首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nicotinamide N-oxide is a major nicotinamide catabolite in mice but not in humans and rats. A high-performance liquid chromatographic method for the simultaneous measurement of nicotinamide, nicotinamide N-oxide, N1-methyl-2-pyridone-5-carboxamide, and N1-methyl-4-pyridone-3-carboxamide in mice urine was developed by modifying the mobile phase of a reported method for measurement of nicotinamide N-oxide.  相似文献   

2.
3.
4.
The onset of fat accumulation within CCl4 poisoned hepatocytes, occurring as early as 1 h after treatment, is known to be provoked by a block in lipoprotein secretion. Lipoprotein secretion involves the function of the microtubular system. Several data indicate that this early block in lipoprotein secretion is not primarily the consequence of impaired protein synthesis. Therefore effects of some derivatives of lipid peroxidation, i.e. aldehydes and linoleic acid hydroperoxide were investigated.The results described in this paper shown that the above mentioned lipid peroxidation derivatives inhibit, with different activities, [3H]colchicine binding to liver high-speed supernates. Percentage binding inhibition is directly related to concentrations of aldehydes or LAHPO. LAHPO is more effective than aldehydes. Among the aldehydes tested, 4-hydroxypentenal, produced during lipid peroxidation of biological materials, was the most active.The presence of thiols, added to the incubation medium, partially protects against the inhibition of [3H]colchicine binding by aldehydes. This suggests that aldehydes act by reacting with -SH groups of tubulin. The possibility that interaction between lipoperoxidation derivatives and tubulin in vivo may contribute to the onset of fat infiltration in CCl4 poisoning is discussed.  相似文献   

5.
Dacarbazine (DTIC) is a prodrug that is clinically effective in the treatment of Hodgkin’s disease, melanoma and soft tissue sarcoma. To better characterize the clinical pharmacology of parent drug and reactive metabolites, a reversed-phase HPLC method with UV detection was developed for simultaneous determination of dacarbazine and the metabolites 5-(3-hydroxymethyl-3-methyl-1-triazeno)imidazole-4-carboxamide (HMMTIC) and 5-(3-methyl-1-triazeno)imidazole-4-carboxamide (MTIC). Chromatographic separation was achieved with a Zorbax SB-CN column and with a mobile phase of 80% 50 mM ammonium phosphate, pH 6.5, 20% methanol and 0.1% triethylamine. HMMTIC, MTIC and DTIC were extracted from plasma with methanol precipitation of the proteins. Recovery of DTIC and the metabolites from whole blood was greater than 92%. Rapid processing of whole blood, methanol extraction and storage at −70°C substantially increased the stability of HMMTIC and MTIC from less than 15 min to 3 days. Precision for HMMTIC, MTIC and DTIC ranged from 3.7 to 16.3% relative standard deviation. The accuracy ranged from 101 to 114% for all three analytes. The validated assay was used to determine the pharmacokinetic data for dacarbazine and its active metabolites for human patients with recurrent glioma receiving DTIC intravenously.  相似文献   

6.
7.
1-Methylnicotinamide (MNA) is a primary metabolite of nicotinamide recently proven to cause systemic increase in PGI(2) plasma levels in an unknown mechanism. Our present study was aimed at verifying whether the increased production of PGI(2), a vasodilating prostanoid, in response to MNA, its metabolite N-methyl-2-pyridone-5-carboxamide (Met2PY), and nicotinamide may be reproduced under in vitro conditions. Since prostacyclin is a vasodilating prostanoid, we also performed the functional tests in the ex vivo model of coronary vascular bed perfusion to evaluate the vasoactive properties of those compounds. We did not observe any significant effect of the tested drugs on either PGI(2) or PGE(2) secretion in our in vitro model. Nicotinamide at the concentrations of 10 and 100 μmol/l and 100 μmol/l Met2PY slightly but significantly increased coronary flow in rat heart. These increases, however, remained very low when compared to that induced by the reference compound, bradykinin (100 nmol/l). Perfusion of rat hearts with Met2PY in the presence of 50 μmol/l indomethacin resulted in decreased coronary flow, which proves that the effect is cyclooxygenase dependent. We conclude that MNA metabolites should be more carefully addressed in reference to pro-prostacyclin activity and that systemic mechanism of MNA-induced PGI(2) production needs further clarification.  相似文献   

8.
A novel fluoropyrazole ribonucleoside has been shown to have significant anti-influenza activity in vitro. The compound is compared and contrasted with the structurally-related compound ribavirin in attempts to identify factors having significant bearing on the mode of action of both compounds.  相似文献   

9.
10.
A series of C-glycosylthiazoles were tested as inhibitors of purine nucleotide biosynthesis in invitro cultures of Ehrlich ascites tumor cells. The thiazole C-nucleoside, 2-β-D-ribofuranosylthiazole-4-carboxamide, demonstrated the only significant activity of the series as a specific inhibitor of guanine nucleotide biosynthesis. At concentrations of 10–1000 μM the compound inhibits the activities of the enzymes IMP dehydrogenase and GDP kinase by 50–60% and 30–60%, respectively. The antiviral agent ribavirin demonstrated a similar pattern of enzyme inhibition at the same range of concentrations. The possible relevance of this inhibition to the recently discovered antitumor properties of 2-β-D-ribofuranosylthiazole-4-carboxamide is discussed.  相似文献   

11.
We recently discovered new nucleotides (4-pyridone-3-carboxamide-1-beta -D-ribonucleoside phosphates) in human erythrocytes. To establish the precursor compound and pathways of nucleotide derivative formation and breakdown, human erythrocytes were incubated for 3 hours with 0.3 mM 4-pyridone-3-carboxamide-1-beta-D-ribonucleoside (4PYR) and erythrocyte concentrations of 4PYR and adenine nucleotides were followed. 4PYR triphosphate increased from 16.1 +/- 0.6 micro M to 74.9 +/- 9.17 and 4PYR monophosphate increased from 5 micro M to 254.7 +/- 13.9 micro M. Conversely, incubation with 0.3 mM 4-pyridone-3-carboxamide (4PY) did not lead to additional 4PYR nucleotide formation. 4PYR nucleotides were catabolized to 4PYR. We conclude that 4PYR nucleotides are formed in erythrocytes by nucleoside kinase-mediated 4PYR phosphorylation and catabolized by 5'nucleotidase-mediated dephosphorylation.  相似文献   

12.
4-Hydroxy-5-pyrrolinone-3-carboxamide HIV-1 integrase inhibitors   总被引:1,自引:0,他引:1  
The viral enzyme integrase is essential for the replication of HIV-1 and, after the discovery of Isentress™, represents a validated target for anti-retroviral therapy. Incorporation of the dihydroxycarbonyl pharmacophore into a pyrrolinone scaffold led to the discovery of 5-pyrrolinone-3-carboxamides as a structurally diverse class of HIV-1 integrase inhibitors.  相似文献   

13.
14.
15.
We report the identification of a hitherto unknown nucleotide that is present in micromolar concentrations in the erythrocytes of healthy subjects and accumulates at levels comparable with the ATP concentration in erythrocytes of patients with chronic renal failure. The unknown nucleotide was isolated and identified by liquid chromatography with UV and tandem mass detection, (1)H nuclear magnetic resonance and infrared spectroscopy as 4-pyridone-3-carboxamide-1-beta-D-ribonucleoside triphosphate (4PYTP), a structure indicating association with metabolism of the oxidized nicotinamide compounds. Subsequently, we demonstrated formation of 4PYTP in intact human erythrocytes during incubation with the chemically synthesized nucleoside precursor 4-pyridone-3-carboxamide-1-beta-D-ribonucleoside (4PYR). We noted preferential accumulation of monophosphate of 4PYR (4PYMP) over 4PYTP as well as a decrease in erythrocyte ATP concentration during incubation with 4PYR. Both the 4PYR phosphorylation and ATP depletion were blocked by an inhibitor of adenosine kinase. Plasma concentration of 4PYR was detectable but very low (0.013 +/- 0.006 microm) in contrast with the high daily urine excretion of this compound (26.7 +/- 18.2 micromol/24 h) in healthy subjects, indicating much greater renal clearance than other nicotinamide metabolites, nucleosides, or creatinine. We also noted a 40-fold increase in 4PYR plasma concentration in patients with chronic renal failure (0.563 +/- 0.321 microm). We suggest that 4PYTP formation in the erythrocytes is a hitherto unknown process aimed at sequestering potentially toxic 4PYR in a form that could be safely transported and subsequently released and excreted during passage of erythrocytes through the kidney.  相似文献   

16.
Intracellular catabolism of NAD in mammalian cells occurs mainly via reaction catalyzed by poly(ADP-ribose) polymerase (PARP) with the release of nicotinamide, which is then metabolized predominantly to N-methyl-2-pyridone-5-carboxamide (2PY). PARP could be activated by binding to broken DNA and is known to be involved in DNA repair mechanisms, cell stress response and regulation of apoptosis. 2PY may accumulate under disease conditions resulting in accelerated DNA damage and retention of catabolic products. Our hypothesis was that chronic renal failure would lead to elevation of 2PY and potentially to inhibition of PARP and related physiological mechanisms. In the present study we: (a) compared plasma 2PY concentration in healthy subjects and in patients with chronic renal failure (CRF); (b) evaluated the relationship between plasma 2PY concentration and the severity of CRF; (c) evaluated the effect of hemodialysis treatment and kidney transplantation on 2PY concentration.We found that the plasma 2PY concentration in healthy subjects is 0.83 ± 0.18 M but it could increase up to 40 M in patients with CRF. A significant correlation was found in CRF between plasma 2PY and creatinine concentration. A single hemodialysis treatment was associated with significant reduction of plasma 2PY concentration after the hemodialysis, but it increased rapidly 48 h after the end of treatment. Successful kidney transplantation was associated with return of 2PY concentration to the normal range.In conclusion, our results indicated significant production of 2PY in humans. In healthy subjects 2PY is cleared from the plasma by excretion in the urine. Altered excretion by the kidney leads to increase in plasma concentration of 2PY. It is possible that 2PY may play a significant role in the development of uremic toxemia, especially as an inhibitor of poly(ADP-ribose)polymerase.  相似文献   

17.
This study identified two potential novel biomarkers of peroxisome proliferation in the rat. Three peroxisome proliferator-activated receptor (PPAR) ligands, chosen for their high selectivity towards the PPARα, -δ and -γ subtypes, were given to rats twice daily for 7 days at doses known to cause a pharmacological effect or peroxisome proliferation. Fenofibrate was used as a positive control. Daily treatment with the PPARα and -δ agonists produced peroxisome proliferation and liver hypertrophy. 1H nuclear magnetic resonance spectroscopy and multivariate statistical data analysis of urinary spectra from animals given the PPARα and -δ agonists identified two new potential biomarkers of peroxisome proliferation - N-methylnicotinamide (NMN) and N-methyl-4-pyridone-3-carboxamide (4PY) - both endproducts of the tryptophan-nicotinamide adenine dinucleotide (NAD+) pathway. After 7 days, excretion of NMN and 4PY increased 24- and three-fold, respectively, following high doses of fenofibrate. The correlation between total NMN excretion over 7 days and the peroxisome count was r=0.87 (r2=0.76). Plasma NMN, measured using a sensitive high performance liquid chromatography method, was increased up to 61-fold after 7 days' treatment with high doses of fenofibrate. Hepatic gene expression of aminocarboxymuconate-semialdehyde decarboxylase (EC 4.1.1.45) was downregulated following treatment with the PPARα and -δ agonists. The decrease was up to 11-fold compared with controls in the groups treated with high doses of fenofibrate. This supports the link between increased NMN and 4PY excretion and regulation of the tryptophan-NAD+ pathway in the liver. In conclusion, NMN, and possibly other metabolites in the pathway, are potential non-invasive surrogate biomarkers of peroxisome proliferation in the rat.  相似文献   

18.
This study identified two potential novel biomarkers of peroxisome proliferation in the rat. Three peroxisome proliferator-activated receptor (PPAR) ligands, chosen for their high selectivity towards the PPARalpha, -delta and -gamma subtypes, were given to rats twice daily for 7 days at doses known to cause a pharmacological effect or peroxisome proliferation. Fenofibrate was used as a positive control. Daily treatment with the PPARalpha and -delta agonists produced peroxisome proliferation and liver hypertrophy. 1H nuclear magnetic resonance spectroscopy and multivariate statistical data analysis of urinary spectra from animals given the PPARalpha and -delta agonists identified two new potential biomarkers of peroxisome proliferation--N-methylnicotinamide (NMN) and N-methyl-4-pyridone-3-carboxamide (4PY)--both endproducts of the tryptophan-nicotinamide adenine dinucleotide (NAD+) pathway. After 7 days, excretion of NMN and 4PY increased 24- and three-fold, respectively, following high doses of fenofibrate. The correlation between total NMN excretion over 7 days and the peroxisome count was r=0.87 (r2=0.76). Plasma NMN, measured using a sensitive high performance liquid chromatography method, was increased up to 61-fold after 7 days' treatment with high doses of fenofibrate. Hepatic gene expression of aminocarboxymuconate-semialdehyde decarboxylase (EC 4.1.1.45) was downregulated following treatment with the PPARalpha and -delta agonists. The decrease was up to 11-fold compared with controls in the groups treated with high doses of fenofibrate. This supports the link between increased NMN and 4PY excretion and regulation of the tryptophan-NAD+ pathway in the liver. In conclusion, NMN, and possibly other metabolites in the pathway, are potential non-invasive surrogate biomarkers of peroxisome proliferation in the rat.  相似文献   

19.
Persistent inflammasome activation contributes to chronic, low grade inflammation. However, it is unclear how the inflammasome activation is sustained after initiation. Here we reported that N4-acetylcytidine (N4A), a nucleoside metabolite, activated microglia and sustained NLRP3 inflammasome activation by inducing HMGB1 signaling. Released HMGB1 through N4A activated NFκB and induced NLRP3 expression. HMGB1 silencing abolished N4A-stimulated NFκB activation, NLRP3 and persistent HMGB1 expression. In addition, inhibiting NLRP3 expression by RNAi abrogated N4A-mediated HMGB1 expression. Lack of NLRP3 inflammasome adaptor named apoptosis-associated speck-like protein containing a CARD (ASC) abrogated N4A-induced HMGB1 expression, NFκB activation, and NLRP3 expression. Taken together, our results reveal a novel role of N4A in activation of NLRP3 inflamasome via HMGB1 feedback.  相似文献   

20.
Two seven-gene phenazine biosynthetic loci were cloned from Pseudomonas aeruginosa PAO1. The operons, designated phzA1B1C1D1E1F1G1 and phzA2B2C2D2E2F2G2, are homologous to previously studied phenazine biosynthetic operons from Pseudomonas fluorescens and Pseudomonas aureofaciens. Functional studies of phenazine-nonproducing strains of fluorescent pseudomonads indicated that each of the biosynthetic operons from P. aeruginosa is sufficient for production of a single compound, phenazine-1-carboxylic acid (PCA). Subsequent conversion of PCA to pyocyanin is mediated in P. aeruginosa by two novel phenazine-modifying genes, phzM and phzS, which encode putative phenazine-specific methyltransferase and flavin-containing monooxygenase, respectively. Expression of phzS alone in Escherichia coli or in enzymes, pyocyanin-nonproducing P. fluorescens resulted in conversion of PCA to 1-hydroxyphenazine. P. aeruginosa with insertionally inactivated phzM or phzS developed pyocyanin-deficient phenotypes. A third phenazine-modifying gene, phzH, which has a homologue in Pseudomonas chlororaphis, also was identified and was shown to control synthesis of phenazine-1-carboxamide from PCA in P. aeruginosa PAO1. Our results suggest that there is a complex pyocyanin biosynthetic pathway in P. aeruginosa consisting of two core loci responsible for synthesis of PCA and three additional genes encoding unique enzymes involved in the conversion of PCA to pyocyanin, 1-hydroxyphenazine, and phenazine-1-carboxamide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号