首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Summary Using the label-fracture technique, an ultrastructural comparison was made of the number and distribution of wheat germ agglutinin (WGA)-binding sites between human normal and sickle red blood cells. The WGA was adsorbed to colloidal gold, and quantitative analysis of the electron micrographs revealed that more binding sites were present on the sickle erythrocytes than on the normal erythrocytes. Moreover, the sites were more clustered on the sickle red cells than on the normal red cells. Use of another lectin, Bandieraea simplicifolia-II, revealed that it did not bind to normal or sickle red cells. Because of the affinity of the WGA for sialic acid residues, it is probable that the WGA is binding to a transmembrane sialoglycoprotein, glycophorin A. The conformation and/or distribution of the glycophorin A molecules may be altered by the sickle hemoglobin that binds to the red cell membrane. Hence, as detected by WGA, new surface receptors, which could play a role in the adhesion of sickle cells to endothelium may be exposed.  相似文献   

2.
The presence, distribution and content of sialic acid on the cell surface in collagenase-dispersed acini obtained both from unstimulated as well as from in vivo isoproterenol-stimulated mouse parotid have been studied. To this end, sialic acid residues have been qualitatively and quantitatively analyzed by 1) cytochemical labeling by wheat germ agglutinin (WGA), 2) biochemical procedures and 3) isotopic labeling by [3H]WGA (WGA-N-[acetyl-3H]-acetylated). Electron microscopy revealed striking differences in the binding of ferritin-conjugated WGA at the basal, lateral and apical cell surface. Unstimulated acinar cells showed a heavy patch-distributed binding of ferritin-conjugate on the basal cell surface while it was homogeneous and very scarce on the lateral one and absent on the apical cell surface. During the first few hours after isoproterenol, the WGA binding sites at the basal cell surface became homogeneously distributed. This fact was coincident with a loss of about 60 to 70% both in the content of neuraminidase-releasable sialic acid and in the binding of [3H]WGA to the acinar surface. These findings suggest that the release of sialic acid as free residues, which has been involved in the isoproterenol-triggered cell proliferation-inducing mechanism in the mouse parotid, would occur at the glycocalyx corresponding to the basal plasma membrane of the acinar cells.  相似文献   

3.
Two Chinese hamster ovary (CHO) cell mutants selected for resistance to wheat germ agglutinin (WGA) have been shown to exhibit defective sialylation of membrane glycoproteins and a membrane glycolipid, GM3. The mutants (termed WgaRII and WgaRIII) have been previously shown to belong to different genetic complementation groups and to exhibit different WGA-binding abilities. These mutants and a WGA-resistant CHO cell mutant termed WgaRI (which also possesses a surface sialylation defect arising from a deficient N-acetylglucosaminyltransferase activity), have enabled us to investigate the role of sialic acid in WGA binding at the cell surface. Scatchard plots of the binding of 125I- WGA (1 ng/ml to 1 mg/ml) to parental and WgaR CHO cells before and after a brief treatment with neuraminidase provide evidence for several different groups of sialic acid residues at the CHO cell surface which may be distinquished by their differential involvement in WGA binding to CHO cells.  相似文献   

4.
Flow-cytometric studies of lectin binding to individual acinar cells have been carried out in order to analyse the distribution of membrane glycoconjugates in cells from different areas of the pancreas: duodenal lobule (head) and splenic lobule (body and tail). The following fluoresceinated lectins were used: wheat germ agglutinin (WGA), Tetragonolobus purpureus agglutinin (TP) and concanavalin A (Con A), which specifically bind to N-acetyl D-glucosamine and sialic acid, L-fucose and D-mannose, respectively. In both pancreatic areas, two cell populations (R1 and R2) were identified according to the forward scatter (size). On the basis of their glycoconjugate pattern, R1 cells displayed higher density of WGA and TP receptors than R2 cells throughout the pancreas. Although no difference in size was found between the cells from duodenal and splenic lobules, N-acetyl D-glucosamine and/or sialic acid and L-fucose residues were more abundant in plasma membrane cell glycoconjugates from the duodenal lobule. The results provide evidence for biochemical heterogeneity among individual pancreatic cells according to the distribution of plasma membrane glycoconjugates.  相似文献   

5.
To add an additional aspect to the process of recognition and removal of senescent human erythrocytes from the circulation, the binding of wheat germ agglutinin (WGA) to separated young, old and sialidase-treated human erythrocytes is evaluated with the immune-electron microscopical method. WGA/gold conjugate binding to old erythrocytes was lower (27%) than to young erythrocytes and even lower following treatment with sialidase (82%), exhibiting a clustered, non-continuous labeling pattern in all three erythrocyte populations, thus showing a possible redistribution of WGA binding sites. The decrease in bound WGA/gold particles correlates well with the previously reported decrease in surface sialic acid on old erythrocytes. The binding of WGA/gold are indicative of the changes occurring on erythrocyte membrane surfaces when interacting with different agglutinins.  相似文献   

6.
Lectin-binding studies were performed at the ultrastructural level to characterize glycoconjugate patterns on membrane systems in pancreatic acinar cells of the rat. Five lectins reacting with different sugar moieties were applied to ultrathin frozen sections: concanavalin A (ConA): glucose, mannose; wheat-germ agglutinin (WGA): N-acetylglucosamine, sialic acid; Ricinus communis agglutinin I (RCA I): galactose; Ulex europaeus agglutinin I (UEA I): L-fucose; soybean agglutinin (SBA): N-acetylgalactosamine). Binding sites of lectins were visualized either by direct conjugation to colloidal gold or by the use of a three-step procedure involving additional immune reactions. The rough endoplasmic reticulum and the nuclear envelope of acinar cells was selectively labelled for ConA. The membranes of the Golgi apparatus bound all lectins applied with an increasing intensity proceeding from the cis- to the trans-Golgi area for SBA, UEA I and WGA. In contrast RCA I selectively labelled the trans-Golgi cisternae. The membranes of condensing vacuoles and zymogen granules were labelled for all lectins used although the density of the label differed between the lectins. In contrast the content of zymogen granules failed to bind SBA and WGA. Lysosomal bodies (membranes and content) revealed binding sites for all lectins used. The plasma membranes were heavily labelled by all lectins except for SBA which showed only a weak binding to the lateral and the apical plasma membrane. These results are in accordance to current biochemical knowledge of the successive steps in the glycosylation of membrane proteins. It could be demonstrated, that the cryo-section technique is suitable for the fine structural localisation of surface glycoconjugates of plasma membranes and internal membranes in pancreatic acinar cells using plant lectins.  相似文献   

7.
Sialic acids, occupying a terminal position in cell surface glycoconjugates, are major contributors to the net negative charge of the vascular endothelial cell surface. As integral membrane glycoproteins, LDL receptors also bear terminal sialic acid residues. Pretreatment of near-confluent, cultured bovine aortic endothelial cells (BAEC) with neuraminidase (50 mU/ml, 30 min, 37 degrees C) stimulated a significant increase in receptor-mediated 125I-LDL internalization and degradation relative to PBS-treated control cells. Binding studies at 4 degrees C revealed an increased affinity of LDL receptor sites on neuraminidase-treated cells compared to control BAEC (6.9 vs. 16.2 nM/10(6) BAEC) without a change in receptor site number. This enhanced LDL endocytosis in neuraminidase-treated cells was dependent upon the enzymatic activity of the neuraminidase and the removal of sialic acid from the cell surface. Furthermore, enhanced endocytosis due to enzymatic alteration of the 125I-LDL molecules was excluded. In contrast to BAEC, neuraminidase pretreatment of LDL receptor-upregulated cultured normal human fibroblasts resulted in an inhibition of 125I-LDL binding, internalization, and degradation. Specifically, a significant inhibition in 125I-LDL internalization was observed at 1 hr after neuraminidase treatment, which was associated with a decrease in the number of cell surface LDL receptor sites. Like BAEC, neuraminidase pretreatment of human umbilical vein endothelial cells resulted in enhanced receptor-mediated 125I-LDL endocytosis. These results indicate that sialic acid associated with either adjacent endothelial cell surface molecules or the endothelial LDL receptor itself may modulate LDL receptor-mediated endocytosis and suggest that this regulatory mechanism may be of particular importance to endothelial cells.  相似文献   

8.
Parallel experiments employing sialic acid- and protein specific spin labels have been performed to monitor the effects on the physical state of this carbohydrate and membrane proteins of human erythrocytes induced by the binding of three lectins, Phaseolus vulgaris phytohaemagglutinin (PHA), wheat germ agglutinin (WGA), and Concanavalin-A (Con-A). PHA and WGA, both of which are known to bind at different sites on the principal sialoglycoprotein of human erythrocytes, glycophorin, had markedly different effects: compared to control values, PHA decreased the apparent correlation time of the sialic acid specific spin probe by 10% while this parameter was decreased by 33% by WGA. The protein specific spin label also monitored differential effects of these lectins: the relevant electron spin resonance parameter (the W/S ratio) was reduced 33% by PHA and increased by WGA over 17% from that of control values. Con-A, which is known to bind to the principal transmembrane protein, Band 3, had no effect on sialic acid or membrane proteins as assessed by the two spin labels employed. These results suggest that (1) the effects of binding of these different lectins, two of which bind to the same cell surface receptor, can be discriminated by use of spin labeling methods; (2) binding events occuring at the cell surface have distinct and pronounced effects on the physical state of proteins within the membrane; (3) the different results with PHA and WGA both of which bind to glycophorin are indicative of multiple and complex interactions of this glycoprotein with the membrane proteins in the erythrocyte; and (4) that the spin labelling technique has the potential to investigate the relationships between cell-surface binding events to membrane structural-functional interactions.  相似文献   

9.
Kappa opioid binding sites from human placenta, prelabeled with 3H-etorphine and solubilized, were retained on wheat germ agglutinin (WGA) agarose and specifically eluted with N-acetylglucosamine. No significant retention was found with other immobilized lectins, including Concanavalin A (Con A), soybean seed lectin (SBA), Pisum sativum lectin (PsA), Lens culinaris Medik. lectin (LcA), and Lathyrus tingitanus lectin(LtA). About 23% of applied kappa sites were specifically eluted from WGA agarose, less than half of the proportion of rat brain opioid binding sites eluted from the same lectin (55%). Receptors from placental extracts were compared with those from other tissues enriched in either kappa or mu sites. The proportion of applied kappa sites from guinea pig cerebellum eluted specifically from WGA agarose was 36%, whereas elution of binding sites from rat thalamus and rabbit cerebellum (enriched in mu sites) was at a level of 55%. This difference in the level of retention on and elution from WGA may reflect differences in the sugar composition of the glycoproteins of the two types of receptors. Succinylation of WGA abolished its ability to retain opioid binding sites, consistent with involvement of sialic acid. However, currently available evidence suggests that differences in retention on WGA between kappa and mu sites may be due to differences in either sialic acid or N-acetylglucosamine content or both.  相似文献   

10.
We propose here the use of freeze-fracture to gain access and to label in vitro glomerular components and locate WGA receptors and anionic sites. Tissues are frozen, fractured under liquid nitrogen, and thawed. Freeze-fracture rendered all glomerular structures directly accessible to the reagents. This made possible study of the nature and topology of cationized ferritin and WGA binding sites. WGA-gold complexes were observed over plasma membranes of podocytes and of endothelial and mesangial cells. Labeling of podocytes and endothelial cells was similar in the mesangial area and in the peripheral part of the capillary loop. Cross-fractures of extracellular matrices showed that WGA bound uniformly to the glomerular basement membrane (GBM) as well as to mesangial matrix. In fractured specimens treated with neuraminidase, WGA was no longer observed over podocytes but it consistently labeled the surface of endothelial and mesangial cells. Whereas in GBM cross-sections WGA binding was greatly reduced or even abolished, it remained unmodified in the mesangium. This shows that only NeuNAc (sialic acid) might account for the binding of WGA to podocytes, whereas GlcNAcs appear to be the main WGA binding sites on endothelial and mesangial cells and in the mesangial matrix. Both NeuNAc and GLcNAc residues are probably associated in GBM. With cationized ferritin (pI 8.3) at pH 7.4, intense, continuous labeling was seen all over the different plasma membranes, denser in podocytes than in endothelial cells. CF was also observed in cross-fractured profiles of extracellular matrices and never appeared agglutinated in discrete sites.  相似文献   

11.
A number of commercially available enzymes were used to modify the cell surface of human erythrocytes to varying degrees. In protease-treated erythrocytes the decrease in surface charge (determined by cell electrophoresis or analysis of sialic acid content) correlates with an increase in agglutinability with concanavalin A (ConA) and wheat germ agglutinin (WGA). On the other hand, treatment with neuraminidase leads to very large decrease in surface charge with only an intermediate increase in agglutinability with both lectins. Subsequent protease treatment of these cells enhances their agglutinability appreciably without further altering their surface charge. It is concluded that the increased agglutinability following protease treatment is due both to a decrease in the net negative charge and a removal of peptides and glycopeptides from the cell surface that may sterically hinder the agglutination reaction.  相似文献   

12.
Summary Lectin-binding studies were performed at the ultrastructural level to characterize glycoconjugate patterns on membrane systems in pancreatic acinar cells of the rat. Five lectins reacting with different sugar moieties were applied to ultrathin frozen sections: concanavalin A (ConA): glucose, mannose; wheat-germ agglutinin (WGA): N-acetylglucosamine, sialic acid; Ricinus communis agglutinin I (RCA I): galactose; Ulex europaeus agglutinin I (UEA I): l-fucose; soybean agglutinin (SBA): N-acetylgalactosamine). Binding sites of lectins were visualized either by direct conjugation to colloidal gold or by the use of a three-step procedure involving additional immune reactions. The rough endoplasmic reticulum and the nuclear envelope of acinar cells was selectively labelled for ConA. The membranes of the Golgi apparatus bound all lectins applied with an increasing intensity proceeding from the cis-to the trans-Golgi area for SBA, UEA I and WGA. In contrast RCA I selectively labelled the trans-Golgi cisternae. The membranes of condensing vacuoles and zymogen granules were labelled for all lectins used although the density of the label differed between the lectins. In contrast the content of zymogen granules failed to bind SBA and WGA. Lysosomal bodies (membranes and content) revealed binding sites for all lectins used. The plasma membranes were heavily labelled by all lectins except for SBA which showed only a weak binding to the lateral and the apical plasma membrane. These results are in accordance to current biochemical knowledge of the successive steps in the glycosylation of membrane proteins. It could be demonstrated, that the cryo-section technique is suitable for the fine structural localisation of surface glycoconjugates of plasma membranes and internal membranes in pancreatic acinar cells using plant lectins.  相似文献   

13.
Lectin binding by eosinophils   总被引:1,自引:0,他引:1  
Lectins which identify carbohydrates and glycoproteins have been used to characterize specific components of the surface of guinea pig peritoneal exudate eosinophils. Agglutination of eosinophils purified by discontinuous metrizamide gradients was scored microscopically. Wheat germ agglutinin (WGA) was most effective (0.05 micrograms/ml). However, higher concentrations of soybean lectin and concanavalin A (Con A) were also effective. No differences in lectin binding were noted between eosinophils harvested from uninfected animals, Trichinella spiralis-infected animals, or animals receiving weekly intraperitoneal injections of polymyxin B. Neuraminidase pretreatment to remove surface sialic acid reduced agglutination by WGA. Eosinophils did not adhere to WGA-coated Sepharose beads; however, they did adhere to Con A-coated beads. Pretreatment with neuraminidase did not affect the adherence of eosinophils to plastic surfaces, suggesting that sialic acid does not play an important role in adherence. Formation of lectin-inhibitor complexes within the incubation mixture complicated interpretation of studies of binding to plastic surfaces. These studies demonstrate that lectin binding sites are present on the surface of eosinophils. Lectin-type binding may be important in interactions between eosinophils and noningestible parasites.  相似文献   

14.
Two autologous human melanoma cell lines were studied to determine their capacities to bind wheat germ agglutinin (WGA). Both cell lines were derived from the same patient, the first, IGR 39, originated from the primary tumor, the second, IGR 37, was established from a metastatic lymph node. WGA binding sites on the surface of these cell lines were compared before and after sialidase and/or tunicamycin treatments. IGR 39 cells exhibited two classes of WGA binding sites with high and low affinities, whereas IGR 37 cells had only one class of high affinity binding sites. After tunicamycin treatment, the capacity of IGR 39 cells to bind WGA was markedly altered, since only one class of WGA binding sites with high affinity was observed under these conditions, whereas tunicamycin did not induce significant changes in the lectin binding of IGR 37 cells. The low affinity WGA binding sites, which were only found on IGR 39 cells, corresponded to sialyl residues present in N-linked glycoproteins. The high affinity binding sites present on both cell lines probably involved sialyl and N-acetyl-glucosaminyl residues associated with O-linked glycoproteins and/or glycolipids. No direct correlation could be drawn between the number of WGA binding sites and the overall sialic acid levels exposed to sialidase treatment. The 3-fold increase in the amount of cell surface glycopeptides obtained after pronase digestion and specifically binding to WGA-Sepharose was in good agreement with the overall higher number of WGA binding sites on IGR 39 compared to IGR 37 cells. Thus, subtle carbohydrate changes of cell surface glycoconjugates might account for the differences between the biological properties of human melanoma cell lines of low and high tumorigenicity.  相似文献   

15.
Pial microvessels have commonly been used in studies of the blood-brain barrier because of their relative accessibility. To determine the validity of using the pial microvessel as a model system for the blood-brain barrier, we have extended the comparison of pial and cerebral microvessels at the molecular level by a partial characterization of the glycocalyx of pial endothelial cells, in view of the functional importance of anionic sites within the glycocalyx. Rat optic nerves were fixed by vascular perfusion. Anionic sites on the endothelium were labelled with cationic colloidal gold by means of post- and pre-embedding techniques. The effects of digestion of ultrathin sections on subsequent gold labelling was quantified following their treatment with a battery of enzymes. Biotinylated lectins, viz. wheat germ agglutinin and concanavalin A with streptavidin gold, were employed to identify specific saccharide residues. The results demonstrate that the luminal glycocalyx of pial microvessels is rich in sialic-acid-containing glycoproteins. Neuraminidase, which is specific for N-acetylneuraminic (sialic) acid, and papain (a protease with a wide specificity) significantly reduce cationic colloidal gold binding to the luminal endothelial cell plasma membrane. Wheat germ agglutinin (with an affinity for sialic acid) binds more to the luminal than abluminal plasma membrane, whereas concanavalin A, which binds mannose, binds more to the abluminal surface. Similar results have been obtained for cerebral cortical endothelial cells. With respect to these molecular characteristics, therefore, the pial and cortical microvessels appear to be the same. However, since the two vessel types differ in other respects, caution is urged regarding the use of pial microvessels to investigate the blood-brain barrier. Received: 22 July 1996 / Accepted: 11 October 1996  相似文献   

16.
Expression of apical cell surface proteins and glycoproteins was examined in polarized primary cultures of mouse uterine epithelial cells (UEC). Lectin-gold cytochemistry revealed that wheat germ agglutinin (WGA) bound specifically to the components of the apical glycocalyx as well as intracellular vesicles. Double labeling with the pH sensitive dye 3-(2,4-dinitroanilino)-3'amino-N-methyldipropylamine (DAMP) demonstrated the acidic nature of the WGA-staining intracellular vesicles. The enzymatic and chemical sensitivities of the WGA binding sites on the apical cell surface were monitored both by WGA-gold staining as well as by 125I-WGA binding assays. In thin sections, a large fraction of these sites were removed by pronase; however, application of a wide variety of proteases, glycosidases, or chemical treatments to the apical surface of intact UEC failed to reduce WGA binding. In no case did treatments designed to remove sialic acids reduce 125I-WGA binding more than 12%. In contrast, endo-beta-galactosidase as well as a combination of beta-galactosidase with beta-hexosaminidase succeeded in removing 28% and 77% of these sites, respectively. These studies suggested that the majority of the apically disposed WGA binding sites involved N-acetylglucosamine residues rather than sialic acids and included lactosaminoglycans. Many of the proteins detected at the apical cell surface by lactoperoxidase-catalyzed radioiodination were WGA-binding glycoproteins. A major class of these glycoproteins displayed Mr > 200 kDa by SDS-PAGE and was heavily labeled metabolically by 3H-glucosamine or by vectorial labeling at the apical cell surface with galactosyl transferase and UDP-3H-galactose. Analyses of the 3H-labeled oligosaccharides labeled by either procedure indicated that a large fraction of the apically disposed WGA-binding oligosaccharides consisted of neutral, O-linked mucin-type structures with median MW of approximately 1,500. Oligosaccharides in this fraction were partially (15%) sensitive to endo-beta-galactosidase digestion and bound to Datura stramonium agglutinin (68%), demonstrating the presence of lactosaminoglycan sequences. UEC were an extremely effective barrier to attachment or invasion by either a highly invasive melanoma cell line, B16-BL6, or implantation-competent mouse blastocysts. In contrast, neither uterine stromal cells nor a non-polarizing UEC cell line, RL95, prevented B16-BL6 attachment.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
Plasmodium berghei ANKA (Pb ANKA) is a lethal strain of malaria that causes experimental cerebral malaria (ECM) in rodent models. Pathology of the disease is associated with the sequestration of the infected rbc (irbc) in the micro vessels of brain. In the present study, we analyzed the nature of the glycoprotein modification occurring in irbc membrane during erythrocytic stages of Pb ANKA infection. Titration of naturally occurring glycoproteins with concanavalin A (Con A) and wheat germ agglutinin (WGA) lectins revealed an enhanced lectin binding ability for the irbc membrane preparations. Partial characterization of the Con A specific determinants (alpha-d-methyl mannoside specificity) by lectin affinity chromatography followed by 2D electrophoresis and WGA specific determinants (sialic acid specificity) by Western analysis revealed the association of novel lectin specific determinants in irbc membrane. To correlate the biochemical changes with the morphological changes, SEM of irbc, and TEM of sequestered irbc were performed. These ultra structural studies revealed variable and irregular surface protrusions and deep surface indentations on irbc. These observations implicate that altered glycoprotein profiles may lead to cytoarchitectural changes in irbc membrane and such changes may be essential to establish contact with the host endothelial cells. These observations may be central to the microvascular sequestration and pathology of ECM.  相似文献   

18.
Decay accelerating factor (DAF) is a cell-surface phosphatidylinositol-anchored protein that protects the cell from inadvertent complement attack by binding to and inactivating C3 and C5 convertases. We have measured DAF on human umbilical vein endothelial cells (HUVEC) by immunoradiometric assay after its removal by phosphatidylinositol-specific phospholipase C or Nonidet P-40 detergent extraction and have previously demonstrated that DAF synthesis can be stimulated by phorbol ester activation of protein kinase C. We now report that although stimulation (4-48 h) of HUVEC with various cytokines, including TNF, IL-1, and IFN-gamma, did not alter DAF levels, wheat germ agglutinin (WGA) (5-50 micrograms/ml), a lectin specific for binding N-acetyl neuraminic acid and N-acetyl glucosamine residues, increased DAF levels fivefold when incubated with HUVEC for 12 to 24 h. The lectins Con A and PHA also stimulated DAF expression twofold, whereas a number of others including Ulex europaeus, Bandeiraea simplicifolia lectin I, and Ricinus communis agglutinin I, which bind to endothelial cells, were inactive. The increase in DAF by WGA was inhibited by N-acetyl glucosamine (10-50 mM) but by neither N-acetyl neuraminic acid nor removal of surface N-acetyl neuraminic acid with neuraminidase. However, succinylated WGA, which has unaltered affinity for N-acetyl glucosamine but not longer binds N-acetyl neuraminic acid, was inactive. These data suggest that the binding of WGA to sugar residues alone is not sufficient to trigger DAF expression and that occupation of additional, specific sites are required. The increase in DAF levels on HUVEC was blocked by inhibitors of RNA and protein synthesis. We conclude that continuous occupation by WGA of specific binding sites on HUVEC triggers events leading to DAF synthesis. This unique, long term stimulation of endothelial cells by lectins may be relevant to cell:cell interactions at the endothelium.  相似文献   

19.
In the present investigation we localized binding sites for the lectins WGA (wheat germ agglutinin), RCA I (Ricinus communis agglutinin), LFA (Limax flavus agglutinin) and SBA (soya bean agglutinin) in the 7-day-old mouse embryo at the ultrastructural level. Lectin binding sites were localized on formaldehyde fixed embryos, embedded in LR-Gold, using gold-labelled lectins. Binding sites for WGA and RCA I were observed at the surface of the embryonic ectoderm oriented towards the proamnion cavity and the outer surface of the extraembryonic and the embryonic endoderm. Staining for SBA and LFA binding sites was seen in the basement membrane of the ectoderm. Moreover, binding sites for LFA were observed in the nucleoli of cells of the ectodermal, the mesodermal and the endodermal layer and in free ribosomes located in the cytoplasm of these cells.  相似文献   

20.
The aging of the red blood cell. A multifactor process   总被引:2,自引:0,他引:2  
Red blood cell (rbc) senescence is associated with loss of surface sialic acid, which is the principal carrier of surface negative charge and determines the electrokinetic behavior of old rbcs. Loss of sialic acid in an old rbc is demonstrated in its decreased electric mobility and lower negative charge density, determined topographically with cationic particle labeling. Surface sialic acid determines also the mutual attraction--repulsion forces, as demonstrated in enhanced aggluinability with cationic molecules, lectins, and blood group antibodies. Loss of sialic acid accompanies ATP-depletion in vitro; thus, a T-antigen site is unmasked. Macrophages have specific receptors to the site as to newly exposed galactose and N-acetyl galactosamine sugars. Furthermore, the involvement of complement molecules in the recognition of old RBCs by macrophages has been shown. This is possibly due to loss of sialic acid or at least a regrouping--relocation of surface anionic sites due to cell shape changes from discocytes to crenated forms, which accompany both in vivo and in vitro rbc aging. In turn, shape changes are apparently controlled by the cytoskeletal network underlying the rbc membrane, which undergoes structural alteration with physiologic aging in changing the dimensions of oligomeric spectrin and the thickness of the spectrin-actin cytoskeletal assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号