首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Urate oxidase, or uricase (EC 1.7.3.3), is a peroxisomal enzyme that catalyses the oxidation of uric acid to allantoin. The chemical mechanism of the urate oxidase reaction has not been clearly established, but the involvement of radical intermediates was hypothesised. In this study EPR spectroscopy by spin trapping of radical intermediates has been used in order to demonstrate the eventual presence of radical transient urate species. The oxidation reaction of uric acid by several uricases (Porcine Liver, Bacillus Fastidiosus, Candida Utilitis) was performed in the presence of 5‐diethoxyphosphoryl‐5‐methyl‐pyrroline‐N‐oxide (DEPMPO) as spin trap. DEPMPO was added to reaction mixture and a radical adduct was observed in all cases. Therefore, for the first time, the presence of a radical intermediate in the uricase reaction was experimentally proved.  相似文献   

2.
Urate oxidase (E.C.1.7.3.3; uricase, urate oxygen oxidoreductase) is an enzyme of the purine breakdown pathway that catalyzes the oxidation of uric acid in the presence of oxygen to allantoin and hydrogen peroxide. A 96-well plate assay measurement of urate oxidase activity based on hydrogen peroxide quantitation was developed. The 96-well plate method included two steps: an incubation step for the urate oxidase reaction followed by a step in which the urate oxidase activity is stopped in the presence of 8-azaxanthine, a competitive inhibitor. Hydrogen peroxide is quantified during the second step by a horseradish peroxidase-dependent system. Under the defined conditions, uric acid, known as a radical scavenger, did not interfere with hydrogen peroxide quantification. The general advantages of such a colorimetric assay performed in microtiter plates, compared to other methods and in particular the classical UV method performed with cuvettes, are easy handling of large amounts of samples at the same time, the possibility of automation, and the need for less material. The method has been applied to the determination of the kinetic parameters of rasburicase, a recombinant therapeutic enzyme.  相似文献   

3.
Urate oxidase catalyzes the transformation of uric acid in 5-hydroxyisourate, an unstable compound which is latter decomposed into allantoïn. Crystallographic data have shown that urate oxidase binds a dianion urate species deprotonated in N3 and N7, while kinetics experiments have highlighted the existence of several intermediates during catalysis. We have employed a quantum mechanical approach to analyze why urate oxidase is selective for one particular dianion and to explore all possible reaction pathways for the oxidation of one uric acid species by molecular dioxygen in presence of water. Our results indicate the urate dianion deprotonated in N3 and N7 is among all urate species that can coexist in solution it is the compound which will lose the most easiestly one electron in presence of molecular dioxygen. In addition, the transformation of this dianion in 5-hydroxyisourate is thermodynamically the most favorable reaction. Finally, several reaction pathways can be drawn, each starting with the spontaneous transfer of one electron from the urate dianion to molecular dioxygen. During that period, the existence of a 5-hydroperoxyisourate intermediate, which has been proposed elsewhere, does not seem mandatory.  相似文献   

4.
Uric acid has been considered to be an efficient scavenger of peroxynitrite but the reaction between urate and peroxynitrite has been only partially characterized. Also, previous studies have indicated that urate may increase peroxynitrite-mediated oxidation of low density lipoprotein (LDL). Here, we examined the reaction between urate and peroxynitrite by combining kinetic, oxygen consumption, spin trapping, and product identification studies; in parallel, we tested the effect of urate upon peroxynitrite-mediated lipid oxidation. Our results demonstrated that urate reacts with peroxynitrite with an apparent second order rate constant of 4.8 x 10(2) M(-1). s(-1) in a complex process, which is accompanied by oxygen consumption and formation of allantoin, alloxan, and urate-derived radicals. The main radical was identified as the aminocarbonyl radical by the electrospray mass spectra of its 5, 5-dimethyl-l-pyrroline N-oxide adduct. Mechanistic studies suggested that urate reacts with peroxynitrous acid and with the radicals generated from its decomposition to form products that can further react with peroxynitrite anion. These many reactions may explain the reported efficiency of urate in inhibiting some peroxynitrite-mediated processes. Production of the aminocarbonyl radical, however, may propagate oxidative reactions. We demonstrated that this radical is likely to be the species responsible for the effects of urate in amplifying peroxynitrite-mediated oxidation of liposomes and LDL, which was monitored by the formation of lipid peroxides and thiobarbituric acid-reactive substances. The aminocarbonyl radical was not detectable during urate attack by other oxidants and consequently it is unlikely to be responsible for all previously described prooxidant effects of uric acid.  相似文献   

5.
Free radical metabolite of uric acid   总被引:2,自引:0,他引:2  
Uric acid has previously been shown to act as a water-soluble antioxidant. Although the antioxidant activity of uric acid has been attributed to its ability to scavenge free radicals, the one-electron uric acid oxidation product of such a scavenging reaction has not been detected. It order to determine whether a free radical metabolite of uric acid could be formed via one-electron redox processes, we oxidized uric acid with potassium permanganate, horseradish peroxidase/hydrogen peroxide, and hematin/hydrogen peroxide systems. With the use of the rapid-mixing, continuous-flow electron spin resonance technique, we were able to detect the urate anion free radical in all three radical-generating systems. Based on N15-isotopic-labeling experiments, we show that the unpaired electron of this radical is located primarily on the five-membered ring of the purine structure. We were also able to demonstrate that this radical could be scavenged by ascorbic acid.  相似文献   

6.
微生物来源的尿酸氧化酶的研究进展及应用前景   总被引:2,自引:0,他引:2  
尿酸氧化酶是一种重要的医药用酶,它催化嘌呤代谢途径中的尿酸氧化生成尿囊素和过氧化氢,因而被广泛用于治疗痛风,检测血液尿酸浓度,预防和治疗由于肿瘤化学治疗引起的高尿酸血症。综述了尿酸氧化酶的来源、酶学性质、基因克隆与表达及其用途,并对其在应用中存在的问题和前景作了展望。  相似文献   

7.
Mammals that degrade uric acid are not affected by gout or urate kidney stones. It is not fully understood how they convert uric acid into the much more soluble allantoin. Until recently, it had long been thought that urate oxidase was the only enzyme responsible for this conversion. However, detailed studies of the mechanism and regiochemistry of urate oxidation have called this assumption into question, suggesting the existence of other distinct enzymatic activities. Through phylogenetic genome comparison, we identify here two genes that share with urate oxidase a common history of loss or gain events. We show that the two proteins encoded by mouse genes catalyze two consecutive steps following urate oxidation to 5-hydroxyisourate (HIU): hydrolysis of HIU to give 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline (OHCU) and decarboxylation of OHCU to give S-(+)-allantoin. Urate oxidation produces racemic allantoin on a time scale of hours, whereas the full enzymatic complement produces dextrorotatory allantoin on a time scale of seconds. The use of these enzymes in association with urate oxidase could improve the therapy of hyperuricemia.  相似文献   

8.
Uricase (urate oxidase EC 1.7.3.3) is a therapeutic enzyme that is widely used to catalyze the enzymatic oxidation of uric acid in the treatment of hyperuricemia and gout diseases. In this study, three bacterial species capable of producing extracellular uricase were isolated from a poultry source and screened based on the size of the clear zone using a uric acid agar plate. The bacterial species capable of producing uricase with the highest uricolytic activity was identified as Bacillus cereus strain DL3 using a 16SrRNA gene sequencing approach. The time-course study of uricase production was performed and the medium was optimized. Carboxymethylcellulose and asparagine were found to be the best carbon and nitrogen sources. Maximum uricolytic activity was observed at pH 7.0 with an inducer concentration of 2.0 g/L. Inoculum size of 5% gave maximum uricolytic activity. The maximum uricolytic activity of 15.43 U/mL was achieved at optimized conditions, which is 1.61 times more than the initial activity. Further, enzymatic stability was determined at different pH and temperature.  相似文献   

9.
Studies on the Physiology of Bacillus fastidiosus   总被引:2,自引:2,他引:2       下载免费PDF全文
Bacillus fastidiosus was grown in a minimal medium that contained uric acid or allantoin, aerated by vigorous stirring. A constant, optimum pH of 7.4 was maintained by controlled addition of sulfuric acid. Washed cells converted both urate and allantoin into carbon dioxide and ammonia, simultaneously assimilating part of the available carbon and nitrogen. Urate oxidase (formerly called uricase) was present in extracts from urate-grown but not allantoin-grown cells. The formation of urate oxidase was apparently induced by urate. Urea was detected as an intermediate in some but not all of these experiments. However, the high urease activity observed in cell-free extracts may have prevented accumulation of urea in many of the experiments. The presence of glyoxylate carboligase and tartronic semialdehyde reductase activities indicates that the glycerate pathway may be involved in urate and allantoin catabolism in this organism.  相似文献   

10.
2,4,6-Trinitrobenzene sulfonic acid (TNBS) has been used in vivo to induce colitis. With the nitroreductase of intestinal cells, TNBS underwent redox cycling to produce TNBS-nitro and superoxide radical anions which are thought to be involved in initial oxidative reactions that lead to colonic injury. In this study, we demonstrated that the TNBS desulfonative reaction with tissue amino acids produces sulfite which is subsequently oxidized to sulfite radical. Sulfite radical was measured using a spin trapping methodology. Sulfite radical adducts of 5,5-dimethyl-1-pyrroline N-oxide (DMPO) or 5-diethoxyphosphoryl-5-methyl-1-pyrroline N-oxide (DEPMPO) were detected in a mixture of TNBS and lysine, xanthine oxidase, red blood cells, colonic mucosal or submucosal muscle tissues. TNBS alone did not produce sulfite radical, indicating that its formation required the presence of amino acids. Because sulfite radical is the precursor of highly reactive sulfiteperoxyl and sulfate radicals, our data imply that these sulfite-derived free radicals may also contribute to oxidative reactions leading to colonic injury in TNBS-induced colitis.  相似文献   

11.
Commercially available uricase and peroxidase have been immobilized onto alkylamine glass and arylamine glass beads respectively. A discrete method has been developed to determine uric acid in serum using immobilized uricase and peroxidase. The method is based on generation of H2O2 from serum uric acid by immobilized uricase and its measurement by a colour reaction catalyzed by immobilized peroxidase. The minimum detection limit of the method was 8 microg/0.1 ml sample. The mean analytical recovery of added uric acid in serum was 87.5%. The within and between assay coefficient of variation (C.V.) were <6.58% and <10.77% respectively. The serum uric acid in apparently healthy adults and persons suffering from different disease was found to be 25-55 microg/ml, 32+/-2.25 (range, mean+/-S.D.) and 55-200 microg/ml; 52+/-6.4 (range, mean+/-S.D.) respectively by our method. A good correlation (r = 0.8170) was obtained between the serum urate values by this method and with those obtained by commercial Enzo-kit method.  相似文献   

12.
To spin trap hydroxyl radical (HO*) with in vivo detection of the resultant radical adducts, the use of two spin traps, 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) and 5-diethoxyphosphoryl-5-methyl-1-pyrroline-N-oxide (DEPMPO) (10 mmol/kg) has been compared. In mice treatment with 5-aminolevulinic acid and Fe3+ resulted in detection of adducts of hydroxyl radicals (HO*), but only with use of DEPMPO. Similarly, 'HO* adducts' generated via nucleophilic substitution of SO4*- adducts formed in vivo could be observed only when using DEPMPO as the spin trap. The reasons for the differences observed between DEPMPO and DMPO are likely due to different in vivo lifetimes of their hydroxyl radical adducts. These results seem to be the first direct in vivo EPR detection of hydroxyl radical adducts.  相似文献   

13.
The kinetics of the reaction between superoxide and the spin trapping agents 5,5-dimethyl-1-pyrroline N-oxide (DMPO), 5-(diethoxyphosphoryl)-5-methyl-1-pyrroline N-oxide (DEPMPO), and 5-tert-butoxycarbonyl-5-methyl-1-pyrroline N-oxide (BMPO) were re-examined in the superoxide-generating xanthine/xanthine oxidase system, by competition with spontaneous dismutation. The approach used singular value decomposition (SVD), multiple linear regression, and spectral simulation. The experiments were carried out using a two-syringe mixing arrangement with fast scan acquisition of 100 consecutive EPR spectra. Using SVD analysis, the extraction of both temporal and spectral information could be obtained from in a single run. The superoxide spin adduct was the exclusive EPR active species in the case of DEPMPO and BMPO, and the major component when DMPO was used. In the latter case a very low concentration of hydroxyl adduct was also observed, which did not change during the decay of the DMPO-superoxide adduct. This indicates that the hydroxyl radical adduct is not formed from the spontaneous decay of the superoxide radical adduct, as has been previously suggested [correction]. It was established that in short-term studies (up to 100 s) DMPO was the superior spin trapping agent, but for reaction times longer than 100 s the other two spin traps were more advantageous. The second order rate constants for the spin trapping reaction were found to be DMPO (2.4 M(-1)s(-1)), DEPMPO (0.53 M(-1)s(-1)), and BMPO (0.24 M(-1)s(-1)) determined through competition with spontaneous dismutation of superoxide, at pH 7.4 and 20 degrees C.  相似文献   

14.
1. The aerobic loss of GSH added to the supernatant fraction from rat liver is much increased by including the microsome fraction, which both inhibits the concurrent reduction of the GSSG formed and also augments the net oxidation rate. 2. Oxidation occurs with a mixture of dialysed supernatant and a protein-free filtrate; the latter is replaceable by hypoxanthine and the former by xanthine oxidase, whereas fractions lacking this enzyme give no oxidation. 3. In all these instances augmentation occurs with microsomes, with fractions having urate oxidase activity and with the purified enzyme; uric acid and microsomes alone also support the oxidation. 4. Evidence implicating additional protein factors is discussed. 5. It is suggested that GSH oxidation by homogenate is linked through glutathione peroxidase to the reaction of endogenous substrate with supernatant xanthine oxidase and of the uric acid formed with peroxisomal urate oxidase.  相似文献   

15.
The objective of this study was to investigate the ability of immune cells of the small intestine to produce highly reactive free radicals from the food additive sulfites. These free radicals were characterized with a spin-trapping technique using the spin traps 5-diethoxyphosphoryl-5-methyl-1-pyrroline N-oxide (DEPMPO) and 5,5-dimethyl-1-pyrroline N-oxide (DMPO). In the presence of glucose, purified lymphocytes from intestinal Peyer's patches (PP) and mesenteric lymph nodes (MLN) were stimulated with phorbol 12-myristate 13-acetate (PMA) to produce superoxide and hydroxyl DEPMPO radical adducts. The formation of these adducts was inhibited by superoxide dismutase or diphenyleneiodonium chloride, indicating that these cells produced superoxide radical during reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activation. With the treatment of sodium sulfite, PMA-stimulated PP lymphocytes produced a DEPMPO-sulfite radical adduct and an unknown radical adduct. When DEPMPO was replaced with DMPO, DMPO-sulfite and hydroxyl radical adducts were detected. The latter adduct resulted from DMPO oxidation by sulfate radical, which was capable of oxidizing formate or ethanol. Oxygen consumption rates were further increased after the addition of sulfite to PMA-stimulated lymphocytes, suggesting the presence of sulfiteperoxyl radical. Taken together, oxidants generated by stimulated lymphocytes oxidized sulfite to sulfite radical, which subsequently formed sulfiteperoxyl and sulfate radicals. The latter two radicals are highly reactive, contributing to increased oxidative stress, which may lead to sulfite toxicity, altered functions in intestinal lymphocytes, or both.  相似文献   

16.
The present study investigates the reactivity of bovine serum albumin (BSA) radicals towards different biomolecules (urate, linoleic acid, and a polypeptide, poly(Glu-Ala-Tyr)). The BSA radical was formed at room temperature through a direct protein-to-protein radical transfer from H(2)O(2)-activated immobilized horseradish peroxidase (im-HRP). Subsequently, each of the three different biomolecules was separately added to the BSA radicals, after removal of im-HRP by centrifugation. Electron spin resonance (ESR) spectroscopy showed that all three biomolecules quenched the BSA radicals. Subsequent analysis showed a decrease in the concentration of urate upon reaction with the BSA radical, while the BSA radical in the presence of poly(Glu-Ala-Tyr) resulted in increased formation of the characteristic protein oxidation product, dityrosine. Reaction between the BSA radical and a linoleic acid oil-in-water emulsion resulted in additional formation of lipid hydroperoxides and conjugated dienes. The results clearly show that protein radicals have to be considered as dynamic species during oxidative processes in biological systems and that protein radicals should not be considered as end-products, but rather as reactive intermediates during oxidative processes in biological systems hereby supporting recent data.  相似文献   

17.
A previous report that the spin trap 5-diethoxyphosphoryl-5-methyl-1-pyrroline-N-oxide (DEPMPO) allows DEPMPO radical cation formation to be detected via the production of a carbon-centred radical adduct (assigned as the cis-hydroxyethyl species, formed by an intramolecular process) is shown to be incorrect. Rather, this and other paramagnetic species arise from the facile oxidation of trace hydroxylamine impurities present in commercial DEPMPO samples. As a result, techniques for the detection and elimination of such hydroxylamine impurities from DEPMPO solutions were developed and are described; these should prove to be of general use in EPR spin trapping experiments.  相似文献   

18.
The spin trap 5-(diethoxyphosphoryl)-5-methyl-1-pyrroline N-oxide (DEPMPO) forms a superoxide adduct with a half-life of almost 15 min. DEPMPO is very hydrophilic and its use for the detection of radicals in the lipid phase (lipid-derived radicals and superoxide generated in the lipid phase) is therefore limited due to its very low concentration in the lipid phase. For the detection of lipid-derived radicals, three derivatives of DEPMPO with increasing degree of lipid solubility have been investigated: 5-(di-n-propoxyphosphoryl)-5-methyl-1-pyrroline N-oxide (DPPMPO), 5-(di-n-butoxyphosphoryl)-5-methyl-1-pyrroline N-oxide (DBPMPO), and 5-(bis-(2-ethylhexyloxy)phosphoryl)-5-methyl-1-pyrroline N-oxide (DEHPMPO). As compared with the spin trap DMPO, the half-lives of the respective superoxide adducts were clearly higher in aqueous solutions of the spin traps, which facilitates qualitative ESR measurements. The stability of the superoxide spin adducts formed with the various lipophilic spin traps in aqueous buffer were similar to those observed with DEPMPO (half-life: 7-11 min.). In model experiments using Fe(3+)-catalyzed nucleophilic addition of methanol or tert-butanol to the respective spin trap the respective alkoxyl radical adducts were formed in aqueous solution as transient species in the presence of high concentrations of the alcohol. Upon dilution with water the alkoxyl group was substituted by water, giving the respective hydroxyl adduct of the spin trap. Care must therefore be taken when Fenton-type reactions are used for the generation of radicals such as the use of Fe(2+) complexes with phosphate or DTPA or inactivation of iron by addition of "Desferal" (Novarti's Pharma GmbH, Vienna, Austria) after a short incubation time. Addition of Fe(2+) under anaerobic conditions to an aqueous suspension of linoleic acid hydroperoxide and the spin trap resulted in the detection of three different species: a carbon-centered radical adduct, an acyl radical adduct, and the hydroxyl adduct. In the presence of oxygen a different species was observed with DEPMPO, DPPMPO, and DBPMPO, which was only slightly suppressed upon the addition of SOD, possibly the respective spin adduct of either the alkylperoxyl radical or, in analogy to DMPO, a secondary alkoxyl radical.  相似文献   

19.
Spin-trapping investigators are largely limited by the instability of the radical adducts. Spin trap 5-(diethoxyphosphoryl)-5-methyl-1-pyrroline N-oxide (DEPMPO) forms very stable alkoxyl radical adducts. However, the presence of two chiral centers in the DEPMPO alkoxyl radical adduct results in two diastereomers with distinctive ESR spectra, which complicates the interpretation of the ESR spectra. We have analyzed the high resolution ESR spectra of the DEPMPO/OCH3 radical adduct. DEPMPO/OCH3 has been synthesized by the nucleophilic addition of alcohols to DEPMPO. The electron spin resonance (ESR) spectrum of DEPMPO/OCH3 in oxygen-free methanol solution reveals superhyperfine structure with hyperfine coupling constants as small as 0.3 G. In order to simplify the analysis of the electron spin resonance (ESR) spectrum, we synthesized the DEPMPO/OCD3 radical adduct. Computer simulation of the DEPMPO/OCD3 ESR spectrum revealed two diastereomers. Hyperfine coupling constants of γ-protons and 17O from the -OCH3 group were also determined. ESR spectra of DEPMPO/OCH3 in phosphate buffer have also been characterized. The presence of specific hyperfine couplings from the -OCH3 group can be used for the unambiguous identification of the DEPMPO/OCH3 radical adducts. We suggest that the analysis of high resolution ESR spectra can be used for the unambiguous characterization of DEPMPO radical adducts.  相似文献   

20.
Lipid radicals: properties and detection by spin trapping   总被引:1,自引:0,他引:1  
Unsaturated lipids are rapidly oxidized to toxic products such as lipid hydroperoxides, especially when transition metals such as iron or copper are present. In a Fenton-type reaction Fe2+ converts lipid hydroperoxides to the very short-lived lipid alkoxyl radicals. The reaction was started upon the addition of Fe2+ to an aqueous linoleic acid hydroperoxide (LOOH) emulsion and the spin trap in the absence of oxygen. Even when high concentrations of spin traps were added to the incubation mixture, only secondary radical adducts were detected, probably due to the rapid re-arrangement of the primary alkoxyl radicals. With the commercially available nitroso spin trap MNP we observed a slightly immobilized ESR spectrum with only one hydrogen splitting, indicating the trapping of a methinyl fragment of a lipid radical. With DMPO or 5-diethoxyphosphoryl-5-methyl-1-pyrroline N-oxide (DEPMPO) adducts were detected with carbon-centered lipid radical, with acyl radical, and with the hydroxyl radical. We also synthesized lipophilic derivatives of the spin trap DEPMPO in order to detect lipid radical species generated in the lipid phase. With all spin traps studied a lipid-derived carbon-centered radical was obtained in the anaerobic incubation system Fe2+/LOOH indicating the trapping of a lipid radical, possibly generated as a secondary reaction product of the primary lipid alkoxyl radical formed. Under aerobic conditions an SOD-insensitive oxygen-centered radical adduct was formed with DEPMPO and its lipophilic derivatives. The observed ESR parameters were similar to those of alkoxyl radical adducts, which were independently synthesized in model experiments using Fe3+-catalyzed nucleophilic addition of methanol or t-butanol to the respective spin trap.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号