首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As dura mater has an anisotropic fibrous structure and exists under wet and dynamic stretching conditions in the brain, its mechanical properties have not yet been properly investigated. Here we developed a fluid-assisted mechanical system integrated with a photonic sensor and a pressure sensor in order to measure the elasticity of the dura mater. Porcine dura mater sample was loaded as a stretched diaphragm into a liquid chamber to mimic the in vivo condition. Increasing the flow rate of saline solution into the chamber swelled and deformed the dura mater. The micron-scale deflection of the dura mater was optically detected by the photonic sensor. Fluid pressure and deflection values were then used to calculate the elastic modulus. The average elastic modulus of the porcine dura mater was 31.14 MPa. We further measured the elasticity of a well-known material to further validate the system. We expect that this optofluidic system developed in this study will be useful to measure the elasticity of a variety of thin biological tissues.  相似文献   

2.
The ability of newborns and immature animals to reossify calvarial defects has been well described. This capacity is generally lost in children greater than 2 years of age and in mature animals. The dura mater has been implicated as a regulator of calvarial reossification. To date, however, few studies have attempted to identify biomolecular differences in the dura mater that enable immature, but not mature, dura to induce osteogenesis. The purpose of these studies was to analyze metabolic characteristics, protein/gene expression, and capacity to form mineralized bone nodules of cells derived from immature and mature dura mater. Transforming growth factor beta-1, basic fibroblast growth factor, collagen type IalphaI, osteocalcin, and alkaline phosphatase are critical growth factors and extracellular matrix proteins essential for successful osteogenesis. In this study, we have characterized the proliferation rates of immature (6-day-old rats, n = 40) and mature (adult rats, n = 10) dura cell cultures. In addition, we analyzed the expression of transforming growth factor beta-1, basic fibroblast growth factor-2, proliferating cell nuclear antigen, and alkaline phosphatase. Our in vitro findings were corroborated with Northern blot analysis of mRNA expression in total cellular RNA isolated from snap-frozen age-matched dural tissues (6-day-old rats, n = 60; adult rats, n = 10). Finally, the capacity of cultured dural cells to form mineralized bone nodules was assessed. We demonstrated that immature dural cells proliferate significantly faster and produce significantly more proliferating cell nuclear antigen than mature dural cells (p < 0.01). Additionally, immature dural cells produce significantly greater amounts of transforming growth factor beta-1, basic fibroblast growth factor-2, and alkaline phosphatase (p < 0.01). Furthermore, Northern blot analysis of RNA isolated from immature and mature dural tissues demonstrated a greater than 9-fold, 8-fold, and 21-fold increase in transforming growth factor beta-1, osteocalcin, and collagen IalphaI gene expression, respectively, in immature as compared with mature dura mater. Finally, in keeping with their in vivo phenotype, immature dural cells formed large calcified bone nodules in vitro, whereas mature dural cells failed to form bone nodules even with extended culture. These studies suggest that differential expression of growth factors and extracellular matrix molecules may be a critical difference between the osteoinductive capacity of immature and mature dura mater. Finally, we believe that the biomolecular bone- and matrix-inducing phenotype of immature dura mater regulates the ability of young children and immature animals to heal calvarial defects.  相似文献   

3.

Accurate biomechanical properties of the human dura mater are required for computational models and to fabricate artificial substitutes for transplantation and surgical training purposes. Here, a systematic literature review was performed to summarize the biomechanical properties of the human dura mater that are reported in the literature. Furthermore, anthropometric data, information regarding the mechanically tested samples, and specifications with respect to the used mechanical testing setup were extracted. A meta-analysis was performed to obtain the pooled mean estimate for the elastic modulus, ultimate tensile strength, and strain at maximum force. A total of 17 studies were deemed eligible, which focused on human cranial and spinal dura mater in 13 and 4 cases, respectively. Pooled mean estimates for the elastic modulus (n?=?448), the ultimate tensile strength (n?=?448), and the strain at maximum force (n?=?431) of 68.1 MPa, 7.3 MPa and 14.4% were observed for native cranial dura mater. Gaps in the literature related to the extracted data were identified and future directions for mechanical characterizations of human dura mater were formulated. The main conclusion is that the most commonly used elastic modulus value of 31.5 MPa for the simulation of the human cranial dura mater in computational head models is likely an underestimation and an oversimplification given the morphological diversity of the tissue in different brain regions. Based on the here provided meta-analysis, a stiffer linear elastic modulus of 68 MPa was observed instead. However, further experimental data are essential to confirm its validity.

  相似文献   

4.
Some morphofunctional peculiarities in microcirculatory pathways of the dura mater of the human spinal cord are described. They are concerned with the structure of arteriolo-venular anastomoses through which a rather large amount of arterial blood is transported into the venous bed. Around the vessels of arterial type running at an angle to the longitudinal axis of the vessel connective tissue fibres of the dura mater, there is a tissue layer intensively impregnated with silver salts and stained PAS-positively. The venous part of the dura mater microcirculatory pathways has a large number of accessory reservoirs in the form of venous "lakes". Functional importance of the peculiarities mentioned above for the dura mater and the perimedullar apparatus is clarified.  相似文献   

5.
By means of silver nitrate impregnation and hematoxylin -- eosin staining the microcirculatory bed of the human brain dura mater (the second half of the mature age) has been investigated. Owing to the analysis of the morphometrical data of module organization of the hemomicrocirculatory bed, an objective quantitative characteristics of its peculiarities in various layers and areas of the dura mater is presented. In three layers of the dura mater in the fornix and skull basis area, falx cerebri and tentorium cerebelli venular links predominate. Most of all morphometrical parameters of the venular vessels increase in the internal layer of the dura mater in the skull basis area. Conditions of functioning for the human brain dura mater are reflected in its blood bed, its specificity manifesting at the microcirculatory level.  相似文献   

6.
In the cranial vault, suture morphogenesis occurs when the growing cranial bones approximate and overlap or abut one another. Patency of developing sutures is regulated by the underlying dura mater. Once cranial sutures form, bone growth proceeds from the sutures in response to growth signals from the rapidly expanding neurocranium. Facial sutures do not develop in contact with the dura mater. It was therefore hypothesized that facial suture morphogenesis and bone growth from facial sutures are regulated by tissues with an equivalent role to the dura mater. The present study was designed to test this hypothesis by characterizing the morphology and growth factor expression in developing transpalatal (TP) sutures and their surrounding tissues, and then assessing the role of the overlying nasal capsular (NC) cartilages in maintaining suture patency. TP sutures develop as overlapping sutures, similar to cranial coronal sutures, and expression of Tgf-betas in TP sutures was similar to their distribution in cranial coronal sutures. To establish whether NC cartilages play a role in regulating TP suture morphogenesis, fetal rat TP sutures were cultured with associated attached NC cartilages or with NC cartilages removed. Sutures cultured for upward of 5 days with intact NC cartilages remained patent and maintained their cellular and fibrous components. However, in the absence of NC cartilages, the cellular nature of the sutures was not maintained and they became progressively acellular, with bony bridging across the suture. This finding is similar to that for cranial vault sutures cultured in the absence of dura mater, indicating that NC cartilages play an equivalent role to dura mater in maintaining the patency of developing sutures. These studies indicate that tissue interactions likely regulate morphogenesis of all cranial and facial sutures.  相似文献   

7.
Substance P-like immunoreactivity (SPLI) was studied by immunocytochemistry and radioimmunoassay in the cerebral arteries, choroid plexus and dura mater of the guinea-pig, rabbit, cat and man. The highest concentrations were found in cerebral blood vessels: 6.1 +/- 2.3 pmol/g (guinea-pig), 9.0 +/- 1.1 pmol/g (rabbit), 7.1 +/- 0.4 pmol/g (cat), and 2.4 +/- 0.9 pmol/g (man). Lower levels were obtained in the choroid plexus and dura mater. The distribution of substance P (SP)-immunoreactive nerve fibres found in various regions of the guinea-pig correlated well with the amount of SPLI measured. Sympathectomy did not alter the concentration of SPLI in the dura mater or in cerebral blood vessels. Electrical field stimulation or 124 mM potassium enhanced the spontaneous efflux of SPLI by 10 and 20%, respectively, from superfused pial arteries in vitro. These data are in support of a functional role of perivascular SP within the cranial circulation.  相似文献   

8.
The human brain grows rapidly during the first 2 years of life. This growth generates tensile strain in the overlying dura mater and neurocranium. Interestingly, it is largely during this 2-year growth period that infants are able to reossify calvarial defects. This clinical observation is important because it suggests that calvarial healing is most robust during the period of active intracranial volume expansion. With a rat model, it was previously demonstrated that immature dura mater proliferates more rapidly and produces more osteogenic cytokines and markers of osteoblast differentiation than does mature dura mater. It was therefore hypothesized that mechanical strain generated by the growing brain induces immature dura mater proliferation and increases osteogenic cytokine expression necessary for growth and healing of the overlying calvaria. Human and rat (n = 40) intracranial volume expansion was calculated as a function of age. These calculations demonstrated that 83 percent of human intracranial volume expansion is complete by 2 years of age and 90 percent of Sprague-Dawley rat intracranial volume expansion is achieved by 2 months of age. Next, the maximal daily circumferential tensile strains that could be generated in immature rat dura mater were calculated, and the corresponding daily biaxial tensile strains in the dura mater during this 2-month period were determined. With the use of a three-parameter monomolecular growth curve, it was calculated that rat dura mater experiences daily equibiaxial strains of at most 9.7 percent and 0.1 percent at birth (day 0) and 60 days of age, respectively. Because it was noted that immature dural cells may experience tensile strains as high as approximately 10 percent, neonatal rat dural cells were subjected to 10 percent equibiaxial strain in vitro, and dural cell proliferation and gene expression profiles were analyzed. When exposed to mechanical strain, immature dural cells rapidly proliferated (5.8-fold increase in proliferating cell nuclear antigen expression at 24 hours). Moreover, mechanical strain induced marked up-regulation of dural cell osteogenic cytokine production; transforming growth factor-beta1 messenger RNA levels increased 3.4-fold at 3 hours and fibroblast growth factor-2 protein levels increased 4.5-fold at 24 hours and 5.6-fold at 48 hours. Finally, mechanical strain increased dural cell expression of markers of osteoblast differentiation (2.8-fold increase in osteopontin levels at 3 hours). These findings suggest that mechanical strain can induce changes in dura mater biological processes and gene expression that may play important roles in coordinating the growth and healing of the neonatal calvaria.  相似文献   

9.
During development and growth of the neurocranium, the dura mater regulates events in the underlying brain and overlying skull by the release of soluble factors and cellular activity. Morphogenesis of the cranial bones and sutures is dependent on tissue interactions with the dura mater, which control the size and shape of bones as well as sutural patency. Development of the brain also involves interactions with dura mater: secretion of stromal derived factor 1 (SDF-1) is a critical event in directing migration of the external granular layer precursors of the cerebellar cortex and the Cajal-Retzius (CR) cells of the cerebral cortex. The dura mater is also required for growth of the hippocampal dentate gyrus. Wnt1Cre/R26R transgenic reporter mice were used to study the origin and fates of the cells of dura mater during head development. The dura mater of mammals is derived entirely from the cranial neural crest. Beginning around neonatal day 10 (N 10), the dura mater is infiltrated by cells derived from paraxial mesoderm, which later come to predominate. Over the course of infancy, the neural crest-derived cells of the dura mater become sequestered in niche-like distribution characteristic of stem cells. Simultaneously, dura mater cells underlying the sagittal suture migrate upward into the mesodermally-derived mesenchyme separating the parietal bones. Although initially the parietal bones are formed entirely from paraxial mesoderm, the cellular composition gradually becomes chimeric and is populated mainly by neural crest-derived cells by N 30. This occurs as a consequence of osteoblastic differentiation at the dura mater interface and intravasation of neural crest-derived osteoclastic and other hematopoietic precursors. The isolated cells of the dura mater are multipotent in vitro, giving rise to osteoblasts, neuronal cells and other derivatives characteristic of cranial neural crest, possibly reflecting the multipotent nature of dura mater cells in vivo.  相似文献   

10.
Prostacyclin generation by pericardium, pleura, peritoneum, aorta and dura mater of the rabbit was assessed as platelet aggregation inhibitory activity in platelet rich plasma. All tissues except the dura mater, were also incubated with labelled (1-14C) arachidonic acid and (1-14C) prostaglandin endoperoxide H2 and the various metabolites formed were identified radiochromatographically. Pericardium, pleura and peritoneum form substantially high amounts of prostacyclin and HETE indicating that these tissues contain both cyclo-oxygenase and prostacyclin-synthetase. They also show considerable lipoxygenase activity.  相似文献   

11.
The possibility of transmission of slow virus infection (HIV) and Creutzfeld-Jakob disease by cadaveric dura implants makes it necessary to find synthetic, absorbable materials for the reconstruction of the dura mater. Various procedures with autologous or alloplastic material are described. Four commercially available biomaterials were choosen to study the proliferation rate and the biocompatibility of human osteoblast-like cells (HOB-like cells) on 2- dimensional material by biochemical analysis. With a proliferation assay, the viability and the proliferation capacity of osteoblast-like cells were evaluated. A clinical trial was added to study resorbable fleece as one of the previously tested biomaterial in a small patient group (8 patients) to close anterior cranial fossa dura defects. The results of the proliferation assay showed the highest proliferation rate of HOB-like cells on resorbable fleece. All patients in our clinical trial with anterior cranial fossa dura defects were successfully treated with resorbable fleece. There was no evidence for persisting cerebrospinal fluid rhinorrhea or foreign body reaction after the period of wound healing. The present study demonstrated an excellent biocompatibility of resorbable fleece. The vicryl fleece is an alternative alloplastic material for endonasal closure of defined substantial defects of the dura with cerebrospinal fluid.  相似文献   

12.
Although dura mater tissue is believed to have an important role in calvarial reossification in many in vivo studies, few studies have shown the direct effect of dura mater cells on osteoblasts. In addition, no reports have yet identified the potential factor(s) responsible for various biological activities exerted by dura mater on calvarial reossification (e.g., cell proliferation). In this study, we tested the effect of dura mater on calvarial-derived osteoblasts by performing both heterotypic coculture and by culturing osteoblast cells with conditioned media harvested from dura mater cells of juvenile (3-day-old) and adult (30-day-old) mice. The results presented here demonstrate that cellular proliferation of juvenile osteoblast cells was significantly increased by juvenile dura mater either in the coculture system or when dura mater cell-conditioned medium was applied to the osteoblast cells. Moreover, high levels of FGF-2 protein were detected in juvenile dura mater cells and their conditioned medium. In contrast, low levels of FGF-2 protein were detected in adult dura mater cells, whereas FGF-2 protein was not detectable in their conditioned medium. Abrogation of the mitogenic effect induced by juvenile dura mater cell-conditioned medium was achieved by introducing a neutralizing anti-FGF-2 antibody, thus indicating that FGF-2 may be responsible for the mitogenic effect of the juvenile dura mater. Moreover, data obtained by exploring the three major FGF-2 signaling pathways further reinforced the idea that FGF-2 might be an important paracrine signaling factor in vivo supplied by the underlying dura mater to the overlying calvarial osteoblasts.  相似文献   

13.
Prostacyclin generation by pericardium, pleura, peritoneum, aorta and dura mater of the rabbit was assessed as platelet aggregation inhibitory activity in platelet rich plasma. All tissues except the dura mater, were also incubated with labelled (1-14C) arachidonic acid and (1-14C) prostaglandin endoperoxide H2 and the various metabolites formed were identified radiochromatographically. Pericardium, pleura and peritoneum form substantially high amounts of prostacyclin and HETE indicating that these tissues contain both cyclo-oxygenase and prostacyclin-synthetase. They also show considerable lipoxygenase activity.  相似文献   

14.
Freeze-dried human dura mater homograft has proved a highly successful, readily available and conveniently stored material for closure of dural defects.The material was used in three patients with good results as appraised after observation for periods of from two months to two years after operation.The freeze-dried dural homograft offers certain advantages over plastic implants, with regard to tissue acceptance by the host and more physiologic tissue response.  相似文献   

15.
Summary Cranial sutures play a critical role in calvarial morphogenesis, serving as bone growth centers during skull enlargement. Defective suture morphogenesis, resulting in premature osseous obliteration of sutures and their failure to function appropriately, causes severe craniofacial anomalies. Previously published data demonstrated osseous obliteration of coronal suturesin vitro in the absence of dura mater and the rescue of sutures from osseous obliteration in rudiments cocultured with dura mater on the opposite sides of 0.45-μm polycarbonate filters. With thisin vitro culture system, experiments were designed to examine the nature of the soluble signal secreted by dura mater, required for maintaining intact sutures. The signal remained active in conditioned medium produced from dura mater, which was capable of rescuing coronal sutures from osseous obliteration in calvaria cultured without dura mater. When conditioned medium was segregated into heparin-binding and non-heparin-binding fractions, the signal capable of maintaining intact coronal sutures cosegregated with the heparin-binding component and remained functional in the absence of the non-heparin-binding component of conditioned medium. Evidence indicates that soluble, heparin-binding factors secreted by the dura mater act as osteoinhibitory signals at the suture site.  相似文献   

16.
The ability of immature animals and newborns to orchestrate successful calvarial reossification is well described. This capacity is markedly attenuated in mature animals and in humans greater than 2 years of age. Previous studies have implicated the dura mater as critical to successful calvarial reossification. The authors have previously reported that immature, but not mature, dural tissues are capable of elaborating a high expression of osteogenic growth factors and extracellular matrix molecules. These findings led to the hypothesis that a differential expression of osteogenic growth factors and extracellular matrix molecules by immature and mature dural tissues may be responsible for the clinically observed phenotypes (i.e., immature animals reossify calvarial defects; mature animals do not). This study continues to explore the hypothesis through an analysis of transforming growth factor (TGF)-beta3, collagen type III, and alkaline phosphatase mRNA expression. Northern blot analysis of total RNA isolated from freshly harvested immature (n = 60) and mature (n = 10) dural tissues demonstrated a greater than three-fold, 18-fold, and nine-fold increase in TGF-beta3, collagen type III, and alkaline phosphatase mRNA expression, respectively, in immature dural tissues as compared with mature dural tissues. Additionally, dural cell cultures derived from immature (n = 60) and mature dura mater (n = 10) were stained for alkaline phosphatase activity to identify the presence of osteoblast-like cells. Alkaline phosphatase staining of immature dural cells revealed a significant increase in the number of alkaline phosphatase-positive cells as compared with mature dural tissues (p < 0.001). In addition to providing osteogenic humoral factors (i.e., growth factors and extracellular matrix molecules), this finding suggests that immature, but not mature, dura mater may provide cellular elements (i.e., osteoblasts) that augment successful calvarial reossification. These studies support the hypothesis that elaboration of osteogenic growth factors (i.e., TGF-beta33) and extracellular matrix molecules (i.e., collagen type III and alkaline phosphatase) by immature, but not mature, dural tissues may be critical for successful calvarial reossification. In addition, these studies suggest for the first time that immature dural tissues may provide cellular elements (i.e., osteoblasts) to augment this process.  相似文献   

17.
In Mammalia with different types in organization of blood outflow in the dura mater venous sinuses: vertebral (tiger), jugular (fur-seal, cat, rabbit) and mixed (rat, dog, man) the internal surface relief of these sinuses has been studied. The total plan of the relief in all the species studied is principally the same. It is characterized with presence of visually determined macro-relief structures: Pacchionian bodies, trabeculae, bars, eminences and excavations in places, where the sinuses fuse, initial folds (micro-relief) and, at last, formations composed by the nucleus and the external membrane of endotheliocytes (ultra-relief). The micro-relief depends on the type of the venous outflow from the brain. In the animals with the jugular type of the outflow the longitudinal folds are more expressed; in the animals with the vertebral type--there occur folds with transversal orientation. For the representatives with the mixed type--multilayered elastic carcass is specific. At the same time, the development degree of the micro-relief with a similar type of blood outflow is different. The relief of the luminal surface of the longitudinal venous sinus of the mammalian dura mater is supposed to be determined by presence of extravascular formations, by the muscular structures tonus, by construction of the wall elastic carcass and by activity of the luminal part of the external membrane of endotheliocytes.  相似文献   

18.
For decades surgeons have exploited the ability of infants to reossify large calvarial defects. To demonstrate the role of dura mater-osteoblast communication during the process of calvarial reossification, the authors used a novel in vitro system that recapitulates the in vivo anatomic relationship of these cell populations. Primary cultures of osteoblast cells from 2-day-old Sprague-Dawley rat pups were grown on six-well plates, and cultures of immature, non-suture-associated dura mater cells from 6-day-old Sprague-Dawley rat pups were grown on Transwell inserts. When the osteoblast and dura mater cell cultures reached confluence, they were combined. This Transwell co-culture system permitted the two cell populations to grow together in the same well, but it prevented direct cell-to-cell contact. Therefore, the authors were able to determine, for the first time, whether paracrine signaling from immature, non-suture-associated dura mater could influence the biologic activity of osteoblasts.Osteoblasts co-cultured with dural cells proliferated significantly faster after 2 days (2.1 x 10(5) +/- 2.4 x 10(4) versus 1.4 x 10(5) +/- 2.2 x 10(4), p < or = 0.05) and 4 days (3.1 x 10(5) +/- 5 x 10(4) versus 2.2 x 10(5) +/- 4.0 x 10(4), p < or = 0.01) than did osteoblasts cultured alone. After 20 days, co-cultured osteoblasts expressed greater amounts of mRNA for several markers of osteoblast differentiation, including collagen I alpha I (4-fold), alkaline phosphatase (2.5-fold), osteopontin (3-fold), and osteocalcin (4-fold), than did osteoblasts cultured alone. After 30 days, co-cultured osteoblasts produced bone nodules that were significantly greater both in number (324 +/- 29 nodules versus 252 +/- 29 nodules per well, p , < or = 0.04) and total area of nodules (65 +/- 11 mm(2) versus 24 +/- 1.6 mm(2), p < or = 0.003) than osteoblasts cultured alone.To begin to understand how dural cells effect changes in osteoblast gene expression, the authors compared the expression of candidate genes, transforming growth factor beta 1 and fibroblast growth factor 2, in dural cells and osteoblasts before and after 5 days of culture. Interestingly, the dura mater produced marked amounts of these osteogenic cytokines compared with osteoblasts.The described co-culture system demonstrated that co-cultured osteoblasts proliferated more rapidly and experienced an increased rate and degree of cellular maturation than did osteoblasts cultured alone. The authors hypothesize that this effect was due to paracrine signaling (e.g., transforming growth factor beta 1 and fibroblast growth factor 2) from the dura mater, and they are investigating those mechanisms in ongoing experiments. Collectively these data verify that immature, non-suture-associated dura mater can influence the biologic activity of osteoblasts. Moreover, the production of cytokines derived from the dura mater (e.g., transforming growth factor beta 1 and fibroblast growth factor 2), and they may begin to explain why immature animals and infants with intact dura mater can reossify large calvarial defects.  相似文献   

19.
Dopamine receptors (Dar) were studied as a component of the nervous dopaminergic system in the human dura mater. Dar were stained in several dural zones (vascular, perivascular, intervascular) in different regions (basal, calvarial, tentorial, occipital, frontal, parietal, temporal) of the cranial meninges. Specimens of human dura mater were harvested from autopsies of 10 elderly male subjects (age range, 60-75 years). Dar were labeled with specific (H3) markers, studied with radiobinding techniques (including liquid scintillation), stained for light microscope autoradiography, and measured by means of quantitative analysis of images. All results were evaluated with statistical analysis to identify significant results. More dural Dar were found in the basal region than in the calvarial one. Moreover, Dar are more abundant in the vascular and perivascular dural zone than in the intervascular one. The vascular distribution of Dar seemed to indicate that Dar play a role in the control of meningeal blood vessels. The location and distribution of D1 and D2 receptors in the human cranial dura mater confirmed the presence of a dopaminergic system, which could play an important role in controlling blood flow and/or other functions of meningeal membranes.  相似文献   

20.
It was shown in experiments with adult rabbits that the regeneration of skull vault bones after artificial trauma proceeds, mainly, at the expense of osteogenic activity of dura mater, rather than by means of outgrowth of bone from the defect margins. During regeneration, dura mater connects with the granulation tissue which fills the area of defect. The first bone islets are formed by the surface layer of dura mater near the defect margins and then all over the defect area. During regeneration bone islets merge with each other and with the old bone at the defect margins. In experiments with separation of the defect margins from dura mater by millipore filter, regeneration is insignificant over the filter near the old bone margins (bone trabeculae form which close destructed bone marrow cavities); the bone forms intensively under the filter on dura mater. In experiments with the removal of a piece of skull bone together with the adjacent region of dura mater, no bone regeneration occurs, the defect area is filled by the scar tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号