate that ATP and ADP-Mg2+ binding sites that control the activity of KATP channels are both present on the same subunit that bears the receptors for antidiabetic sulfonylureas.  相似文献   

6.
The pancreatic ATP-sensitive potassium (K(ATP)) channel, a complex of four sulfonylurea receptor 1 (SUR1) and four potassium channel Kir6.2 subunits, regulates insulin secretion by linking metabolic changes to beta-cell membrane potential. Sulfonylureas inhibit K(ATP) channel activities by binding to SUR1 and are widely used to treat type II diabetes. We report here that sulfonylureas also function as chemical chaperones to rescue K(ATP) channel trafficking defects caused by two SUR1 mutations, A116P and V187D, identified in patients with congenital hyperinsulinism. Sulfonylureas markedly increased cell surface expression of the A116P and V187D mutants by stabilizing the mutant SUR1 proteins and promoting their maturation. By contrast, diazoxide, a potassium channel opener that also binds SUR1, had no effect on surface expression of either mutant. Importantly, both mutant channels rescued to the cell surface have normal ATP, MgADP, and diazoxide sensitivities, demonstrating that SUR1 harboring either the A116P or the V187D mutation is capable of associating with Kir6.2 to form functional K(ATP) channels. Thus, sulfonylureas may be used to treat congenital hyperinsulinism caused by certain K(ATP) channel trafficking mutations.  相似文献   

7.
The cystic fibrosis transmembrane conductance regulator (CFTR) is a Cl- channel that is regulated by cAMP-dependent phosphorylation and by intracellular ATP. Intracellular ATP also regulates a class of K+ channels that have a distinct pharmacology: they are inhibited by sulfonylureas and activated by a novel class of drugs called K+ channel openers. In search of modulators of CFTR Cl- channels, we examined the effect of sulfonylureas and K+ channel openers on CFTR Cl- currents in cells expressing recombinant CFTR. The sulfonylureas, tolbutamide and glibenclamide, inhibited whole-cell CFTR Cl- currents at half-maximal concentrations of approximately 150 and 20 microM, respectively. Inhibition by both agents showed little voltage dependence and developed slowly; > 90% inhibition occurred 3 min after adding 1 mM tolbutamide or 100 microM glibenclamide. The effect of tolbutamide was reversible, while that of glibenclamide was not. In contrast to their activating effect on K+ channels, the K+ channel openers, diazoxide, BRL 38227, and minoxidil sulfate inhibited CFTR Cl- currents. Half-maximal inhibition was observed at approximately 250 microM diazoxide, 50 microM BRL 38227, and 40 microM minoxidil sulfate. The rank order of potency for inhibition of CFTR Cl- currents was: glibenclamide < BRL 38227 approximately equal to minoxidil sulfate > tolbutamide > diazoxide. Site-directed mutations of CFTR in the first membrane-spanning domain and second nucleotide-binding domain did not affect glibenclamide inhibition of CFTR Cl- currents. However, when part of the R domain was deleted, glibenclamide inhibition showed significant voltage dependence. These agents, especially glibenclamide, which was the most potent, may be of value in identifying CFTR Cl- channels. They or related analogues might also prove to be of value in treating diseases such as diarrhea, which may involve increased activity of the CFTR Cl- channel.  相似文献   

8.
The role of ATP-binding cassette (ABC) proteins such as multidrug resistance-associated proteins (MRPs) is critical in drug resistance in cancer cells and in plant detoxification processes. Due to broad substrate spectra, specific modulators of these proteins are still lacking. Sulfonylureas such as glibenclamide are used to treat non-insulin-dependent diabetes since they bind to the sulfonylurea receptor. Glibenclamide also inhibits the cystic fibrosis transmembrane conductance regulator, p-glycoprotein in animals and guard cell ion channels in plants. To investigate whether this compound is a more general blocker of ABC transporters the sensitivity of ABC-type transport processes across the vacuolar membrane of plants and yeast towards glibenclamide was evaluated. Glibenclamide inhibits the ATP-dependent uptake of beta-estradiol 17-(beta-D-glucuronide), lucifer yellow CH, and (2',7'-bis-(2-carboxyethyl)-5-(and-6-)carboxyfluorescein. Transport of glutathione conjugates into plant but not into yeast vacuoles was drastically reduced by glibenclamide. Thus, irrespective of the homologies between plant, yeast and animal MRP transporters, specific features of plant vacuolar MRPs with regard to sensitivity towards sulfonylureas exist. Glibenclamide could be a useful tool to trap anionic fluorescent indicator dyes in the cytosol.  相似文献   

9.
Abstract: In previous studies evidence has been presented by photoaffinity labeling that a polypeptide of 145–150 kDa represents the cerebral sulfonylurea receptor. However, covalent incorporation of [3H]glibenclamide or a 125I-labeled glibenclamide analogue into the sulfonylurea receptor required high amounts of photoenergy and took place with low yield of photoinsertion. To provide a probe with increased photoreactivity a 4-azido-5-iodosalicyloyl analogue of glibenclamide was synthesized. Binding experiments revealed specific and reversible high-affinity binding of this novel probe to the particulate ( K D = 0.13 n M ) and solubilized ( K D = 0.56 n M ) sulfonylurea receptor from cerebral cortex. The novel probe showed >100-fold higher sensitivity to irradiation at 356 nm than glibenclamide. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed specific photoincorporation into a cerebral protein of 175 kDa and indicated an efficiency of photoincorporation of 9%. From dissociation binding curves following irradiation photoincorporation was estimated as 28% of specifically bound ligand. Photoincorporation into the 175-kDa protein following saturation binding of the novel probe to particulate sites from cerebral cortex indicated a K D value of 0.38 n M . Inhibition of photoincorporation into this protein by glibenclamide, glipizide, and tolbutamide revealed K D values for these sulfonylureas of 0.06 n M , 1.6 n M , and 1.2 µ M , respectively. These results show that the novel photoaffinity ligand can be used as a probe for detection and characterization of the sulfonylurea receptor and suggest that a 175-kDa protein represents the cerebral sulfonylurea receptor.  相似文献   

10.
Understanding mechanisms by which glibenclamide stimulates insulin release is important, particularly given recent promising treatment by glibenclamide of permanent neonatal diabetic subjects. Antidiabetic sulfonylureas are thought to stimulate insulin secretion solely by inhibiting their high-affinity ATP-sensitive potassium (K(ATP)) channel receptors at the plasma membrane of beta-cells. This normally occurs during glucose stimulation, where ATP inhibition of plasmalemmal K(ATP) channels leads to voltage activation of L-type calcium channels for rapidly switching on and off calcium influx, governing the duration of insulin secretion. However, growing evidence indicates that sulfonylureas, including glibenclamide, have additional K(ATP) channel receptors within beta-cells at insulin granules. We tested nonpermeabilized beta-cells in mouse islets for glibenclamide-stimulated insulin secretion mediated by granule-localized K(ATP) channels by using conditions that bypass glibenclamide action on plasmalemmal K(ATP) channels. High-potassium stimulation evoked a sustained rise in beta-cell calcium level but a transient rise in insulin secretion. With continued high-potassium depolarization, addition of glibenclamide dramatically enhanced insulin secretion without affecting calcium. These findings support the hypothesis that glibenclamide, or an increased ATP/ADP ratio, stimulates insulin secretion in part by binding at granule-localized K(ATP) channels that functionally contribute to sustained second-phase insulin secretion.  相似文献   

11.
Hypoglycemic sulfonylureas such as glibenclamide have been widely used to treat type 2 diabetic patients for 40 yr, but controversy remains about their mode of action. The widely held view is that they promote rapid insulin exocytosis by binding to and blocking pancreatic beta-cell ATP-dependent K+ (KATP) channels in the plasma membrane. This event stimulates Ca2+ influx and sets in motion the exocytotic release of insulin. However, recent reports show that >90% of glibenclamide-binding sites are localized intracellularly and that the drug can stimulate insulin release independently of changes in KATP channels and cytoplasmic free Ca2+. Also, glibenclamide specifically and progressively accumulates in islets in association with secretory granules and mitochondria and causes long-lasting insulin secretion. It has been proposed that nutrient insulin secretagogues stimulate insulin release by increasing formation of malonyl-CoA, which, by blocking carnitine palmitoyltransferase 1 (CPT-1), switches fatty acid (FA) catabolism to synthesis of PKC-activating lipids. We show that glibenclamide dose-dependently inhibits beta-cell CPT-1 activity, consequently suppressing FA oxidation to the same extent as glucose in cultured fetal rat islets. This is associated with enhanced diacylglycerol (DAG) formation, PKC activation, and KATP-independent glibenclamide-stimulated insulin exocytosis. The fat oxidation inhibitor etomoxir stimulated KATP-independent insulin secretion to the same extent as glibenclamide, and the action of both drugs was not additive. We propose a mechanism in which inhibition of CPT-1 activity by glibenclamide switches beta-cell FA metabolism to DAG synthesis and subsequent PKC-dependent and KATP-independent insulin exocytosis. We suggest that chronic CPT inhibition, through the progressive islet accumulation of glibenclamide, may explain the prolonged stimulation of insulin secretion in some diabetic patients even after drug removal that contributes to the sustained hypoglycemia of the sulfonylurea.  相似文献   

12.
The oral antidiabetic sulfonylurea [3H]glibenclamide specifically binds to plasma membranes from a rat beta-cell tumor indicating a receptor for sulfonylureas in these membranes. Irradiation of [3H]glibenclamide at 254 or 300 nm in the presence of albumin resulted in covalent labeling of the albumin molecule. Direct photoaffinity labeling of beta-cell membranes with [3H]glibenclamide resulted in the covalent modification of two membrane polypeptides with apparent molecular masses 140 and 33 kDa. The extent of labeling of the 140 kDa polypeptide was specifically decreased by sulfonylureas. This suggests that a membrane polypeptide of 140 kDa is a component of the sulfonylurea receptor in the beta-cell membrane.  相似文献   

13.
The effects of the hypoglycemic sulfonylureas tolbutamide and glibenclamide on free cytoplasmic Ca2+, [Ca2+]i, were compared with that of a depolarizing concentration of K+ in dispersed and cultured pancreatic beta-cells from ob/ob mice. [Ca2+]i was measured with the fluorescent Ca2+-indicator quin2. The basal level corresponded to 150 nM and increased to 600 nM after exposure to 30.9 mM K+. The corresponding levels after stimulation with 1 microM glibenclamide and 100 microM tolbutamide were 390 and 270 nM respectively. K+ depolarization increased [Ca2+]i more rapidly than either of the sulfonylureas. It is suggested that the increased [Ca2+]i obtained after stimulation by sulfonylureas is due to depolarization of the beta-cells with subsequent entry of Ca2+ through voltage-dependent channels.  相似文献   

14.
K(ATP)-channel-dependent and K(ATP)-channel-independent insulin-releasing actions of the sulfonylurea, tolbutamide, were examined in the clonal BRIN-BD11 cell line. Tolbutamide stimulated insulin release at both nonstimulatory (1.1 mM) and stimulatory (16. 7 mM) glucose. Under depolarizing conditions (16.7 mM glucose plus 30 mM KCl) tolbutamide evoked a stepwise K(ATP) channel-independent insulinotropic response. Culture (18 h) with tolbutamide or the guanidine derivative BTS 67 582 (100 microM) markedly reduced (P < 0. 001) subsequent responsiveness to acute challenge with tolbutamide, glibenclamide, and BTS 67 582 but not the imidazoline drug, efaroxan. Conversely, 18 h culture with efaroxan reduced (P < 0.001) subsequent insulinotropic effects of efaroxan but not that of tolbutamide, glibenclamide, or BTS 67 582. Culture (18 h) with tolbutamide reduced the K(ATP) channel-independent actions of both tolbutamide and glibenclamide. Whereas culture with efaroxan exerted no effect on the K(ATP) channel-independent actions of sulfonylureas, BTS 67 582 abolished the response of tolbutamide and inhibited that of glibenclamide. These data demonstrate that prolonged exposure to tolbutamide desensitizes both K(ATP)-channel-dependent and -independent insulin-secretory actions of sulfonylureas, indicating synergistic pathways mediated by common sulfonylurea binding site(s).  相似文献   

15.
Kim S  Bae YH 《Biomacromolecules》2003,4(6):1550-1557
Using a polymeric sulfonylurea (PSU) designed from glibenclamide, we examined the interactions of sulfonylurea with pancreatic islets rather than genetically remodeled beta-cell lines to clarify the biological roles of ATP-sensitive K+ (KATP) channels to which sulfonylurea binds. PSU enhanced insulin secretion from the islets with 10 nM (SU equivalent) treatment, especially at low glucose concentration, but its activity was inhibited by 100 microM diazoxide. Confocal microscopy visualized PSU interactions with the islet and revealed that the modulation of intracellular Ca2+ occurred in the same region of an islet where PSU was also bound. In quantification method of the confocal microscopic images, competition of PSU with glibenclamide on its binding sites and glucose inhibition against PSU binding were confirmed. In this study, it was concluded that the PSU was a comparable drug with glibenclamide and offered a new standard method to study intact islets.  相似文献   

16.
Somatostatin, an hyperglycemia-inducing hormone, was studied in rat insulinoma (RINm5F) cells using 86Rb+ efflux techniques. 86Rb+ efflux is stimulated by somatostatin in a dose-dependent manner. The half-maximum value of activation is 0.7 nM. Somatostatin-induced 86Rb+ efflux is abolished by the hypoglycemia-inducing sulfonylurea, glibenclamide, a known blocker of ATP-regulated K+ channels. Somatostatin activation is prevented by pretreatment of insulinoma cells with pertussis toxin. 86Rb+ efflux studies show that somatostatin activates an ATP-dependent K+ channel.  相似文献   

17.
We have investigated the structure of the glibenclamide binding site of pancreatic beta-cell ATP-sensitive potassium (K(ATP)) channels. K(ATP) channels are a complex of four pore-forming Kir6.2 subunits and four sulfonylurea receptor (SUR1) subunits. SUR1 (ABCC8) belongs to the ATP binding cassette family of proteins and has two nucleotide binding domains (NBD1 and NBD2) and 17 putative transmembrane (TM) sequences. Co-expression in a baculovirus expression system of two parts of SUR1 between NBD1 and TM12 leads to restoration of glibenclamide binding activity, whereas expression of either individual N- or C-terminal part alone gave no glibenclamide binding activity, confirming a bivalent structure of the glibenclamide binding site. By using N-terminally truncated recombinant proteins we have shown that CL3 - the cytosolic loop between TM5 and TM6 - plays a key role in formation of the N-terminal component of the glibenclamide binding site. Analysis of deletion variants of the C-terminal part of SUR1 showed that CL8 - the cytosolic loop between TM15 and TM16 - is the only determinant for the C-terminal component of the glibenclamide binding site. We suggest that in SUR1 in the native K(ATP) channel close proximity of CL3 and CL8 leads to formation of the glibenclamide binding site.  相似文献   

18.
Glibenclamide closes an ATP-sensitive K+ channel (K-ATP channel) by interaction with the sulfonylurea receptor in the plasma membrane of pancreatic B cells and thereby initiates insulin release. Previous studies demonstrated that the Mg2+ complex of ATP decreases glibenclamide binding to the sulfonylurea receptor from pancreatic islets. The aim of the present study was to examine the effect of adenine and guanine nucleotides on binding of sulfonyl-ureas to the cerebral sulfonylurea receptor. For this purpose, binding properties of the particulate and solubilized site from rat or pig cerebral cortex were analyzed. Maximum recovery of receptors in detergent extracts amounted to 40-50%. Specific binding of [3H]glibenclamide to the solubilized receptors corresponded well to specific binding to microsomes. In microsomes and detergent extracts, the Mg2+ complexes of ATP, ADP, GTP, and GDP inhibited binding of [3H]glibenclamide. These effects were not observed in the absence of Mg2+. In detergent extracts, Mg-ATP (300 microM) reduced the number of high-affinity sites for [3H]-glibenclamide by 52% and increased the dissociation constant for [3H]glibenclamide by eightfold; Mg-ATP was half-maximally effective at 41 microM. Alkaline phosphatase accelerated the reversal of Mg-ATP-induced inhibition of [3H]glibenclamide binding. The data suggest similar control of the sulfonylurea receptor from brain and pancreatic islets by protein phosphorylation.  相似文献   

19.
Fluorescein derivatives are known to bind to nucleotide-binding sites on transport ATPases. In this study, they have been used as ligands to nucleotide-binding sites on ATP-sensitive K+ channels in insulinoma cells. Their effect on channel activity has been studied using 86Rb+ efflux and patch-clamp techniques. Fluorescein derivatives have two opposite effects. First, like ATP, they can inhibit active ATP-sensitive K+ channels. Second, they are able to reactivate ATP-sensitive K+ channels subjected to inactivation or "run-down" in the absence of cytoplasmic ATP. Therefore reactivation of the inactivated ATP-sensitive K+ channel clearly does not require channel phosphorylation as is commonly believed. The results indicate the existence of two binding sites for nucleotides, one activator site and one inhibitor site. Irreversible binding at either the inhibitor or the activator site on the channel was obtained with eosin-5-maleimide, resulting in irreversible inhibition or activation of the ATP-sensitive K+ channel respectively. The irreversibly activated channel could still be inhibited by 2 mM ATP. After activation by fluorescein derivatives, ATP-sensitive K+ channels become resistant to the classical blocker of this channel, the sulfonylurea glibenclamide. Negative allosteric interactions between fluorescein/nucleotide receptors and sulfonylurea-binding sites were suggested by results obtained in [3H]glibenclamide-binding experiments.  相似文献   

20.
E Honoré  M Lazdunski 《FEBS letters》1991,287(1-2):75-79
K+ channel openers elicit K+ currents in follicle-enclosed Xenopus oocytes. The most potent activators are the pinacidil derivatives P1075 and P1060. The rank order of potency to activate K+ currents in follicle-enclosed oocytes was: P1075 (K0.5:5 microM) greater than P1060 (K0.5:12 microM) greater than BRL38227 (lemakalim) (K0.5:77 microM) greater than RP61410 (K0.5:100 microM) greater than (-)pinacidil (K0.5:300 microM). Minoxidil sulfate, nicorandil, RP49356 and diazoxide were ineffective. Activation by the K+ channel openers could be abolished by the antidiabetic sulfonylurea glibenclamide. It was not affected by the blocker of the Ca(2+)-activated K+ channels charybdotoxin. The various K+ channel openers failed to activate glibenclamide-sensitive K+ channels in defolliculated oocytes, but BRL derivatives (K0.5 for BRL38226 is 150 microM) and RP61419 inhibited a background current. The channel responsible for this background current is K+ permeable but not fully selective for K+. It is resistant to glibenclamide. It is inhibited by Ba2+, 4-aminopyridine, Co2+, Ni2+ and La3+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号