首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phytoestrogens are naturally occurring plantderived polyphenols with estrogenic potency. They are ubiquitous in diet and therefore, generally consumed. Among Europeans, the diet is rich in multiple putative phytoestrogens including flavonoids, tannins, stilbenoids, and lignans. These compounds have been suggested to provide beneficial effects on multiple menopause-related conditions as well as on development of hormone-dependent cancers, which has increased the interest in products and foods with high phytoestrogen content. However, phytoestrogens may as well have adverse estrogenicity related effects similar to any estrogen. Therefore, the assessment of estrogenic potency of dietary compounds is of critical importance. Due to the complex nature of estrogenicity, no single comprehensive test approach is available. Instead, several in vitro and in vivo assays are applied to evaluate estrogenic potency. In vitro estrogen receptor (ER) binding assays provide information on the ability of the compound to I) interact with ERs, II) bind to estrogen responsive element on promoter of the target gene as ligand-ER complex, and III) interact between the co-activator and ERs in ligand-dependent manner. In addition, transactivation assays in cells screen for ligand-induced ERmediated gene activation. Biochemical in vitro analysis can be used to test for possible effects on protein activities and E-screen assays to measure (anti)proliferative response in estrogen responsive cells. However, for assessment of estrogenicity in organs and tissues, in vivo approaches are essential. In females, the uterotrophic assay is applicable for testing ERa agonistic and antagonistic dietary compounds in immature or adult ovariectomized animals. In addition, mammary gland targeted estrogenicity can be detected as stimulated ductal elongation and altered formation of terminal end buds in immature or peripubertal animals. In males, Hershberger assay in peri-pubertal castrated rats can be used to detect (anti)androgenic/ (anti)estrogenic responses in accessory sex glands and other hormone regulated tissues. In addition to these short-term assays, sub-acute and chronic reproductive toxicity assays as well as two-generation studies can be applied for phytoestrogens to confirm their safety in long-term use. For reliable assessment of estrogenicity of dietary phytoestrogens in vivo, special emphasis should be focused on selection of the basal diet, route and doses of administration, and possible metabolic differences between the species used and humans. In conclusion, further development and standardization of the estrogenicity test methods are needed for better interpretation of both the potential benefits and risks of increasing consumption of phytoestrogens from diets and supplements.  相似文献   

2.
3.
Harris HA  Bapat AR  Gonder DS  Frail DE 《Steroids》2002,67(5):379-384
Estrogens and selective estrogen receptor modulators are used for the treatment and prevention of conditions resulting from menopause. Since estrogens exert their activity by binding to nuclear receptors, there is intense interest in developing new ligands for the two known estrogen receptor subtypes, ER-alpha and ER-beta. Characterization assays used to profile new estrogen receptor ligands often utilize receptors from different species, with the assumption that they behave identically. To test this belief, we have profiled a number of estrogens, other steroids, phytoestrogens and selective estrogen receptor modulators in a solid phase radioligand binding assay using recombinant protein for human, rat, and mouse ER-alpha and ER-beta. Certain compounds show species dependent binding preferences for ER-alpha or ER-beta, leading to differences in receptor subtype selectivity. The amino acids identified by crystallography as lining the ligand binding cavity are the same among the three species, suggesting that as yet unidentified amino acids contribute to the structure of the binding site. We conclude from this analysis that the ability of a compound to selectively bind to a particular ER subtype can be species dependent.  相似文献   

4.
Hanson RN  Lee CY  Friel C  Hughes A  DeSombre ER 《Steroids》2003,68(2):143-148
As part of our program to develop novel ligands for the estrogen receptor, we synthesized the series of isomeric 17alpha-(trifluoromethyl)phenylvinyl estradiols using our solid-phase organic synthesis methodology. The compounds were evaluated for their relative binding affinity (RBA) using the ERalpha-LBD and in vivo potency using the immature rat uterotrophic growth assay. The ortho-isomer had the highest RBA values, 48-223, and the highest estrogenicity in vivo. The other isomers had significantly lower affinities and were weaker agonists in the uterotrophic assay. The results suggest that introduction of substituents at the 17alpha-position of estradiol is tolerated by the ER-LBD and permit agonist responses in the intact animal, however, the effect is sensitive to the position of groups on the phenyl ring. This study demonstrates that the 17alpha-position of estradiol is a reasonable site for modification but the position and physicochemical properties of such modifications may significantly affect the affinity and efficacy of the ligand.  相似文献   

5.
The aim of this study was to characterize carbonic anhydrase II (CA2), as novel estrogen responsive gene, towards its usefulness to elucidate the molecular mechanisms of phytoestrogen action. Effects of estradiol-17beta (E2), and the phytoestrogens genistein (Gen), daidzein (Dai), as well as 8-prenylnaringenin (8PN) on CA2 mRNA expression were investigated in vivo in the uterus and liver of Wistar rats, and in vitro in Fe33 hepatoma cells. Relative amounts of mRNA levels of CA2 were measured by real-time RT-PCR. In vivo CA2 expression in uterus and liver is down-regulated by estrogen in time dependent manner with the most pronounced effect detectable 72 h after treatment. Treatment with Gen results in a slight down-regulation of CA2 expression in the uterus. In liver a response to Gen is detectable only after 7 h, where the expression of the gene is down-regulated to 60%. Treatment with Dai and 8PN for 72 h results in a slight down-regulation of CA2 in both tissues. In contrast in Fe 33 cells CA2 gene expression was up-regulated in response to the treatment with E2 for 7 h. In summary, we could demonstrate that the modulation of CA2 gene expression following treatment with E2 and Gen in rat uterus is comparable to the uterotrophic response of these substances, but with an inverted pattern. Remarkably, of all phytoestrogens 8PN exhibited the strongest uterotrophic response but only induced a very faint decrease of CA2 expression. In addition, we provide the first pieces of evidence that 8PN, like Gen and Dai, cannot be considered as a pure agonist. In conclusion, CA2 shows estrogen sensitivity not only in both tissues studied, but also in many others. Further, it exhibits a differential sensitivity thereby being capable to discriminate between different molecular qualities of phytoestrogens, like demonstrated for Gen and 8PN.  相似文献   

6.
Yeast reporter system for rapid determination of estrogenic activity   总被引:5,自引:0,他引:5  
An in vitro test system for the determination of estrogens, xeno- and phytoestrogens, based on the activation of human estrogen receptor-alpha, has been examined for ability in monitoring environmental estrogens. The system consists of an expression plasmid for the human estrogen receptor-alpha and a reporter plasmid containing the lacZ gene under the control of the vitellogenin hormone response element. These plasmids have been transformed into S. cerevisae. Cultivation of yeast in the presence of estrogenic substances leads to activation of the estrogen receptor and induces the expression of the reporter lacZ. beta-Galactosidase activity of the translated gene lacZ is a measure of the estrogenic activity of a compound. First, the selectivity of the system was compared to data available in the literature. Then the sensitivity of the system was checked. The detection limit is 0.1 ng 17-beta estradiol or an equivalent activity per liter, if a sample can be concentrated 1000-fold. The system has been further characterized by selected compounds with known and unknown estrogenic activity.  相似文献   

7.
8.
Background: Cow's milk contain phytoestrogens especially equol depending on the composition of the feed ration. However, it is unknown whether milk differing in equol exhibits different estrogenicity in model systems and thereby potentially in humans as milk consumers. Methods: The estrogenicity of high and low equol milk (HEM and LEM, respectively) and purified equol was investigated in immature female mice including mRNA expression of six estrogen-sensitive genes in uterine tissue. Extracts of HEM and LEM were also tested for estrogenicity in vitro in an estrogen receptor (ER) reporter gene assay with MVLN cells. Results: The total content of phytoestrogens was approximately 10 times higher in HEM compared with LEM, but levels of endogenous milk estrone and 17β-estradiol were similar in the two milk types (503–566 and 60–64.6 pg/ml, respectively). There was no difference in uterine weight between mice receiving LEM and HEM, and no difference from controls. Equol (50 times the concentration in HEM) was not uterotrophic. The ERβ mRNA expression was down-regulated in the uteri of HEM mice compared with LEM and controls, but there was no difference between milk types for any of the other genes. Extracts of HEM showed a higher estrogenicity than extracts of LEM in MVLN cells, and there was a dose-dependent increase in estrogenicity by equol. Conclusion: The higher in vitro estrogenicity of HEM was not reflected as a higher uterine weight in vivo although the down-regulation of ERβ in uterine tissue of HEM mice could suggest some estrogenic activity of HEM at the gene expression level.  相似文献   

9.
Selecting the optimum diet for endocrine disruptor (ED) research and testing studies in rodents is critical because the diet may determine the sensitivity to detect or properly evaluate an ED compound. Dietary estrogens can profoundly influence many molecular and cellular event actions on estrogen receptors and estrogen-sensitive genes. The source, concentration, relative potency, and significance of dietary estrogens in rodent diets are reviewed, including dietary factors that focus specifically on total metabolizable energy and phytoestrogen content, which potentially affect ED studies in rodents. Research efforts to determine dietary factors in commercially available rodent diets that affect uterotrophic assays and the time of vaginal opening in immature CD-1 mice are summarized. A checklist is provided of important factors to consider when selecting diets for ED research and testing studies in rodents. Specific metabolizable energy levels are recommended for particular bioassays. Discussions include the between-batch variation in content of the phytoestrogens daidzein and genistein, the effects of total metabolizable energy and phytoestrogens on the timing (i.e., acceleration) of vaginal opening, and increased uterine weight in immature CD-1 mice. It is concluded that rodent diets differ significantly in estrogenic activity primarily due to the large variations in phytoestrogen content; therefore animal diets used in all ED studies should ideally be free of endocrine-modulating compounds.  相似文献   

10.
Relative mitogenic activities of various estrogens and antiestrogens   总被引:1,自引:0,他引:1  
G Stack  K Korach  J Gorski 《Steroids》1989,54(2):227-243
The abilities of a variety of estrogens and antiestrogens to stimulate DNA synthesis in the prepuberal rat uterus were compared. One microgram of each compound was administered in vivo via a single intraperitoneal injection. DNA synthesis was assayed in vitro in isolated nuclei 24 h later. The relative mitogenicities of the steroidal estrogens were: 16 alpha-E2 less than 17 alpha-E2 = E3 = 16-EpiE3 less than 16 beta-E2 = 17 beta-E2. The potencies of several nonsteroidal estrogens were also tested. Indenestrol A was as potent at 17 beta-E2, whereas indanestrol and dimethylstilbestrol had weaker activities. The antiestrogens, nafoxidine and 4-hydroxytamoxifen, were both potent stimulators of DNA synthesis. The abilities of an estrogen to stimulate increases in uterine wet weight, DNA polymerase alpha activities, and DNA synthesis in uterine nuclei 24 h after injection were closely correlated. Because the magnitude of the stimulation of DNA synthesis was greatest, its measurement is the most sensitive of these assays of uterotrophic activity.  相似文献   

11.
Ability of compound CDRI-85/287, a new nonsteroidal antiestrogen with negligible inherent estrogenicity, to inhibit uptake of 3H-estradiol (3H-E2) by the immature rat uterus in vivo was investigated. Different doses of 85/287 were administered either intraperitoneally 30 min before 3H-E2 or orally 1 and 6 hr before 3H-E2. A dose dependent inhibition in 3H-E2 uptake was observed after administration of the compound by either route and was 69% at 50 micrograms/rat ip dose and 80% at 2.5 mg/kg po dose. In in vitro competitive binding assay, however, the compound showed poor affinity (RBA 0.42% of estradiol-17 beta) for cytosolic estrogen receptors. Considering the potent anti-estrogenic as well as anti-implantation efficacy of the compound, its action in vivo appears to be mediated via its active metabolite(s).  相似文献   

12.
Species-specific pharmacology of antiestrogens: role of metabolism   总被引:4,自引:0,他引:4  
The nonsteroidal antiestrogen tamoxifen exhibits a paradoxical species-specific pharmacology. The drug is a full estrogen in the mouse, a partial estrogen/antiestrogen in humans and the rat, and an antiestrogen in the chick oviduct. Inasmuch as tamoxifen has antiestrogenic effects in vitro, differential metabolism of tamoxifen to estrogens might occur in the species in which it has an estrogenic pharmacology. Tamoxifen or its metabolite 4-hydroxytamoxifen could lose the alkylaminoethane side chain to form the estrogenic compound metabolite E or bisphenol. Sensitive metabolic studies with [3H]tamoxifen in chicks, rats, and mice identified 4-hydroxytamoxifen as the major metabolite, but no potentially estrogenic metabolites were observed. Athymic mice with transplanted human breast tumors can be used to study the ability of tamoxifen to stimulate target tissue or tumor growth. Estradiol caused the growth of transplanted MCF-7 breast cancer cells into solid tumors and a uterotrophic response. However, tamoxifen does not support tumor growth when administered alone, although it stimulates uterine growth. Since a similar profile of metabolites is sequestered in human and mouse tissues, these studies strongly support the concept that the drug can selectively stimulate or inhibit events in the target tissues of different species without metabolic intervention.  相似文献   

13.
Dietary phytoestrogens have been reported to inhibit aromatase activity in placental microsomes, but the effects in the human endometrium are unknown. Aromatase, the rate-limiting enzyme in the conversion of androgens to estrogens, has recently been shown to be expressed in the endometrium of women with endometriosis and is thought to play a role in the pathophysiology of this disease. Therefore, the objective of this study was to screen dietary phytoestrogens for their ability to inhibit aromatase activity in human endometrial stromal cells (ESC) and identify potential novel therapeutic agents for the treatment of endometriosis. The inhibition of aromatase activity by direct interaction with the dietary phytoestrogens genistein, daidzein, chrysin, and naringenin was tested in a cell free assay. Furthermore, test compound effects on aromatase activity in ESC cultures were also examined. Genistein and daidzein were inactive in the human recombinant aromatase assay whereas naringenin and chrysin inhibited aromatase activity. However, genistein (1 nM to 1 mM) stimulated aromatase activity in ESC whereas other phytoestrogens had no effect. Immunopositive aromatase cells were demonstrated in genistein-treated ESC but not in untreated control cultures. Taken together, our data suggest that genistein can increase aromatase activity in ESC likely via increased enzyme expression.  相似文献   

14.
It is well recognized that the majority of breast cancers are initially hormone-dependent and that 17β-estradiol (17β-E2) plays a crucial role in their development and progression. For this reason, using a compound able to block a specific enzyme involved in the last steps of the biosynthesis of 17β-E2 remains a rational way to treat estrogen-dependent diseases such as breast cancer. The present study describes the biological in vitro and in vivo evaluation of a structural modification (inversion of C18-methyl group at position 13 from β to α face) of 17β-E2 (1) and 17α-estradiol (17α-E2; 2). The two epimers 18-epi-17β-E2 (3) and 18-epi-17α-E2 (4) were obtained in two chemical steps by inversion of the C18-methyl of estrone using 1,2-phenylendiamine in refluxing acetic acid and reduction of ketone at position C17 with LiAlH(4). The new E2 isomers were tested on estrogen-sensitive cell lines (MCF-7 and T-47D), on estrogen-sensitive tissues (uterus and vagina of mice) and on estrogen receptor (ER) to determine their estrogenic potency relatively to natural estrogen 17β-E2 (1). The results show that 18-epi-17β-E2 (3) possesses the lower affinity for ER (RBA = 1.2%), the lower estrogenicity on estrogen-sensitive cells (1000 folds less estrogenic than 17β-E2 in MCF-7) and no uterotrophic (estrogenic) activity when tested on mice. In fact, we observed the following order of estrogenicity: 18-epi-17β-E2 (3)<18-epi-17α-E2 (4) < 17α-E2 (2)17β-E2 (1). These results suggest that the inversion of C18-methyl of natural 17β-E2 scaffold could be a useful strategy to decrease the estrogenicity of E2 derivatives used as enzyme inhibitors in the context of a treatment of estrogen-dependent diseases.  相似文献   

15.
Radiohalogenated estrogens have considerable potential for estrogen receptor-directed imaging and therapy for cancers which contain such receptors. In an effort to evaluate the potential of the triphenyl ethylene structure for such purposes we have synthesized 3 series of 2-halosubstituted triphenylethylenes containing oxygen functions in the 4 position of both aromatic rings attached to carbon 1 of the ethylene and tested their uterotrophic activity and competition for rat uterine low salt extractable, "cytosol" estrogen receptor. Most active, both as competitors for estradiol binding to estrogen receptors and by their ability to stimulate uterine growth are the 1,1-bis-4-hydroxyphenyl derivatives although the 1,1-bis-4-acetoxyphenyl derivatives also show good receptor affinity and demonstrate uterotrophic activities. However, since uterine cytosol contains enzymes which hydrolyze the acetates to the free phenols even during the incubation in the cold used for the competitive binding studies, a significant portion of the competition shown by the diacetates is probably due to their hydrolysis products, the free phenols. The 1,1-bis-4-methoxyphenyl derivatives are weak competitive binders and demonstrate uterotrophic activity only when administered at the higher, 20 micrograms, doses. Comparing the relative activities of various halogens at the 2 position, in each series the bromo and chloro derivatives generally were of similar activity and significantly more active than the corresponding iodo derivative. The non-halogen substituted derivatives were very good competitors for estrogen receptor binding but less active with regard to uterine growth stimulation, providing evidence that in vivo the vinyl halides would appear to be relatively stable to simple dehalogenation. Since they show reasonably good apparent affinities for the estrogen receptor and apparent in vivo stability, reflected by estrogenic activity, these halogen substituted triphenylethylene derivatives appear to be promising substrates for investigations of estrogen receptor directed imaging and therapy.  相似文献   

16.
The flavanone naringenin is known to possess only weak estrogenic properties, but some of its derivatives such as 8-prenylnaringenin are potent phytoestrogens. The aim of this study was to further clarify structure-function relationships of flavanones regarding their estrogenic or antiestrogenic properties by characterizing the new chemically synthesized naringenin derivative 7-(O-prenyl)naringenin-4'-acetate (7-O-PN). A yeast based reporter gene assay and MVLN cells, a MCF-7-derived cell line that possesses a luciferase reporter gene under the control of a vitellogenin estrogen responsive element, were used to investigate estrogenic actions of 7-O-PN in vitro. Estradiol (E2) has been used as a positive control. Subsequently a 3-day rat uterotrophic assay was performed to test for estrogenic effects. In addition, mRNA expression of estrogen sensitive genes in the uteri of these rats was measured using real time rtPCR. While E2 leads to a strong dose dependent signal in the yeast based reporter gene assay and in MVLN cells, 7-O-PN shows mild E2 antagonistic properties at concentrations 10(-8) and 10(-7)M, E2 agonistic properties at 10(-6) and 10(-5)M in MVLN cells and no effects on the yeast based system. In contrast to E2 treatment, 7-O-PN treatment did not increase uterus wet weight compared to the negative control. These findings are supported by mRNA expression studies of proliferation markers. Additionally, mRNA expression studies of estrogen regulated genes revealed very strong antiestrogenic properties of 7-O-PN regarding regulation of complement C3 expression while some estrogenic effects could be observed on the expression of estrogen receptor beta, clusterin and possibly on progesterone receptor and vascular endothelial growth factor.  相似文献   

17.
A variety of plant derived substances, so-called phytoestrogens (PEs), although structurally not related to steroids, produce effects similar to the mammalian estradiol. However, little is known so far about the structural requirements which determine PE activities. Taking into consideration that prenylation reactions are relatively common in plant secondary metabolism, the activity of a set of three PE derivatives of genistein and naringenin, namely genistein, 8-prenylgenistein (8PG), 6-(1,1-dimethylallyl)genistein (6DMAG), naringenin, 8-prenylnaringenin (8PN) and 6-(1,1-dimethylallyl)naringenin (6DMAN) was compared regarding structure–estrogenicity relationships in three functionally different estrogen receptor assays.Strong estrogenic activities were recorded for 6DMAN and 8PN in all assays used, while the parent compound naringenin showed only very weak estrogenicity.In contrast, in the case of genistein derivatives, only genistein itself exhibited estrogenic activity in a yeast based assay. In MVLN breast cancer cells, a bioluminescent MCF-7-derived cell line, the estrogenic activity of all three genistein derivatives was similar. Studying alkaline phosphatase activity in Ishikawa endometrial cancer cells as an estrogenic response marker revealed a similar pattern of estrogenicity of the genistein derivatives compared to the yeast based assay although a slight estrogenic effect of 6DMAG and 8PG was apparent.In summary, this study demonstrates that prenylation often found in plant secondary metabolism differentially modifies estrogenic properties of PEs depending on the basic structure of the respective PE.  相似文献   

18.
The actions and biological responses of anti-estrogens are a function of: the experimental conditions, the parameters, the organ and the animal species considered. Target tissues for estrogens in the guinea-pig during the perinatal period are interesting models to explore the action of anti-estrogens. The summary of the data indicates: (1) In the fetal uterus of guinea-pig in in vivo experiments (after injection to the maternal compartment) tamoxifen acts as a real agonist concerning growth, as a partial agonist concerning the stimulation of the progesterone receptor. (2) In in vitro experiments (in organ culture of fetal uterus or in isolated cells) anti-estrogens (tamoxifen or 4-hydroxy-tamoxifen) act as antagonists and also inhibit the effects provoked by estrogens. (3) In the uterus and vagina of newborn guinea-pigs, tamoxifen and its derivatives: 4-hydroxytamoxifen and N-desmethyltamoxifen act as real agonists concerning the uterotrophic and vaginotrophic effects, and also stimulate the amount of DNA per organ, but concerning the progesterone receptor in the uterus, in the short treatment anti-estrogens act as partial agonists but they have no effect in the long treatment. In the vagina in the short treatment anti-estrogens provoke no significant effects, but in the long treatment they are full agonists. In neither of the two biological responses studied (growth and progesterone receptor) does tamoxifen and its derivatives block the action of estradiol. (4) The use of a monoclonal antibody to the estrogen receptor revealed quantitative differences in the activation of the estrogen receptor when bound to estradiol or tamoxifen. This observation was in agreement with the lesser extent of binding to DNA-cellulose of the tamoxifen-estrogen receptor complex as compared with the estradiol-estrogen receptor complex. This fact suggests an impaired activation of the estrogen receptor induced by tamoxifen which might be related to the different biological responses provoked by estrogens and anti-estrogens.  相似文献   

19.
Effects of phytoestrogens on human health have been reported for decades. These include not only beneficial action in cancer prevention but also endocrine disruption in males. Since then many molecular mechanisms underlying these effects have been identified. Targets of phytoestrogens comprise steroid receptors, steroid metabolising enzymes, elements of signal transduction and apoptosis pathways, and even the DNA processing machinery. Understanding the specific versus pleiotropic effects of selected phytoestrogens will be crucial for their biomedical application. This review will concentrate on the influence of phytoestrogens on 17beta-hydroxysteroid dehydrogenases from a comparative perspective with other steroid metabolizing enzymes.  相似文献   

20.
As the population ages, there is an ever-increasing need for therapeutic agents that can be used safely and efficaciously to manage symptoms related to postmenopausal estrogen deficiency. Endogenous estrogens, e.g., 17beta-estradiol, of exogenous mammalian origin, e.g., horses, have long been used to manage such symptoms. There are more than 20 different classes of phytochemicals that have demonstrated affinity for human estrogen receptors in vitro. Some studies on exogenous estrogenic substances of botanical origin (phytoestrogens), such as standardized formulations of plant extracts with in vitro and in vivo estrogenic activity from soy (Glycine max Merill.) and red clover (Trifolium pratense L.), suggest clinical efficacy. Few clinical data for phytoestrogens other than isoflavonoids are available. In an exhaustive review of the literature through 2003, only two clinical trials were identified that were designed to evaluate the effect of hops (Humulus lupulus L.) on symptoms related to menopause. Folkloric, chemical, and biological literature relating primarily to the use of hops for their estrogenic activity, and two human clinical trials, are reviewed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号