首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA sequences at immunoglobulin switch region recombination sites.   总被引:21,自引:0,他引:21       下载免费PDF全文
The immunoglobulin heavy chain switch from synthesis of IgM to IgG, IgA or IgE is mediated by a DNA recombination event. Recombination occurs within switch regions, 2-10 kb segments of DNA that lie upstream of heavy chain constant region genes. A compilation of DNA sequences at more than 150 recombination sites within heavy chain switch regions is presented. Switch recombination does not appear to occur by homologous recombination. An extensive search for a recognition motif failed to find such a sequence, implying that switch recombination is not a site-specific event. A model for switch recombination that involves illegitimate priming of one switch region on another, followed by error-prone DNA synthesis, is proposed.  相似文献   

2.
The occurrence of mitotic recombination between repeated immunoglobulin mu gene constant (C mu) region sequences stably integrated at the haploid chromosomal immunoglobulin mu locus in murine hybridoma cells was investigated. Recombination events are detected as changes in hapten-specific immunoglobulin M production. Recombination occurs with high frequency (0.5 to 0.8%) by a mechanism consistent with gene conversion. A double-strand break repair-like mechanism is suggested by the finding that repair of a 2-bp deletion mutation and a 2-bp insertion mutation occurs with parity in a donor-directed manner. The results also suggest that the gene conversion process is directional in that the 5' C mu region sequence is preferentially converted.  相似文献   

3.
Previously, recombinations involving genes of the rabbit immunoglobulin heavy chain locus have been documented serologically. These data indicated that the sites at which the causative recombination events occurred could have been anywhere from within the V H gene cluster up to, or 3 of, C. Since these sites could not be localized further by serological methods, we attempted to do this using techniques of molecular biology. DNAs from homozygous recombinant rabbits and from the appropriate non-recombinant parental haplotypes were characterized using Southern blots hybridized with a panel of probes derived from cloned regions of the rabbit immunoglobulin heavy chain gene complex. In all three recombinants, the site was downstream of the entireV H cluster and upstream of the J Hcluster within an 50 kilobase (kb) egion containing expanses of repetitive-sequence DNA as well as D H genes. D H-specific probes further showed that in two of the recombinants, the recombination appears to have occurred within or 5 of D H1 and 5 of D H2 genes; in the third it occurred 3 of the D H2 genes but at least 5 kb 5 of the J H region. Address for correspondence and offprint request to: R. G. Mage.  相似文献   

4.
We have transferred a pSV2neo vector containing the wild-type constant region of the immunoglobulin mu gene (C mu) into the mutant hybridoma igm482, which bears a 2-bp deletion in the third constant-region exon of its haploid chromosomal mu gene (C mu 3). Independent igm482 transformants contain the wild-type immunoglobulin C mu region stably integrated in ectopic chromosomal positions. We report here that the wild-type immunoglobulin C mu region can function as the donor sequence in a gene conversion event which corrects the 2-bp deletion in the mutant igm482 chromosomal C mu 3 exon. The homologous recombination event restores normal immunoglobulin M production in the mutant cell.  相似文献   

5.
6.
A method is described for detecting targeted events at the mu heavy chain gene which relies on co-conversion (or co-exchange) of a point mutation with a selectable marker contained on a replacement vector. The vector, designed for application to IgM producing hybridomas, contains a single nucleotide change within the region of homology with the target gene which encodes a different allotypic determinant of IgM. In a model system where homologous recombination corrected a defective mu gene, the length of homology between this nucleotide change and the position of the double strand break in the vector was found to have a critical influence on the co-conversion frequency. In the vector design ultimately used for targeting in hybridomas, one in 1000-2000 stable transformants produced IgM with the allotype encoded by the exogenous DNA, and Southern blot analysis confirmed that these were derived by targeted integration. The sensitivity of the screening procedure using a monoclonal antibody specific to this allotype enabled a targeted clone to be detected in a pool of stable transformants when present at a frequency at least as low as one per cent. Several different modifications of the target locus were obtained as a consequence of alternative crossover positions and, in some cases, vector DNA concatenation.  相似文献   

7.
Different recombinations have been found at the Ig heavy chain gene loci in a number of sublines of the Burkitt lymphoma (BL) cell line Namalwa, following prolonged in vitro culture. The Namalwa sublines examined are DNA fingerprint-identical and derived from a monoclonal source. Recombinant DNA clones were used to map the Ig heavy chain gene mutations to a region between the VDJ and C mu segment of the locus. This region is associated with Ig heavy chain class switching in normal B cells. Of 24 clones established from one subline, three were found to have additional VDJ-C mu region mutations, indicating a high frequency of mutation at this locus.  相似文献   

8.
Lymphocyte development requires the assembly of antigen receptor genes through the specialized process of V(D)J recombination. This process is initiated by cleavage at the junction between coding segments (V, D, and J) and the recombination signal sequences that border these segments, resulting in generation of double-strand break intermediates. We have used a two-dimensional gel system to characterize broken molecules arising from V(D)J recombination at the T-cell receptor (TCR) delta locus and have identified linear species excised by Ddelta1-Ddelta2 and V-Ddelta2 rearrangement in thymus DNA. Relatively few (approximately 10) V-Ddelta2-excised linear species were detected in DNA from fetal thymocytes. The sizes of these species corresponded to the estimated distances between Ddelta2 and the V gene segments utilized by gammadelta T cells and indicated that both Ddelta2-proximal and -distal V gene segments are targeted for V-Ddelta2 rearrangement. Similar-sized species were observed in DNA from thymocytes of scid mice in which T-cell development is arrested prior to TCR expression. Since previous studies suggest that the TCR alpha/delta locus encodes more than 100 V gene segments, our results indicate that a few select V gene segments are predominantly targeted for rearrangement to Ddelta2, and this primarily accounts for the restricted Vdelta gene repertoire of gammadelta T cells.  相似文献   

9.
From an IgM secreting hybridoma line we have isolated 16 spontaneous mutants that produce truncated IgM polypeptides. The size of the mu-mRNAs produced by these mutants is normal, but they express 3- to 100-fold less mu-mRNA and mutant mu-protein than the parental cell line. Nucleotide sequence analysis of cloned mu-genes and/or their mRNAs show frameshift mutations that generate in-phase chain termination codons. The extent of the reduction in mu-mRNA levels depends on the position of the nonsense codon within the gene.  相似文献   

10.
Affinity maturation of the Ab repertoire in germinal centers leads to the selection of high affinity Abs with selected heavy chain constant regions. Ab maturation involves two modifications of the Ig genes, i.e., somatic hypermutation and class switch recombination. The mechanisms of these two processes are not fully understood. As shown by the somatic hypermutation and class switch recombination-deficient phenotype of activation-induced cytidine deaminase (AID)-deficient patients (hyperIgM type 2 syndrome) and mice, both processes require the AID molecule. Somatic DNA modifications require DNA breaks, which, at least for class switch recombination, lead to dsDNA breaks. By using a ligation-mediated PCR, it was found that class switch recombination-induced dsDNA breaks in S mu switch regions were less frequent in AID-deficient B cells than in AID-proficient B cells, thus indicating that AID acts upstream of DNA break induction.  相似文献   

11.
12.
A tissue-specific enhancer (E mu) lies between the joining (JH) and mu constant region (C mu) gene segments of the immunoglobulin heavy chain (IgH) locus. Since mouse endogenous IgH genes are efficiently transcribed in its absence, the normal function of this enhancer remains ill-defined. Recently, another lymphoid-specific enhancer of equal strength has been identified 3' of the rat IgH locus. We have isolated an analogous sequence from mouse and have mapped it 12.5 kb 3' of the 3'-most constant region gene (C alpha-membrane) of the BALB/c mouse locus. The mouse and rat sequences are 82% homologous and share with other enhancers several DNA sequence motifs capable of binding protein. However, in transient transfection assays, the mouse sequence behaves as a weaker enhancer. The role of this distant element in the expression of endogenous IgH genes, both in E mu-deficient, Ig-producing cell lines and during normal B cell development, is discussed.  相似文献   

13.
14.
R Baer  T Boehm  H Yssel  H Spits    T H Rabbitts 《The EMBO journal》1988,7(6):1661-1668
We have examined DNA rearrangements within a 120 kb cloned region of the human T cell receptor J delta-C delta/J alpha-C alpha locus. Three types of pattern emerge from an analysis of T cell lines and clones. Firstly, cells with two rearrangements within J delta-C delta; secondly, cells with one rearrangement within J delta-C delta and one or more J alpha rearrangements, and finally, cells with rearrangements within J alpha and consequential deletion of the delta locus. Further analysis by cloning of rearrangements within the J alpha locus show that, in addition to V alpha-J alpha joins, J alpha-J alpha aberrant recombinations occur and rearrangement data indicate that such events are frequent. A model is presented to account for such recombinations.  相似文献   

15.
We have studied the Burkitt's lymphoma cell line Daudi which carries the translocation t(8;14). The breakpoint of this translocation on the 14q+ chromosome occurs near to a rearranged DH-JH join, and the actual chromosome junction is a few hundred base pairs upstream of the joined DH element. The nucleotide sequence of the rearranged DH segment shows that it does not come from the previously described D cluster. Using this DH sequence as a probe we have identified two separate DH clusters. One of these is the major DH cluster and is located only 20 kb upstream of the JH segments. A pseudo-VH (probably the first VH segment) is also found approximately 98 kb from JH. A second, minor DH locus has been found which seems to be located on the distal side of the VH locus on chromosome 14, since there is little evidence for rearrangement or deletion of this locus in any B cell DNA analysed. A single VHIII subgroup gene is located within 25 kb of the newly identified DH element: it is possible that this minor locus occurs near the limit of the Igh locus.  相似文献   

16.
Vectors for homologous recombination are commonly designed as replacement or integration constructs. We have evaluated integration vectors for the substitution of the immunoglobulin heavy-chain constant region by various human isotypes in mouse and rat hybridomas. It is known that under certain circumstances replacement vectors exhibit a lower target efficiency and can be incorporated by integration events. Conversely, we show here that an integration vector can undergo a replacement event despite having free homologous adjacent DNA ends, which would be expected to initiate integration according to the double-strand break repair model. Moreover, in cases of replacement recombination the 5 crossover is not necessarily located within the homology region, thereby giving rise to a truncated gene product. Whether or not the replacement leads to such deletions is clearly dependent on the isotypes involved in the targeting reaction. The fact that the vector is correctly targeted to the heavy-chain locus, but that the homology region is not always the site of recombination, points to a novel recombination mechanism that may be specific for the immunoglobulin loci and that seems to be predominant even in the presence of the free homologous adjacent ends of an integration vector. Furthermore we demonstrate that homologous recombination at the heavy-chain locus is also possible between sequences from different species. The implications of our findings for the production of chimeric antibodies are discussed.  相似文献   

17.
18.
19.
T Inukai  A Sako  H Y Hirano  Y Sano 《Génome》2000,43(4):589-596
In plant genomes as well as other eukaryotic genomes, meiotic recombination does not occur uniformly. At the level of the gene, high recombination frequencies are often observed within genetic loci in maize, but this feature of intragenic recombination is not seen at the csr1 locus in Arabidopsis. These observations suggest that meiotic recombination in plant genomes varies considerably among species. In the present study we investigated meiotic recombination at the wx locus in rice. The mutation sites of wx mutants induced by ethyl methanesulfonate (EMS) treatment or gamma-ray irradiation and a spontaneous wx mutant were physically characterized, and the genetic distances between those wx mutation sites were estimated by pollen analysis. Based on these results, the recombination frequency at the wx locus in rice was estimated as 27.3 kb/cM, which was about 10 times higher than the average for the genome, suggesting that there was a radically different rate of meiotic recombination for intra- and intergenic regions in the rice genome.  相似文献   

20.
Diversity in immunoglobulin antigen receptors is generated in part by V(D)J recombination. In this process, different combinations of gene elements are joined in various configurations. Products of V(D)J recombination are coding joints, signal joints, and hybrid junctions, which are generated by deletion or inversion. To determine their role in the generation of diversity, we have examined two sorts of recombination products, coding joints and hybrid junctions, that have formed by inversion at the mouse immunoglobulin heavy-chain locus. We developed a PCR assay for quantification and characterization of inverted rearrangements of DH and JH gene elements. In primary cells from adult mice, inverted DJH rearrangements are detectable but they are rare. There were approximately 1,100 to 2,200 inverted DJH coding joints and inverted DJH hybrid junctions in the marrow of one adult mouse femur. On day 16 of gestation, inverted DJH rearrangements are more abundant. There are approximately 20,000 inverted DJH coding joints and inverted DJH hybrid junctions per day 16 fetal liver. In fetal liver cells, the number of inverted DJH rearrangements remains relatively constant from day 14 to day 16 of gestation. Inverted DJH rearrangements to JH4, the most 3' JH element, are more frequently detected than inverted DJH rearrangements to other JH elements. We compare the frequencies of inverted DJH rearrangements to previously determined frequencies of uninverted DJH rearrangements (DJH rearrangements formed by deletion). We suggest that inverted DJH rearrangements are influenced by V(D)J recombination mechanistic constraints and cellular selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号