首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cultures able to dechlorinate cis-1,2-dichloroethene (cDCE) were selected with ethene (3–20%, v/v) as the sole source of carbon and energy. One mixed culture (K20) could degrade cDCE (400 μmol l–1) or vinyl chloride (100 μmol l–1) in the presence of ethene (≤ 80 μmol l–1 and ≤ 210 μmol l–1, respectively). This culture consists of at least five bacterial strains. All five strains were able to degrade cDCE cometabolically in pure culture. The mixed culture K20 was highly tolerant against cDCE (up to 6 mmol l–1 in the liquid phase). Degradation of cDCE (200 μmol l–1) was not affected by the presence of trichloroethene (100 μmol l–1) or tetrachloroethene (100 μmol l–1). Transformation yields (Ty, defined as unit mass of chloroethene degraded per unit mass of ethene consumed) of the mixed culture K20 were relatively high (0.51 and 0.61 for cDCE and vinyl chloride, respectively). The yield for cDCE with ethene as auxiliary substrate was ninefold higher than any values reported with methane or methane/formate as auxiliary substrate. The viability of the cells of the mixed culture K20 (0.3 mg of cells ml–1) was unaffected by the transformation of ≤ 200 μmol l–1 cDCE in 300 min. Received: 9 March 1999 / Accepted: 21 July 1999  相似文献   

2.
Various oligosaccharides containing galactose(s) and one glucosamine (or N-acetylglucosamine) residues with β1–4, α1–6 and β1–6 glycosidic bond were synthesized; Galβ1–4GlcNH2, Galα1–6GlcNH2, Galα1–6GlcNAc, Galβ1–6GlcNH2, Galβ1–4Galβ1–4GlcNH2 and Galβ1–4Galβ1–4GlcNAc. Galα1–6GlcNH2 (MelNH2) and glucosamine (GlcNH2) had a suppressive effect on the proliferation of K562 cells, but none of the other saccharides tested containing GlcNAc showed this effect. On the other hand, the proliferation of the human normal umbilical cord fibroblast was suppressed by none of the saccharides other than GlcNH2. Adding Galα1–6GlcNH2 or glucosamine to the culture of K562 cell, the cell number decreased strikingly after 72 h. Staining the remaining cells with Cellstain Hoechst 33258, chromatin aggregation was found in many cells, indicating the occurrence of cell death. Furthermore, all of the cells were stained with Galα1–6GlcNH-FITC (MelNH-FITC). Neither the control cells nor the cells incubated with glucosamine were stained. On the other hand, when GlcNH-FITC was also added to cell cultures, some of them incubated with Galα1–6GlcNH2 were stained. The difference in the stainability of the K562 cells by Galα1–6GlcNH-FITC and GlcNH-FITC suggests that the intake of Galα1–6GlcNH2 and the cell death induced by this saccharide is not same as those of glucosamine. The isolation of the Galα1–6GlcNH2 binding protein was performed by affinity chromatography (melibiose-agarose) and LC-MS/MS, and we identified the human heterogeneous ribonucleoprotein (hnRNP) A1 (34.3 kDa) isoform protein (30.8 kDa). The hnRNP A1 protein was also detected from the eluate(s) of the MelNH-agarose column by the immunological method (anti-hnRNP-A1 and HRP-labeled anti-mouse IgG (γ) antibodies).  相似文献   

3.
N. Rama Rao 《Plant and Soil》1986,96(1):125-131
Summary Potassium requirements for growth—dry matter (DM) and leaf area (LA) and related processes — relative leaf growth rate (RLGR), relative growth rate (RGR), net assimilation rate (NAR) and crop growth rate (CGR) were determined by plant analysis during the entogeny of wheat. Wheat (Triticum aestivum cv. HD 2329) plants were supplied with different amounts of K from deficient to adequate through nutrient solution. Samples were taken at specific stages for K determinations. The DM and LA were recorded at 45d, 75d and 105d. The growth related processes RGR, NAR and CGR were estimated between 30–45d, 45–75d and 75–105d. In case of RLGR the observations were carried out between 15–30d, 30–45d and 45–75d. These physiological processes and grain yield were correlated with K concentration in whole plant at 30 and 45d and top two leaves at 75 and 105d. The results indicated that k status in plants influences growth mostly through leaf area formation which inturn influences successively RLGR, RGR and CGR and finally grain yield. For vegetative growth the optimum concentration required in plants was always lower than the optimum for grain production.  相似文献   

4.
Summary The applicability of the Electro-Ultra-Filtration (EUF) method in soil analyses was studied. The reproducibilities of the amounts of soil extracts, of ion concentrations in the extracts and of the distribution of cations and anions over the cathode and anode extracts by use of fully automatic EUF equipment were tested. The degree of variability among replicates was expressed as coefficient of variation (CV) and as the highest percentual divergence of an individual analytical measurement from the mean (L). The extraction volumes of five replicates of six different soils were found to vary between 1.1–7.1% with an average of 3.8%, as CV and between 1.5–11.3% as L. The reproducibility of desorbed P in the anode extract varied between 2.7–31.7% with an average of 8.7%, as CV and between 3.2–37.9% as L. Corresponding values for CV and L of K desorbed varied between 1.3–13.9% and 1.6–23.8%, respectively. Variations among replicates of desorbed P were especially high in the first 1–2 sub-fractions of a total of seven fractions in a single extraction run. Low K concentrations in the extract had a slightly negative influence on the reproducibility of K desorption. Furthermore, it was found that a portion of the cations is collected in the anode extract and a portion of the anions in the cathode extract, especially at the beginning of an extraction run. Pooling of anode and cathode extracts before analysis is therefore recommended.  相似文献   

5.
Four human vascular endothelial growth factor receptor Flt-1 cDNA fragments containing extracellular domain loops 2, 1–2, 2–3 and 1–3 respectively were amplified from human placental cDNA library by PCR and used for screening ligand binding domains by yeast two-hybrid system. The result showed that, not only loop 1–3, but also the smaller fragment loop 2–3 could bind to hVEGF165. Recombinant expression plasmids pPIC9K/Flt-1(1–3) and pPIC9K/Flt-1(2–3) were constructed and transformed toPichia. pastoris host strain GS115, cultured in flasks, and expressed under the induction of 1% methanol. The expressed product existed in supernatant in the form of soluble molecules and contained more than 60% of total protein after being induced for 4d. After being purified by CM-Sepharose FF and Sephacryl S-100 chromatography, its purity reached above 90%. Biological assayin vitro showed that the binding capacity of expressed soluble Flt-1 (2–3) to hVEGF165 and its inhibiting effect on the proliferation of human umbilical veins endothelial cells (HUVEC) stimulated with hVEGF165 were close to those of sFlt-1(1–3). Animal test showed that sFlt-1(2–3) could inhibit the formation of regenerate blood vessels stimulated with hVEGF165 significantly.  相似文献   

6.
Rice-based (Oryza sativa L.) rainfed lowlands are the major cropping system in northeast Thailand. Average yields are low, which is generally explained by frequent drought events, low soil fertility, and poor fertilizer response. However, neither the relative importance of these factors nor their interaction is well understood. Therefore, we analyzed an existing database on fertilizer trials conducted between 1995 and 1997 at eight different sites in northeast Thailand with the objective to determine indigenous nutrient supplies, internal efficiencies, and recovery efficiencies of applied nutrients in rainfed lowland rice. Of particular interest was the effect of variety type (traditional) and water supply on these components. Comparison of N, P, and K concentrations in grain and straw (average N–P–K grain concentration of 11.0–2.7–3.4 g kg−1; average N–P–K straw concentration of 5.2–0.9–16.4 g kg−1) in the traditional-type varieties used at all trial sites with literature values showed no differences for these parameters between traditional and modern-type varieties or between irrigated and rainfed environments. In contrast, internal efficiencies of N, P, and K (average IEN: 46 kg grain per kg N uptake; IEP: 218 kg grain per kg P uptake; IEK: 25 kg grain per kg K uptake) were much lower than reported for irrigated systems, and the difference was greatest for K, which is mainly accumulated in the straw. Indigenous nutrient supply (average INS: 38 kg ha−1; IPS: 10 kg ha−1; IKS: 89 kg ha−1) and recovery efficiency (average REN: 0.28 kg kg−1; REP: 0.13 kg kg−1; REK: 0.49 kg kg−1) were low but comparable to the lower values reported from irrigated systems. Average seasonal field water resources seemed to reduce the indigenous nutrient supply but had no or little effect on internal efficiency and recovery efficiency. We concluded that the main reason for the low system productivity without and with fertilizer in northeast Thailand is the dominant use of traditional-type varieties with low harvest indices, which was the dominant cause for the observed low internal nutrient efficiency. Therefore, intensification of rainfed systems through substantially increased nutrient inputs can be recommended only where varieties with an average harvest index of close to 0.4 or higher are available.  相似文献   

7.
Zeng  Qiupeng  Brown  Patrick H. 《Plant and Soil》2000,221(2):121-134
This study examined the effects of soil moisture on soil K mobility, dynamics of soil K, soil K fixation, plant growth and K uptake. A pot experiment, with and without corn (Zea maysL.), was conducted over a 16-d duration using a Yolo silt loam treated with two soil moisture regimes, i.e. constant moisture vs. wetting–drying (W–D) cycles. Soil K dynamics were determined using both ion exchange resin and direct extraction of soil solution. Soil K mobility increased significantly with soil moisture content (θv) and there was a positive curvilinear relationship between θv and effective diffusion coefficient (De), suggesting that more K+ can diffuse to the plant roots at sufficient soil moistures. Increase in De could be attributed to the decrease of impedance factor. During W–D cycles, soil solution K concentration increased as soil solution volume decreased, but soil solution K and NH4 +-extractable K pools decreased. In the constant moisture regime, available K pools decreased over the 16-d duration, but to a lesser extent than in W–D regime. The W–D cycles significantly enhanced K fixation and reduced available K pools in the soil in contrast to the constant moisture regime. Potassium fixation by the soil showed a biphasic pattern under the W–D regime, with a rapid fixation within the first 2 d after re-wetting, followed by a slower fixation. In the soil with constant moisture, K fixation was rapid during the first 8 h after wetting the soil, and then proceeded so slowly that no significant K fixation was observed after 4 d. The W–D cycles decreased root and shoot growth and K uptake by corn compared to constant moisture condition. Our results support the hypothesis that W–D cycles enhance soil K fixation, reduce soil K mobility and plant growth, and therefore reduce plant K+ uptake. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

8.
 Direct cyclic voltammetry and 1H NMR spectroscopy have been combined to investigate the electrochemical and spectroscopic properties of cytochrome c 553 isolated from the alkaliphilic soil bacterium Bacillus pasteurii. A quasi-reversible diffusion-controlled redox process is exhibited by cytochrome c 553 at a pyrolitic graphite edge microelectrode. The temperature dependence of the reduction potential, measured using a non-isothermal electrochemical cell, revealed a discontinuity at 308 K. The thermodynamic parameters determined in the low-temperature range (275–308 K;ΔS°′=–162.7±1.2 J mol–1 K–1, ΔH°′=–53.0±0.5 kJ mol–1, ΔG°′=–4.5±0.1 kJ mol–1, E°′=+47.0±0.6 mV) indicate the presence of large enthalpic and entropic effects, leading, respectively, to stabilization and destabilization of the reduced form of cytochrome c 553. Both effects are more accentuated in the high-temperature range (308–323 K;ΔS°′=–294.1±8.4 J mol–1 K–1, ΔH°′=–93.4±3.1 kJ mol–1, ΔG°′=–5.8±0.6 kJ mol–1, E°′=+60.3±5.8 mV), with the net result being a slight increase of the standard reduction potential. These thermodynamic parameters are interpreted using the compensation theory of hydration of biopolymers as indicating the extrusion, upon reduction, of water molecules from the hydration sphere of the cytochrome. The low-T and high-T conformers differ by the number of water molecules in the solvation sphere: in the high-T conformer, the number of water molecules extruded upon reduction increases, as compared to the low-T conformer. The ionic strength dependence of the reduction potential at 298 K, treated within the frame of extended Debye-Hückel theory, yields values of E °′ (I=0) =–25.4±1.4 mV, z red=–11.3, and z ox=–10.3. The pH dependence of the reduction potential at 298 K shows a plateau in the pH range 7–10 and an increase at more acidic pH, allowing the calculation of pK O=5.5 and pK R=5.7, together with the estimate of the reduction potentials of completely protonated (+71 mV) and deprotonated (+58 mV) forms of cytochrome c 553. 1H NMR spectra of the oxidized paramagnetic cytochrome c 553 indicate the presence of a His-Met axial coordination of the low-spin (S=1/2) heme iron, which is maintained in the temperature interval 288–340 K at pH 7 and in the pH range 4.8–10.0 at 298 K. The temperature dependence of the hyperfine-shifted signals shows both Curie-type and anti-Curie-type behavior, with marked deviations from linearity, interpreted as indicating the presence of a fast equilibrium between the low-T and high-T conformers, having slightly different heme electronic structures resulting from the T-induced conformational change. Increasing the NaCl concentration in the range 0–0.2 M causes a slight change of the 1H NMR chemical shifts of the hyperfine-shifted signals, with no influence on their linewidth. The calculated lower limit value of the apparent affinity constant for specific ion binding is estimated as 5.2±1.1 M–1. The pH dependence of the isotropically shifted 1H NMR signals of the oxidized cytochrome displays at least one ionization step with pK O=5.7. The thermodynamic and spectroscopic data indicate a large solvent-derived entropic effect as the main cause for the observed low reduction potential of B. pasteurii cytochrome c 553. Received: 9 January 1998 / Accepted: 8 April 1998  相似文献   

9.
The effects of plant growth regulators on callus induction rate and regeneration of K. alvarezii explants was evaluated. K. alvarezii calluses were induced in vitro with kinetin (K), 6-benzylaminopurine (B), 1-naphtalene acetic acid (N) and spermine (S). After 30 days, K. alvarezii explants produced filamentous calluses and isolated crystalline filaments growing from the medullar region and from cortical cells at the cut edge. The plant growth regulators 1-naphtalene acetic acid (1 mg L−1) and 6-benzylaminopurine (1 mg L−1) and the 1-naphtalene acetic acid + kinetin + spermine (1, 1, 0.018 mg L−1 respectively) combination produced 85 to 129% more calluses, with significant differences versus the control (p<0.05). Spermine at 0.018 mg L−1 produced calluses in the apical, intercalary and basal regions of explants. Spermine also reduced callus induction time to 7 days, which is faster than previously reported induction times with other plant growth regulators. An airlift bioreactor was designed and characterized to micropropagate K. alvarezii calluses. The bioreactor had mixing times ranging from 4.6–10.3 s at T 90 and T 95, which is shorter than those for the Fernbach (5.2–13.4 s) and balloon flasks (6.3–17.3 s). Mixing time standard deviations were smaller for the bioreactor (1.1–4.6) than for the Fernbach (9.3–13.6) and balloon flasks (5.5–15.8), suggesting an adequate flow regime within the bioreactor. The results are useful for improving callus induction in K. alvarezii and propagating microplantlets in an airlift bioreactor, and provide baseline data for macroalgal bioreactor culture.  相似文献   

10.
Circular dichroism (CD) spectra of photosystem I (PSI) complexes of the cyanobacteria Thermosynechococcus elongatus, Arthrospira platensis and Synechocystis sp. PCC 6803 were studied. CD spectra of dark-adapted PSI trimers and monomers, measured at 77 K, show common bands at 669–670(+), 673(+), 680(−), 683–685(−), 696–697(−), 702(−) and 711(−) nm. The intensities of these bands are species specific. In addition, bands at 683–685(−) and 673(+) nm differ in intensity for trimeric and monomeric PSI complexes. CD difference spectra (P700+–P700) of PSI complexes at 283 K exhibit conservative bands at 701(−) and 691(+) nm due to changes in resonance interaction of chlorophylls in the reaction center upon oxidation of P700. Additional bands are observed at 671(−), 678(+), 685(−), 693(−) nm and in the region 720–725 nm those intensities correlate with intensities of analogous bands of antenna chlorophylls in dark-adapted CD spectra. It is suggested that the variability of CD difference spectra of PSI complexes is determined by changes in resonance interaction of reaction center chlorophylls with closely located antenna chlorophylls.  相似文献   

11.
 Intracranial saccular aneurysms have been clinically observed to emit a transient sound, a bruit, on each heartbeat. The mechanism causing the bruits has been a matter of contention. A qualitative analysis of the nonlinear dynamical properties of the Shah-Humphrey model for periodic pressure forcing of a thin-necked saccular aneurysm, using the Fung nonlinear constitutive model for the aneurysm material, shows that a small blood pressure jump on each beat, whether the pressure is weakly aperiodic or periodic, induces transients in the radial deformation response of the aneurysmal wall on each heartbeat. These transient vibrations, which have a component with frequency near the natural frequency of the system but are not resonant phenomena and which decay rapidly to a limit cycle during each distinct forcing pressure cycle, can generate the bruits. Received: 21 November 2000 / Revised version: 9 August 2001 / Published online: 23 August 2002 Mathematics Subject Classification (2000): 92B99, 70K40, 70K05 Key words or phrases: Intracranial saccular aneurysm – Bruit – Spectrum – Nonlinear dynamics – Transients – Vortex shedding – Fung model  相似文献   

12.
Eighteen metals were estimated in the scalp hair samples from cancer patients (n = 111) and normal donors (n = 113). Nitric acid–perchloric acid wet digestion procedure was used for the quantification of the selected metals by flame atomic absorption spectrophotometry. In the scalp hair of cancer patients, highest average levels were found for Ca (861 μg/g), followed by Na (672 μg/g), Zn (411 μg/g), Mg (348 μg/g), Fe (154 μg/g), Sr (129 μg/g), and K (116 μg/g), whereas in comparison, the dominant metals in the scalp hair of normal donors were Ca (568 μg/g), Zn (177 μg/g), Mg (154 μg/g), Fe (110 μg/g), and Na (103 μg/g). The concentrations of Ca, Cd, Co, Cr, Fe, K, Mg, Mn, Na, Ni, Pb, Sb, Sr, and Zn were notably higher in the hair of cancer patients as compared with normal donors, which may lead to a number of physiological disorders. Strong positive correlations were found in Mn–Pb (0.83), Cd–Cr (0.82), Cd–Li (0.57), Fe–Pb (0.56), and Fe–Mn (0.55) in the hair of cancer patients whereas Na–Cd, Li–Cr, Li–Co, Co–Cd, Li–Cd, Na–Co, Na–Li, Ca–Mg and Na–Cr exhibited strong relationships (r > 0.50) in the hair of normal donors. Principal Component Analysis (PCA) of the data revealed seven PCs, both for cancer patients and normal donors, but with significantly different loadings. Cluster Analysis (CA) was also used to support the PCA results. The study evidenced significantly different pattern of metal distribution in the hair of cancer patients in comparison with normal donors. The role of trace metals in carcinogenesis was also discussed.  相似文献   

13.
Cells of Kluyveromyces marxianus FII 510700 and Saccharomyces cerevisiae CBS 1907 were autolysed in phosphate buffer, pH 4.5, for a maximum of 10 days to compare chemical changes that occur in the carbohydrate, protein, amino acid and nucleic acid content. Approximately 2.2–3% carbohydrate, 9.5–12% protein, 0.6–1.0% DNA and 6–7% RNA were recovered in the autolysates. The main amino acids were β-alanine, phenylalanine, cysteine, methionine, glutamic acid and isoleucine. No significant differences in the yeast autolysates of K. marxianus and S. cerevisiae were observed. Consequently, K. marxianus produced from lactose-based media has potential as a source of yeast autolysates used in the food industry. Electronic Publication  相似文献   

14.
A field experiment was conducted for 5 years to examine the effects of non-flooded mulching cultivation on crop yield, internal nutrient efficiency and soil properties in rice–wheat (R–W) rotations of the Chengdu Plain, southwest China. Compared with traditional flooding (TF), non-flooded plastic film mulching (PM) resulted in 12 and 11% higher average rice (Oryza sativa L.) yield and system productivity (combined rice and wheat yields), and the trends in rice and wheat (Triticum aestivum L.) yields under PM were stable over time. However, non-flooded wheat straw mulching (SM) decreased average rice yield by 11% compared with TF, although no significant difference in system productivity was found between SM and TF. Uptakes of N and K by rice under PM were higher than those under TF and SM, but internal nutrient efficiency was significantly lower (N) or similar (K) under PM compared to SM and TF. This implies that more N and K accumulated in rice straw under PM. After 5-year rice–wheat rotation, apparent P balances (112–160 kg ha−1) were positive under all three cultivation systems. However, the K balances were negative under PM (−419 kg ha−1) and TF (−90 kg ha−1) compared with SM (45 kg ha−1). This suggests that higher K inputs from fertilizer, straw or manure may be necessary, especially under PM. After five rice seasons and four wheat seasons, non-flooded mulching cultivation led to similar (PM) or higher (SM) soil organic carbon (SOC), total N (TN) and alkali hydrolyzable N (AH-N) in the top 0–5 and 5–12 cm layers compared with TF. SOC, TN, AH-N and Olsen-P (OP) in the sub-surface layer (12–24 cm) were significantly higher under PM or SM than under TF, indicating that rice under non-flooded mulching conditions may fail to make use of nutrients from the subsoil. Thus, the risk of decline in soil fertility under non-flooded mulching cultivation could be very low if input levels match crop requirements. Our data indicate that PM and SM may be alternative options for farmers using R–W rotations for enhancement or maintenance of system productivity and soil fertility.  相似文献   

15.
The soybean cyst nematode (SCN, Heterodera glycines) continues to spread in soils receiving many forms of soil nutrient amendments, including small amounts of N although applied with no particular reference to SCN and/or other stress inducing factors. The objective of this 2-year study was to test if standard at-planting application of 112.09 kg−1 ha−1 of 06–15–40 (N–P–K) containing urea (+N), or 0–15–40 (N–P–K) (−N) or a no fertiliser check (0) affect yield of SCN resistant (‘Jack’) and two susceptible (‘CX 252’ and ‘Kenwood-94’) soybean cultivars under high and low SCN and other soil abiotic stresses. Yield was higher under low compared to high stress during both years, with Jack producing the highest yield and Kenwood-94 the lowest. While not statistically significant, +N tended to decrease nodulation and increase yield under low stress in all cultivars. Nodulation was correlated positively with yield and negatively with daily nematode population density (DNPD), suggesting potential problems for N supply under nematode infestation. The susceptible cultivars accumulated significantly more leaf Ca and Mg than Jack, which was more pronounced in the presence of high rather than low stress, confirming known responses to stress. At high stress, only CX 252 showed a yield increase in response to N treatment, suggesting possible physiological adaptation mechanisms. Future research that account for the relationships amongst DNPD, frequency of sampling, and host response to better understand confounding factors and to conclusively prove or disprove any benefits from supplementary N under SCN infestation are discussed.  相似文献   

16.
Ground vegetation may act as a sink for nutrients after clear-cutting and thus decrease leaching losses. Biomass and nutrient (N, P, K, Ca) pools of ground vegetation (mosses, roots and above-ground parts of field layer) were determined one year before and five years after clear-cutting of a Norway spruce (Picea abies (L.) H. Karst.) dominated boreal mixed forest stand in eastern Finland (63°51′ N, 28°58′ E). Before clear-cutting the average biomass of ground vegetation was 5307 kg ha−1, with nutrient contents of 46.9 kg N ha−11, 4.1 kg P ha−11, 16.2 kg K ha−11 and 13.9 kg Ca ha−11. The biomass and nutrient pools decreased after clear-cutting being lowest in the second year, the biomass decreasing by 46–65% in the cut plots. The nutrient pools decreased as follows: N 54–72%, P 36–68%, K 51–71% and Ca 57–74%. The decrease in ground vegetation nutrient uptake, and the observed reduced depth of rooting may decrease nutrient retention after clear-cutting and decomposing dead ground vegetation is a potential source of leached nutrients. These negative effects of clear-cutting on the nutrient binding capacity of ground vegetation was short-lived since the total biomass and nutrient pools returned to pre-cutting levels or were even greater by the end of the 5-year study period.  相似文献   

17.
In the highlands of Western Kenya, we investigated the reversibility of soil productivity decline with increasing length of continuous maize cultivation over 100 years (corresponding to decreasing soil organic carbon (SOC) and nutrient contents) using organic matter additions of differing quality and stability as a function of soil texture and inorganic nitrogen (N) additions. The ability of additions of labile organic matter (green and animal manure) to improve productivity primarily by enhanced nutrient availability was contrasted with the ability of stable organic matter (biochar and sawdust) to improve productivity by enhancing SOC. Maize productivity declined by 66% during the first 35 years of continuous cropping after forest clearing. Productivity remained at a low level of 3.0 t grain ha-1 across the chronosequence stretching up to 105 years of continuous cultivation despite full N–phosphorus (P)–potassium (K) fertilization (120–100–100 kg ha−1). Application of organic resources reversed the productivity decline by increasing yields by 57–167%, whereby responses to nutrient-rich green manure were 110% greater than those from nutrient-poor sawdust. Productivity at the most degraded sites (80–105 years since forest clearing) increased in response to green manure to a greater extent than the yields at the least degraded sites (5 years since forest clearing), both with full N–P–K fertilization. Biochar additions at the most degraded sites doubled maize yield (equaling responses to green manure additions in some instances) that were not fully explained by nutrient availability, suggesting improvement of factors other than plant nutrition. There was no detectable influence of texture (soils with either 11–14 or 45–49% clay) when low quality organic matter was applied (sawdust, biochar), whereas productivity was 8, 15, and 39% greater (P < 0.05) on sandier than heavier textured soils with high quality organic matter (green and animal manure) or only inorganic nutrient additions, respectively. Across the entire degradation range, organic matter additions decreased the need for additional inorganic fertilizer N irrespective of the quality of the organic matter. For low quality organic resources (biochar and sawdust), crop yields were increasingly responsive to inorganic N fertilization with increasing soil degradation. On the other hand, fertilizer N additions did not improve soil productivity when high quality organic inputs were applied. Even with the tested full N–P–K fertilization, adding organic matter to soil was required for restoring soil productivity and most effective in the most degraded sites through both nutrient delivery (with green manure) and improvement of SOC (with biochar).  相似文献   

18.
The phosphatidylinositol 3-kinase/AKT (PI3K/AKT) pathway plays a critical role in human cancer. We determined the expression patterns of class I PI3K catalytic subunits and evaluated their importance in the development or progression of colorectal cancer (CRC). For this purpose, expression of class I PI3K isoforms was evaluated in 82 primary CRC and paired non-cancerous mucosa samples by qRT-PCR. P-AKT-Ser473 and P-AKT-Thr308 expression were measured by western blot. We found that, compared with paired non-cancerous mucosa samples, mRNA expression of p110α and p110β in CRCs was significantly increased to 2.02-fold (95% confidence interval [CI] 1.25–3.28 fold) and 1.76-fold (95% CI 1.19–2.60 fold), respectively; while slight differences were found regarding the expression of p110δ (0.57-fold; 95% CI 0.31–1.07 fold) and p110γ (0.97-fold; 95% CI 0.50–1.88 fold). Increased p110α and p110β expression correlated with primary tumor size, regional lymph node metastases, and AJCC stage. Increased p110β expression also correlated with distant metastasis. P-AKT-Thr308 and P-AKT-Ser473 expression showed significant direct correlations with p110α and p110β mRNA expression. Besides, CRC patients with p110β mRNA overexpression had a worse disease-free survival after radical surgery compared with those with normal or decreased levels (P = 0.043). It was, therefore, concluded that the altered p110α and p110β expression might contribute to the CRC development or progression.  相似文献   

19.
 The intramolecular electron-transfer rate constant for the Cu(II)–topaNH2⇌ Cu(I)–topaSQ equilibrium in methylamine oxidase has been measured by temperature-jump relaxation techniques. At pH 7.0 the estimated kobs = 150±30 s–1 for both methylamine and benzylamine; assuming the equilibrium constant is ≈0.7–1 at pH 7.0 and 296 K, this would correspond to a forward electron-transfer rate constant kET≈ 60–75 s–1. Although substantially slower than the previously determined kET≈ 20 000 s–1 for pea seedling amine oxidase [5] steady-state kinetics measurements established that kET > kcat≈ 4–10 s–1. Thus the Cu(I)-semiquinone state is a viable intermediate in methylamine oxidase turnover. Received: 16 August 1995 / Accepted: 21 December 1995  相似文献   

20.
The vertical 137Cs profile of forest and wasteland soils was analyzed in the south of the Podlasie Lowland area (Eastern Poland) about 20 years after the Chernobyl accident. In addition, the concentration of 40K in soils of the investigated area was measured. Below the litter layer (mean thickness 3 cm), the soil samples were collected up to a depth of 12 cm and then divided into three layers: 0–3, 3–7, 7–12 cm. The behavior of 137Cs and 40K isotopes in soils was analyzed depending on the depth from which the soil samples were collected, as well as on the content of organic carbon, pH of soil and its granulometric composition. It was established that the density of 137Cs in the litter layer equals 2.17 kBq m−2; it is the highest in layer 0–3 cm where it equals 3.44 kBq m−2, and it decreases with the depth to the value of 0.76 kBq m−2 in layer 7–12 cm. No similar pattern was observed in wasteland soils. The concentrations of 40K in forest and wasteland soils did not change significantly with depth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号