首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Paraquat (PQ) administration consists in a chemical model that mimics phenotypes observed in Parkinson’s disease (PD), due to its ability to induce changes in dopaminergic system and oxidative stress. The aim of this study was to evaluate the actions of PQ in behavioral functions of adult zebrafish and its influence on oxidative stress biomarkers in brain samples. PQ (20 mg/kg) was administered intraperitoneally with six injections for 16 days (one injection every 3 days). PQ-treated group showed a significant decrease in the time spent in the bottom section and a shorter latency to enter the top area in the novel tank test. Moreover, PQ-exposed fish showed a significant decrease in the number and duration of risk assessment episodes in the light–dark test, as well as an increase in the agonistic behavior in the mirror-induced aggression (MIA) test. PQ induced brain damage by decreasing mitochondrial viability. Concerning the antioxidant defense system, PQ increased catalase (CAT) and glutathione peroxidase (GPx) activities, as well as the non-protein sulfhydryl content (NPSH), but did not change ROS formation and decreased lipid peroxidation. We demonstrate, for the first time, that PQ induces an increase in aggressive behavior, alters non-motor patterns associated to defensive behaviors, and changes redox parameters in zebrafish brain. Overall, our findings may serve as useful tools to investigate the interaction between behavioral and neurochemical impairments triggered by PQ administration in zebrafish.  相似文献   

2.
Tryptophan as a circulating precursor of serotonin (5-HT) may suppress food intake and body weight. Tryptophan administration can enhance the generation of reactive oxygen species (ROS) by inducing oxidative pathway in vivo and in vitro. We have examined the effect of repeated tryptophan administration on food consumption, body weight, brain lipid peroxidation and 5-HT immunoreactivity. Tryptophan was given at the dose of 100 mg/kg/24 hr in 0.2 ml saline solution i.p. for 7 days to mice. Control mice received 0.9% NaCL solution at the same manner and volume. Body weights were recorded at the beginning and end of the experiments. Thiobarbituric acid reactive substance (TBARS), the last product of lipid peroxidation, was measured spectrophotometrically. Brain 5-HT levels were determined by the immunohistochemical method. Our findings indicate that the tryptophan suppresses food intake significantly in mice. Body weight decreased and brain TBARS levels increased significantly by repeated tryptophan treatment. Immunohistochemical detection showed that 5-HT levels increased by tryptophan administration. There is a link between increased 5-HT level and oxidative stress by tryptophan administration on brain tissue. Tryptophan at repeated doses should be exercised carefully in clinical practice.  相似文献   

3.
Antibiotic-resistant Vibrio alginolyticus poses a big challenge to human health and food safety. It is urgently needed to understand the mechanisms underlying antibiotic resistance to develop effective approaches for the control. Here we explored the metabolic difference between gentamicin-resistant V. alginolyticus (VA-RGEN) and gentamicin-sensitive V. alginolyticus (VA-S), and found that the reactive oxygen species (ROS) generation was altered. Compared with VA-S, the ROS content in VA-RGEN was reduced due to the decreased generation and increased breakdown of ROS. The decreased production of ROS was attributed to the decreased central carbon metabolism, which is associated with the resistance to gentamicin. As such a mechanism, we exogenously administrated VA-RGEN with the glucose that activated the central carbon metabolism and promoted the generation of ROS, but decreased the breakdown of ROS in VA-RGEN. The gentamicin-mediated killing was increased with the elevation of the ROS level by a synergistic effect between gentamicin and exogenous glucose. The synergistic effect was inhibited by thiourea, a scavenger of ROS. These results reveal a reduced ROS-mediated antibiotic resistance mechanism and its reversal by exogenous glucose.  相似文献   

4.
Santiago AP  Chaves EA  Oliveira MF  Galina A 《Biochimie》2008,90(10):1566-1577
Mitochondrial hexokinase (mt-HK) and creatine kinase (mt-CK) activities have been recently proposed to reduce the rate of mitochondrial ROS generation through an ADP re-cycling mechanism. Here, we determined the role of mt-HK and mt-CK activities in regulate mitochondrial ROS generation in rat brain, kidney, heart and liver, relating them to the levels of classical antioxidant enzymes. The activities of both kinases were significantly higher in the brain than in other tissues, whereas the activities of catalase (CAT), glutathione peroxidase (GPx) and glutathione reductase (GR) were higher in both liver and kidney mitochondria. In contrast, manganese superoxide dismutase (Mn-SOD) activity was not significantly different among these tissues. Activation of mitochondrial kinases by addition of their substrates increased the ADP re-cycling and thus the respiration by enhancing the oxidative phosphorylation. Succinate induced hydrogen peroxide (H(2)O(2)) generation was higher in brain than in kidney and heart mitochondria, and the lowest in liver mitochondria. Mitochondrial membrane potential (DeltaPsi(m)) and H(2)O(2) production, decreased with additions of 2-DOG or Cr to respiring brain and kidney mitochondria but not to liver. The inhibition of H(2)O(2) production by 2-DOG and Cr correspond to almost 100% in rat brain and about 70% in kidney mitochondria. Together our data suggest that mitochondrial kinases activities are potent preventive antioxidant mechanism in mitochondria with low peroxidase activities, complementing the classical antioxidant enzymes against oxidative stress.  相似文献   

5.
The production of ascorbate radical (A·-) was investigated in tissues of rats intoxicated with paraquat (PQ) to know the protective role of antioxidant ascorbate (AH·-) in tissues. The electron spin resonance (ESR) method is applied to observe A·-. To eliminate increased biosynthesis of ascorbic acid (AH2) by PQ intoxication, ODS rats were chosen and fed with or without 250 ppm PQ in the diet. The radical A·- was detected only in the lung and spleen homogenates of both intoxicated and control rats at the beginning of ESR measurement. The radical levels of intoxicated rat lung and spleen were increased rapidly to twice the initial level after 3 h and decreased to 0.2-0.6 times the initial level after 24 h, whereas those of control rats were increased slowly to 1.1 times the initial level after 4 h and decreased slowly to 0.7 times the initial level after 24 h at 4°C. In other organs such as liver, kidney, heart and testis, A·- was not detected initially but detected afterwards. Higher A·- level was observed in the intoxicated rat liver than the control but no appreciable differences of A·- levels were observed between the intoxicated kidney, heart and testis and the respective controls. In the intoxicated rat lung the concentration of AH2 is only half but that of A·- is twice as high as that of the control. Larger amounts of A·- produced in the intoxicated rats decayed more quickly than those in the control rats. The simple addition of PQ to the control organ enhanced neither A·- production nor A·- quenching. These facts suggest that the tissues damaged by PQ require larger amounts of AH- to detoxicate harmful oxidants, resulting in concomitant production of A·-.  相似文献   

6.
The role of cocaine in modulating the metabolism of sulfur-containing compounds in the peripheral tissues is poorly understood. In the present study we addressed the question about the effects of acute and repeated (5 days) cocaine (10 mg/kg i.p.) administration on the total cysteine (Cys) metabolism and on the oxidative processes in the rat liver and kidney. The whole pool of sulfane sulfur, its bound fraction and hydrogen sulfide (H2S) were considered as markers of anaerobic Cys metabolism while the sulfate as a measure of its aerobic metabolism. The total-, non-protein- and protein- SH group levels were assayed as indicators of the redox status of thiols. Additionally, the activities of enzymes involved in H2S formation (cystathionine γ-lyase, CSE; 3-mercaptopyruvate sulfurtransferase, 3-MST) and GSH metabolism (γ-glutamyl transpeptidase, γ-GT; glutathione S-transferase, GST) were determined. Finally, we assayed the concentrations of reactive oxygen species (ROS) and malondialdehyde (MDA) as markers of oxidative stress and lipid peroxidation, respectively. In the liver, acute cocaine treatment, did not change concentrations of the whole pool of sulfane sulfur, its bound fraction, H2S or sulfate but markedly decreased levels of non-protein SH groups (NPSH), ROS and GST activity while γ-GT was unaffected. In the kidney, acute cocaine significantly increased concentration of the whole pool of sulfane sulfur, reduced the content of its bound fraction but H2S, sulfate and NPSH levels were unchanged while ROS and activities of GST and γ-GT were reduced. Acute cocaine enhanced activity of the CSE and 3-MST in the liver and kidney, respectively. Repeatedly administered cocaine enhanced the whole pool of sulfane sulfur and reduced H2S level simultaneously increasing sulfate content both in the liver and kidney. After repeated cocaine, a significant decrease in ROS was still observed in the liver while in the kidney, despite unchanged ROS content, a marked increase in MDA level was visible. The repeated cocaine decreased 3-MST and increased γ-GT activities in both organs but reduced GST in the kidney. Our results show that cocaine administered at a relatively low dose shifts Cys metabolism towards the formation of sulfane sulfur compounds which possess antioxidant and redox regulatory properties and are a source of H2S which can support mitochondrial bioenergetics.  相似文献   

7.
8.
Superoxide is the main reactive oxygen species (ROS) generated by aerobic cells primarily in mitochondria. It is also capable of producing other ROS and reactive nitrogen species (RNS). Moreover, superoxide has the potential to release iron from its protein complexes. Unbound or loosely bound cellular iron, known as labile iron, can catalyze the formation of the highly reactive hydroxyl radical. ROS/RNS can cause mitochondrial dysfunction and damage. Manganese superoxide dismutase (Mn-SOD) is the chief ROS-scavenging enzyme and thereby the primary antioxidant involved in protecting mitochondria from oxidative damage. To investigate whether mitochondrial superoxide mediates labile iron in vivo, the levels of labile iron were determined in the tissues of mice overexpressing Mn-SOD and heterozygous Mn-SOD-knockout mice. Furthermore, the effect of increased mitochondrial superoxide generation on labile iron levels was determined in isolated rat liver mitochondria exposed to various electron transport inhibitors. The results clearly showed that increased expression of Mn-SOD significantly lowered the levels of labile iron in heart, liver, kidney, and skeletal muscle, whereas decreased expression of Mn-SOD significantly increased the levels of labile iron in the same organs. In addition, the data showed that peroxidative damage to membrane lipids closely correlated with the levels of labile iron in various tissues and that altering the status of Mn-SOD did not alter the status of other antioxidant systems. Results also showed that increased ROS production in isolated liver mitochondria significantly increased the levels of mitochondrial labile iron. These findings constitute the first evidence suggesting that mitochondrial superoxide is capable of releasing iron from its protein complexes in vivo and that it could also release iron from protein complexes contained within the organelle.  相似文献   

9.
Paraquat (PQ(2+)) is a prototypic toxin known to exert injurious effects through oxidative stress and bears a structural similarity to the Parkinson disease toxicant, 1-methyl-4-pheynlpyridinium. The cellular sources of PQ(2+)-induced reactive oxygen species (ROS) production, specifically in neuronal tissue, remain to be identified. The goal of this study was to determine the involvement of brain mitochondria in PQ(2+)-induced ROS production. Highly purified rat brain mitochondria were obtained using a Percoll density gradient method. PQ(2+)-induced hydrogen peroxide (H(2)O(2)) production was measured by fluorometric and polarographic methods. The production of H(2)O(2) was evaluated in the presence of inhibitors and modulators of the mitochondrial respiratory chain. The results presented here suggest that in the rat brain, (a) mitochondria are a principal cellular site of PQ(2+)-induced H(2)O(2) production, (b) PQ(2+)-induced H(2)O(2) production requires the presence of respiratory substrates, (c) complex III of the electron transport chain is centrally involved in H(2)O(2) production by PQ(2+), and (d) the mechanism by which PQ(2+) generates H(2)O(2) depends on the mitochondrial inner transmembrane potential. These observations were further confirmed by measuring PQ(2+)-induced H(2)O(2) production in primary neuronal cells derived from the midbrain. These findings shed light on the mechanism through which mitochondria may contribute to ROS production by other environmental and endogenous redox cycling agents implicated in Parkinson's disease.  相似文献   

10.
Bacterial lipopolysaccharide (LPS) induces fever that is mediated by pyrogenic cytokines such as interleukin (IL)-1 beta. We hypothesized that the anti-inflammatory cytokine IL-10 modulates the febrile response to LPS by suppressing the production of pyrogenic cytokines. In rats, intravenous but not intracerebroventricular infusion of IL-10 was found to attenuate fever induced by peripheral administration of LPS (10 microg/kg iv). IL-10 also suppressed LPS-induced IL-1 beta production in peripheral tissues and in the brain stem. In contrast, central administration of IL-10 attenuated the febrile response to central LPS (60 ng/rat icv) and decreased IL-1 beta production in the hypothalamus and brain stem but not in peripheral tissues and plasma. Furthermore, intravenous LPS upregulated expression of IL-10 receptor (IL-10R1) mRNA in the liver, whereas intracerebroventricular LPS enhanced IL-10R1 mRNA in the hypothalamus. We conclude that IL-10 modulates the febrile response by acting in the periphery or in the brain dependent on the primary site of inflammation and that its mechanism of action most likely involves inhibition of local IL-1 beta production.  相似文献   

11.
Paraquat (PQ) is a well-known pneumotoxicant that exerts its toxic effect by elevating intracellular levels of superoxide. In addition, production of pro-inflammatory cytokines has possibly been linked to PQ-induced inflammatory processes through reactive oxygen species (ROSs) and nitric oxide (NO). However, the role of NO in PQ-induced cell injury has been controversial. To explore this problem, we examined the effect of NO on A549 cells by exposing them to the exogenous NO donor NOC18 or to cytokines; tumor necrosis factor-α, interleukin-1 β and interferon-γ, as well as PQ. Although the exogenous NO donor on its own had no effect on the release of lactate dehydrogenase (LDH), remarkable release was observed when the cells were exposed to high concentrations of NOC18 and PQ. This cellular damage caused by 1 mM NOC18 plus 0.2 mM PQ was ascertained by phase contrast microscopy. On the other hand, NO derived from 25–50 μM NOC18 added into the medium improved the MTT reduction activity of mitochondria, suggesting a beneficial effect of NO on the cells. Incubation of A549 cells with cytokines increased in inducible NO synthase (iNOS) expression and nitrite accumulation, resulting in LDH release. PQ further potentiated this release. The increase in nitrite levels could be completely prevented by NOS inhibitors, while the leakage of LDH was not attenuated by the inhibition of NO production with them. On the other hand, ROS scavenging enzymes, superoxide dismutase and catalase, inhibited the leakage of LDH, whereas they had no effect on the increase in the nitrite level. These results indicate that superoxide, not NO, played a key role in the cellular damage caused by PQ/cytokines. Our in vitro models demonstrate that NO has both beneficial and deleterious actions, depending on the concentrations produced and model system used.  相似文献   

12.
Despite their beneficial effects, aminoglycosides including gentamicin (GEN) have considerable nephrotoxic side-effects. The toxicity of GEN at the level of the kidney seems to relate to the generation of reactive oxygen species (ROS). ROS have been reported to be involved in the activation of protein kinase C (PKC). The unique structural aspects of PKC cause it to function as a sensor for oxidative stress. It seems likely that the increased NAD(P)H oxidase-derived superoxide (O2) production is at least in part mediated by PKC. We investigated the effects of chelerythrine, a commonly used PKC inhibitor, on GEN-induced changes of renal malondialdehyde (MDA), nitric oxide (NO) generation, catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) activities, glutathione (GSH) content, and serum creatinine (Cr), blood urea nitrogen (BUN) levels. Morphological changes in the kidney were also examined. GEN administration to control rats increased MDA and NO generation but decreased CAT, SOD and GSH-Px activities, and GSH content. Chelerythrine administration with GEN caused significantly decreased MDA, NO generation and increased CAT, SOD and GSH-Px activities, and GSH content when compared with GEN alone. Chelerythrine also significantly decreased serum Cr and BUN levels. Morphological changes in the kidney including tubular necrosis were evaluated qualitatively. Both biochemical findings and histopathological evidence showed that administration of chelerythrine reduced the GEN-induced kidney damage. We propose that chelerythrine acts in the kidney as a potent scavenger of free radicals to prevent the toxic effects of GEN via the inhibition of a PKC pathway.  相似文献   

13.
14.
In both type 1 and type 2 diabetes mellitus, increased production of pro-inflammatory cytokines and reactive oxygen species (ROS) occurs that induce apoptosis of β cells and cause peripheral insulin resistance respectively though the degree of their increased production is higher in type 1 and less in type 2 diabetes mellitus. Despite this, the exact mechanism(s) that lead to increased production of pro-inflammatory cytokines: interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) and ROS is not known. Studies showed that plasma concentrations of arachidonic acid (AA) and lipoxin A4 (LXA4) are low in alloxan-induced type 1 diabetes mellitus in experimental animals and patients with type 2 diabetes mellitus. Prior administration of AA, eicosapentaenoic and docosahexaenoic acids (EPA and DHA, respectively) and transgenic animals that produce increased amounts of EPA and DHA acids were protected from chemical-induced diabetes mellitus that was associated with enhanced formation of LXA4 and resolvins, while protectin D1 ameliorated peripheral insulin resistance. AA, LXA4, resolvins and protectins inhibit IL-6 and TNF-α production and suppress ROS generation. Thus, AA and lipoxins, resolvins and protectins may function as endogenous anti-diabetic molecules implying that their administration could be useful in the prevention and management of both types of diabetes mellitus.  相似文献   

15.
Free radicals are now well known to damage cellular components. To investigate whether age and thyroid level affect peroxidation speed, we examined the levels of malondialdehyde and antioxidant enzyme activities in different age groups of hypothyroid rats. Hypothyroidism was induced in 30- and 60-day-old Wistar Albino rats by the i.p. administration of propylthiouracil (10 mg kg(-1) body weight) for 15 days. While malondialdehyde levels of 30- or 60-day-old hypothyroid rats were increased in liver, they were decreased in the tissues of the heart and thyroid. While glucose-6-phosphate dehydrogenase activity levels did not change in heart, brain and liver tissues of 30-day-old rats, they increased in brain and heart tissues of 60-day-old experimental groups, but decreased in the liver. Catalase activities decreased in the liver and heart of rats with hypothyroidism, but increased in erythrocytes. In control groups while malondialdehyde levels increased in brain, heart and thymus with regard to age, they decreased in plasma. Glucose-6-phosphate dehydrogenase and catalase activities were not affected by age in tissues of the thymus, thyroid and brain, but they were decreased in the heart tissue. The changes in the levels of lipid peroxidation and antioxidant enzyme activities which were determined in different tissues of hypothyroid rats indicate a cause for functional disorder of these tissues. Moreover, there may be changes depending on age at lipid peroxidation and antioxidant enzyme activity levels.  相似文献   

16.
An anion-exchange HPLC mass assay was used to characterize Swiss-Webster mouse brain and peripheral tissue inositol(1)phosphate [Ins(1)P]levels. Ins(1)P was identified in all tissues studied but Ins(4)P could be identified only in brain, and then only as a part of a peak containing an additional, unidentified component. As a result, it was not possible to quantify Ins(4)P levels. Following a single subcutaneous dose of lithium (10 mmol/kg), brain Ins(1)P levels were maximally elevated after 6 h (corresponding to peak brain lithium concentrations) and were increased to levels 35- and 20-fold higher than in saline-treated animals in cholinergic agonist (pilocarpine)-stimulated and unstimulated animals, respectively. The ED50 for the lithium-induced accumulation of brain Ins(1)P 6 h after administration was 4-6 mmol/kg. The pilocarpine stimulation of lithium-induced brain Ins(1)P accumulation had an ED50 of 22 mg/kg, with maximal accumulation occurring 120 min after pilocarpine administration. Atropine reduced Ins(1)P levels, in both the absence and the presence of lithium, by 40%, indicating that cholinergic systems contribute a large (40%) component of basal brain phosphatidylinositol (PI) cycle activity. In peripheral tissues, there were lithium-induced accumulations of Ins(1)P in kidney, heart, and liver (but not testes) but these were less than that seen in the brain, suggesting that under basal (and pilocarpine-stimulated) conditions, the brain has a higher turnover of the PI cycle than the various peripheral tissues studied. These data support the hypothesis that lithium exerts its effects in vivo via modulation of the PI cycle.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The production of ascorbate radical (A·-) was investigated in tissues of rats intoxicated with paraquat (PQ) to know the protective role of antioxidant ascorbate (AH·-) in tissues. The electron spin resonance (ESR) method is applied to observe A·-. To eliminate increased biosynthesis of ascorbic acid (AH2) by PQ intoxication, ODS rats were chosen and fed with or without 250 ppm PQ in the diet. The radical A·- was detected only in the lung and spleen homogenates of both intoxicated and control rats at the beginning of ESR measurement. The radical levels of intoxicated rat lung and spleen were increased rapidly to twice the initial level after 3 h and decreased to 0.2–0.6 times the initial level after 24 h, whereas those of control rats were increased slowly to 1.1 times the initial level after 4 h and decreased slowly to 0.7 times the initial level after 24 h at 4°C. In other organs such as liver, kidney, heart and testis, A·- was not detected initially but detected afterwards. Higher A·- level was observed in the intoxicated rat liver than the control but no appreciable differences of A·- levels were observed between the intoxicated kidney, heart and testis and the respective controls. In the intoxicated rat lung the concentration of AH2 is only half but that of A·- is twice as high as that of the control. Larger amounts of A·- produced in the intoxicated rats decayed more quickly than those in the control rats. The simple addition of PQ to the control organ enhanced neither A·- production nor A·- quenching. These facts suggest that the tissues damaged by PQ require larger amounts of AH- to detoxicate harmful oxidants, resulting in concomitant production of A·-.  相似文献   

18.
Studies suggest iron exacerbates the damage caused by ischemic stroke. Our aim was to elucidate the effect of iron overload on infarct size after middle cerebral artery occlusion (MCAO) and to evaluate the efficacy of tempol, a superoxide dismutase mimetic, as a neuroprotective agent. Rats were administered iron +/- tempol before MCAO; control rats received saline. The middle cerebral artery was occluded for 24 h, and the size of the resultant infarct was assessed and expressed as the percentage of the hemisphere infracted (%HI). Iron treatment increased infarct size compared with control (51.83 +/- 3.55 vs. 27.56 +/- 3.28%HI iron treated vs. control, P = 0.01); pretreatment with tempol reversed this (51.83 +/- 3.55 vs. 26.09 +/- 9.57%HI iron treated vs. iron + tempol treated, P = 0.02). We hypothesized that reactive oxygen species (ROS) were responsible for the iron-induced damage. We measured ROS generated by exogenous iron in brain and peripheral vasculature from rats that had not undergone MCAO. There was no increase in ROS production in the brain of iron-treated rats or in brain slices incubated with iron citrate. However, ROS generation in carotid arteries incubated with iron citrate was significantly increased. ROS generation from the brain was assessed after MCAO by dihydroethidine staining; there was a dramatic increase in the ROS generation by the brain in the iron-treated rats compared with control 30 min after MCAO. We propose that iron-induced ROS generation in the cerebral vasculature adds to oxidative stress during an ischemic episode after the disruption of the blood-brain barrier.  相似文献   

19.
The regional accumulation of aluminium in the brain of male albino Wistar rats was investigated following 4 weeks of administration by intraperitoneal injection of aluminium lactate (10mg aluminium/kg body weight). The consequences of concomitant dietary vitamin E (5, 15, or 20 mg vitamin E/g of food) were also studied. Rat brains were dissected into functional regions, for the measurement of aluminium and markers of oxidative stress. Plasma aluminium levels were increased in all groups of animals receiving aluminium lactate (p < 0.01), and these levels were significantly reduced in rats receiving concomitant vitamin E (p < 0.05). In the group of rats receiving aluminium alone, levels of brain tissue aluminium were increased in all regions of brain examined (p< 0.01). Brain tissue aluminium levels were reduced by concomitant dietary vitamin E. Catalase and reduced glutathione levels were both reduced in several regions of brain in animals treated with aluminium (p < 0.05). Aluminium treatment was not associated with a significant increase in reactive oxygen species (ROS) generation (p > 0.05), although ROS production was attenuated by dietary vitamin E (p < 0.05) in some regions.  相似文献   

20.
The formation of vanadate oligomeric species is often disregarded in studies on vanadate effects in biological systems, particularly in vivo, even though they may interact with high affinity with many proteins. We report the effects in fish hepatic tissue of an acute intravenous exposure (12, 24 h and 7 days) to two vanadium(V) solutions, metavanadate and decavanadate, containing different vanadate oligomers administered at sub-lethal concentration (5 mM; 1 mg/kg). Decavanadate solution promotes a 5-fold increase (0.135 +/- 0.053 microg V(-1) dry tissues) in the vanadium content of the mitochondrial fraction 7 days after exposition, whereas no effects were observed after metavanadate solution administration. Reduced glutathione (GSH) levels did not change and the overall reactive oxygen species (ROS) production was decreased by 30% 24 h after decavanadate administration, while for metavanadate, GSH levels increased 35%, the overall ROS production was depressed by 40% and mitochondrial superoxide anion production decreased 45%. Decavanadate intoxication did not induce changes in the rate of lipid peroxidation till 12 h, but later increased 80%, which is similar to the increase observed for metavanadate after 24 h. Decameric vanadate administration clearly induces different effects than the other vanadate oligomeric species, pointing out the importance of taking into account the different vanadate oligomers in the evaluation of vanadium(V) effects in biological systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号