首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
8 representative 2-substituted 5-nitrofurans were assayed for mutagenicity in Salmonella typhimurium strains TA98, TA98NR and TA98/1,8-DNP6. The tested compounds were: 5-nitro-2-furanacrylic N-(5-nitro-2-furfurylidene)hydrazide (1); furazolidone (2); 5-nitro-2-furanacrolein (3); 5-nitro-2-furaldehyde semicarbazone (4); 5-nitro-2-furaldehyde (5); nitrofurantoin (6); 5-nitro-2-furaldehyde diacetate (7); and 5-nitro-2-furoic acid (8). These compounds exhibited markedly different mutagenic activities in TA98, and these mutagenicities were similar both in the presence and the absence of rat-liver hepatic S9 activation enzymes. The mutagenic responses ranged from potent (90-300 revertants/nmole, compounds 1-3), to medium (about 10 revertants/nmole, compounds 4 and 6), to weak (0-4 revertants/nmole, compounds 5, 7 and 8). The mutagenicity of 3 was similar in all 3 tester strains, while compound 8 was essentially inactive. The mutagenicities of 1, 4, 5 and 7 were decreased 30-75% in TA98NR, while 2 and 6 showed an even greater depression of activity in this strain. Compound 6 with S9 was about equally mutagenic in TA98 and TA98/1,8-DNP6, while the activities of 6 without S9 and 2 and 7 both with and without S9 were 50-75% lower in TA98/1,8-DNP6. Compounds 1, 4 and 5 were only about 5-10% as mutagenic in TA98/1,8-DNP6 as in TA98. These results suggest that: (i) nitrofurans and their S9-mediated metabolites have similar mutagenic potencies; (ii) with the possible exception of No. 3, nitroreduction is the major route of mutagenic activation for these nitrofurans; and (iii) for compounds 2, 6 and 7, both the presumed N-hydroxy and N,O-ester derivatives of the corresponding aminofuran metabolites appear to lead to mutations.  相似文献   

2.
The mutagenicities and theoretical reactivity indices of 2,4-dinitrobenzaldehyde (2,4-DNBAl) and 2,6-dinitrobenzaldehyde (2,6-DNBAl) were investigated using Salmonella typhimurium strains TA98, TA98NR, TA98/1,8-DNP6, and TA100, TA100NR and TA100/1,8-DNP6, by means of the modified intermediate neglect of differential overlap/3 (MINDO)/3) method. The mutagenic activities of 2,4-DNBAl in TA98NR and TA98/1,8-DNP6 were lower than in TA98, whereas the activity in TA100NR was higher than in TA100 and TA100/1,8-DNP6. The mutagenic activity of 2,6-DNBAl in TA100 and that in TA100 and TA100/1,8-DNP6 decreased. These results suggest that the mutagenicities of 2,4-DNBAl and 2,6-DNBAl are dependent either on the microbial nitroreduction and subsequent acetylation or the presence of an aldehyde group. Among the reactivity indices examined, the frontier electron density values were correlated to the mutagenicities of 2,4-DNBAl and 2,6-DNBAl in TA100, TA100NR and TA100/1,8-DNP6 and the values of energy of the lowest unoccupied molecular orbit were correlated to the mutagenicities of several substituted dinitrobenzenes.  相似文献   

3.
Dibenzo-p-dioxin (DD) was made to react with various concentrations of nitrogen oxides in the dark. The mutagenicities of the reaction products were tested using Salmonella typhimurium strains TA98, TA100, TA98NR and TA98/1,8-DNP6 in the presence or absence of a mammalian metabolic activation system (S9 mix). DD-NOx (molar ratios 1:3, 1:6 and 1:18) reaction products exhibited mutagenic potency in strains TA98 and TA98/1,8-DNP6 without S9 mix. In a gas chromatography/mass spectrometry study, 2-nitrodibenzo-p-dioxin (NDD) was identified with authentic sample in the mutagenic reaction products. DD-NOx (1:18) reaction products were reduced by sodium hydrogen sulfide and the reduction mixture was analyzed by HPLC. 2,7-Dinitrodibenzo-p-dioxin (DNDD) and 2,8-DNDD were identified as corresponding diamino-DDs in the reduction mixture. 2-NDD, 2,7-DNDD and 2,8-DNDD were also mutagenic in strains TA98 and TA98/1,8-DNP6 without S9 mix and the mutagenicity of DD-NOx reaction products was largely accounted for by the nitro-DDs.  相似文献   

4.
The effect of highly purified rat liver cytosolic NAD(P)H-quinone oxidoreductase [EC 1.6.99.2] on the mutagenicity of 1,3- 1,6- and 1,8-dinitropyrene (DNP) was studied in the Ames Salmonella typhimurium mutagenicity assay. NAD(P)H-quinone oxidoreductase over the range of 0.02-0.8 micrograms/plate (38-1500) units increased up to threefold the mutagenicity of all three DNPs in S. typhimurium TA 98. In TA98NR, a strain deficient in "classical" nitro-reductase, the mutagenicity of 1,6- and 1,8-DNP was essentially unchanged, whereas that of 1,3-DNP was markedly reduced. NAD(P)H-quinone oxidoreductase enhanced the mutagenicity of 1,6- and 1,8-DNP to approximately equivalent extents in TA98NR and TA98. The mutagenicity of 1,3-DNP in TA98NR was potently enhanced by the addition of NAD(P)H-quinone oxidoreductase in a dose-responsive manner. In the presence of 0.8 micrograms NAD(P)H-quinone oxidoreductase, 1,3-DNP displayed a mutagenic response in TA98NR that was comparable to that obtained in TA98. NAD(P)H-quinone oxidoreductase was found to increase the mutagenicity of 1,6- but not 1,3- or 1,8-DNP to mutagenic intermediates in TA98/1,8-DNP6, a strain deficient in O-acetyltransferase activity. The results suggest that NAD(P)H-quinone oxidoreductase not only catalyzes reduction of the parent DNP but also that of partially reduced metabolites generated from that DNP. Such reductive metabolism may lead to increased formation of the penultimate mutagenic species.  相似文献   

5.
Detection of 1-nitropyrene in yakitori (grilled chicken)   总被引:3,自引:0,他引:3  
Pieces of raw chicken with or without a marinating sauce were grilled over a city gas flame, extracted with benzene-ethanol (4:1) by ultrasonication and fractionated into diethyl ether-soluble neutral, acidic and basic fractions. The mutagenicity of these fractions was measured with Salmonella typhimurium strains TA100, TA98, TA98NR and TA98/1,8-DNP6 in the presence and absence of a 9000 X g post-mitochondrial supernatant from Aroclor 1254-treated Sprague-Dawley rat liver (S9 mix). The basic fraction of yakitori without the sauce was more mutagenic than the other fractions for S. typhimurium strain TA98 in the presence of S9 mix. This is probably due to the presence of amino acid or protein pyrolysates. However, when the chicken was grilled with the sauce, the basic fraction showed lower mutagenicity for strain TA98 in the presence of S9 mix than did the same fraction without the sauce. The neutral fraction of yakitori with sauce showed high mutagenicity for strain TA98 in the absence of S9 mix, but low mutagenicity for strains TA98NR and TA98/1,8-DNP6, suggesting that this fraction might contain nitropyrenes (NPs). The neutral fraction of yakitori was analyzed by high-performance liquid chromatography (HPLC). The neutral fraction of the chicken grilled with the sauce for 3, 5 and 7 min contained 3.8, 19 and 43 ng, respectively, of 1-NP per gram of yakitori accounting for 3.0, 2.7 and 1.3%, respectively, of the total mutagenicity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The effect of highly purified rat liver cytosolic NAD(P)H-quinone oxidoreductase [EC 1.6.99.2] on the mutagenicity of 1,3- 1,6- and 1,8-dinitropyrene (DNP) was studied in the Ames Salmonella typhimurium mutagenicity assay. NAD(P)H-quinone oxidoreductase over the range of 0.02–0.8 μ g/plate (38–1500) units increased up to threefold the mutagenicity of all three DNPs in S. typhimurium TA 98. In TA98NR, a strain deficient in “classical” nitroreductase, the mutagenicity of 1,6- and 1,8-DNP was essentially unchanged, whereas that of 1,3-DNP was markedly reduced. NAD(P)H-quinone oxidoreductase enhanced the mutagenicity of 1,6- and 1,8-DNP to approximately equivalent extents in TA98NR and TA98. The mutagenicity of 1,3-DNP in TA98NR was potently enhanced by the addition of NAD(P)H-quinone oxidoreductase in a dose-responsive manner. In the presence of 0.8 μg NAD(P)H-quinone oxidoreductase, 1,3-DNP displayed a mutagenic response in TA98NR that was comparable to that obtained in TA98. NAD(P)H-quinone oxidoreductase was found to increase the mutagenicity of 1,6- but not 1,3- or 1,8-DNP to mutagenic intermediates in TA98/1,8-DNP6, a strain deficient in O-acetyltransferase activity. The results suggest that NAD(P)H-quinone oxidoreductase not only catalyzes reduction of the parent DNP but also that of partially reduced metabolites generated from that DNP. Such reductive metabolism may lead to increased formation of the penultimate mutagenic species.  相似文献   

7.
Heavy-duty diesel-exhaust particles were collected, extracted and fractionated into diethyl ether-soluble neutral, acidic and basic fractions. The mutagenicity of these fractions was measured with Salmonella typhimurium strains TA100, TA98, TA98NR and TA98/1,8-DNP6 in the presence and absence of a 9000 X g post-mitochondrial supernatant from Aroclor-induced rat liver (S9 mix). The neutral and acidic fractions showed high mutagenicity with TA98 in the absence of S9 mix, the acidic fraction having the highest specific activity. In the absence of S9 mix, the mutagenicity of crude, neutral and acidic fractions was greater in TA98 than in TA98NR and TA98/1,8-DNP6. Chemically-synthesized nitroacetoxypyrenes and nitrohydroxypyrenes were fractionated into the neutral and acidic fractions, respectively. These nitroarenes were purified by high-performance liquid chromatography and their mutagenicity was measured with the 4 strains. With TA98 in the absence of S9 mix, 1-nitro-3-acetoxypyrene, 1-nitro-6/8-acetoxypyrene, 1-nitro-3-hydroxypyrene, 1-nitro-6/8-hydroxypyrene induced 16 700, 336, 992, 94 His+ revertants per plate per nmole, respectively. In the absence of S9 mix, the level of mutagenicity of these nitroarenes was highest in TA98, lowest in TA98/1,8-DNP6 and intermediate in TA98NR. The neutral and acidic fractions of diesel-exhaust particles were analyzed by gas chromatography-mass spectrometry and gas chromatography-mass fragmentography. The neutral fraction was found to contain nitroacetoxypyrenes, 1-nitropyrene, 1,6-dinitropyrene, while nitrohydroxypyrenes were detected in the acidic fraction. The amounts of 1-nitro-3-acetoxypyrene, 1-nitropyrene, 1,6-dinitropyrene and 1-nitro-3-hydroxypyrene were 6.3, 62, 0.81, and 70 ng per mg of crude extract, and accounted for 12, 3.6, 8.0, and 9.0%, respectively, of mutagenicity of the crude extract in TA98 in the absence of S9 mix.  相似文献   

8.
Salmonella typhimurium tester strain TA98/1,8-DNP6 is resistant to the mutagenicity of 1,8-dinitropyrene because it lacks an esterification enzyme which is needed for the formation of the ultimate mutagen, presumably the corresponding hydroxamic acid ester. This enzyme does not appear to be required for the activation of all nitroarenes and arylamines, as some of these are fully active in TA98/1,8-DNP. It is suggested that these form electrophilic arylnitrenium ions nonenzymatically from nitroso- and N-hydroxylamino-arenes intermediates. The esterification enzyme appears to be a transacetylase. An assay using 2-aminofluorene as the acetyl acceptor is described. Derivatives of S. typhimurium TA100 also lacking this enzyme were obtained by Tn5-mediated mutagenesis.  相似文献   

9.
The mononitro-substituted isomers of benzo[a]pyrene (B[a]P), 1-, 3- and 6-nitrobenzo[a]pyrene (NB[a]P), are environmental pollutants and are metabolized to mutagens in Salmonella by rat-liver homogenate postmitochondrial supernatant (S9) fractions. In this study, activation of these compounds to mutagens was investigated using the hepatocyte-mediated Salmonella mutagenicity assay. Hepatocytes from rats treated with Aroclor 1254 activated both 3-NB[a]P and 1-NB[a]P to mutagens, while 6-NB[a]P was not mutagenic. The positive mutagenicity responses were functions of both the chemical dose and the hepatocyte concentration. By using a nitroreductase-deficient strain (TA98NR) and a transesterificase-deficient strain (TA98/1,8-DNP6), it was verified that the direct-acting mutagenicities of 1- and 3-NB[a]P primarily were due to metabolic processes involving nitroreduction while the S9- and hepatocyte-mediated mutagenicity responses were also dependent on transesterification. When compared with the mutagenic responses produced with S9, the mutations induced by 1- and 3-NB[a]P in the presence of hepatocytes were relatively more dependent upon nitroreductase metabolism and less on transesterification. Thus, intact hepatocytes were capable of activating 1- and 3-NB[a]P to mutagenic metabolites and some of these metabolites appeared to be different from those produced by S9.  相似文献   

10.
A variety of nitro-substituted phenyl alkyl/aryl thioethers and nitroso-substituted phenyl alkyl/aryl thioethers have been synthesized and tested for their mutagenicity towards Salmonella typhimurium strain TA100, TA98, TA98NR and TA98/1,8-DNP(6) in the absence of S9 mix. The relative order of mutagenicity in TA98 and TA100 among p-nitrophenyl thioethers having alkyl or aryl substituents is allyl>phenyl>benzyl>butyl>propyl>ethyl>methyl. Compounds having an alkyl chain C(6) to C(12) were found to be non-mutagenic. Among the various positional isomers (ortho, meta and para) of nitro-substituted diphenyl thioethers only the compounds having the -NO(2) function at the para position is mutagenic, whereas compounds having a -NO(2) function at ortho and meta are non-mutagenic. However, the reduced intermediate, ortho-nitroso derivative was found to be mutagenic in all the four strains but the meta-nitroso derivative was found to be non-mutagenic. All mutagens were found to be non-mutagenic when tested in nitroreductase deficient strain TA98NR, whereas their nitroso intermediates are found to be mutagenic. A substantial fall in the mutagenic activity is observed when some mutagens are tested in O-acetyltransferase deficient strain TA98/1,8-DNP(6).  相似文献   

11.
B Lang  M M Iba 《Mutation research》1987,191(3-4):139-143
The direct and H2O2-dependent mutagenicity of 3,3'-dichlorobenzidine (DCB) were compared in Salmonella tester strains TA98, TA98/1,8-DNP6, TA100 and TA102 using the Ames test. DCB exhibited both direct and H2O2-dependent mutagenicity to both tester strains TA98 and TA98/1,8-DNP6. This H2O2-dependent mutagenicity of DCB was prevented by horseradish peroxidase. DCB, in contrast to its effects in tester strains TA98, was not mutagenic to TA100 and TA102 either directly or in the presence of H2O2. These results suggest that mechanisms, perhaps enzymes endogenous to tester strains TA98, may play a role in the activation of DCB.  相似文献   

12.
Dinitropyrenes (DNP), present in polluted air, are potent direct-acting mutagens in Salmonella typhimurium TA98. This mutagenicity is markedly reduced in the presence of rat-liver S9 or microsomes. This has now been confirmed using mouse hepatic fractions. Since most in vitro test systems do not adequately simulate conditions encountered in the intact animal, we have investigated dinitropyrene mutagenicity to Salmonella in the host-mediated assay. 1,8-Dinitropyrene (1,8-DNP) given p.o. to BALB/c mice induced a weak mutagenic effect in S. typhimurium TA98 recovered from the liver 1 h after i.v. administration (optimum time). Over the entire dose range tested no toxicity to bacterial cells was detected. Mutation induction in vivo was dose-related with maximum response at 1 mg DNP/kg body weight. This optimum dose, however, was non-mutagenic to strains TA98/1,8-DNP6 (O-transacetylase-deficient) or TA98NR/1,8-DNP6 (nitroreductase- and O-transacetylase-deficient). 1,3-Dinitropyrene and 1,6-dinitropyrene were weakly mutagenic to TA98 at doses similar to 1,8-DNP. Studies with [14C]1,8-DNP showed that 1 h after oral dosing (1 mg/kg), over 100 ng of 1,8-DNP equivalents were present in the liver (= 0.73% dose). However, only about 5.5 ng were present in the bacterial pellet, suggesting that hepatic components in vivo, as in vitro, bind to DNP, thus interfering with its interaction with Salmonella.  相似文献   

13.
In order to elucidate the mechanisms of mutagenic activation of nitroarenes, we tested the mutagenic potency of 18 kinds of nitroarenes including nitrated biphenyl, fluorene, phenanthrene and pyrene on Salmonella typhimurium TA98 in the absence and presence of S9 mix. The mutagenicities of 2,4-dinitrobiphenyl derivatives and 4-nitrobiphenyl were enhanced by the addition of S9. 2,4,6-Trinitrobiphenyl (3 net rev./10 micrograms without S9) was activated 60-fold by the mammalian metabolic system (181 net rev./10 micrograms with 10% S9). The mutagenic potency of 2,4,2',4'-tetranitrobiphenyl in TA98, TA98NR and TA98/1,8-DNP6 was also enhanced by the addition of 10% S9. But 1-nitropyrene and 1,3-dinitropyrene, which are well-known mutagens and carcinogens, were deactivated to 3% and 0.4%, respectively, by the addition of 10% S9. Separate addition of microsomal and cytosolic fractions slightly activated the mutagenicity of 2,4,6-trinitrobiphenyl, and 2,4,2',4'-tetranitrobiphenyl was activated not only by S9 but also by the cytosolic fraction.  相似文献   

14.
All positional isomers of mononitro- and monoaminobiphenyls and those of dinitro-, diamino- and aminonitrobiphenyls, which have one substituent on each benzene ring, were assayed for mutagenicity in Salmonella typhimurium by the Ames method. The results suggest that the structural requirements favoring mutagenic activity are the presence of substituents at the 4-position and their absence at the 2'-position. The introduction of an amino group to the 3'- or 4'-position of 4-nitrobiphenyl or a nitro group to 3'- or 4'-position of 4-aminobiphenyl enhanced the mutagenicity. Among the mutagenic compounds, 4-nitro analogues were mutagenic in strains TA98 and TA100 in the absence of a microsomal metabolic activation system. Strain TA98NR was not reverted by the direct-acting mutagens, whereas strain TA98/1,8-DNP6 was as revertible as strain TA98; these results suggest that the direct-acting mutagenicity involves the reduction of the nitro group by bacterial nitroreductase but does not involve specific esterification enzymes.  相似文献   

15.
The mutagenicity and activation requirements of purified synthetic derivatives and potential metabolites of 1-nitropyrene have been characterized in the Ames plate incorporation assay with the Salmonella tester strains TA98, TA98NR and TA98/1,8-DNP6, in the presence or absence of exogenous metabolic activation provided by Aroclor-induced rat liver S9. All the compounds tested (1-aminopyrene, N-acetyl-1-aminopyrene, N-hydroxy-N-acetyl-1-aminopyrene, 3-hydroxy-1-nitropyrene, 6-hydroxy-1-nitropyrene, and 8-hydroxy-1-nitropyrene) exhibited mutagenic activity under one or more assay conditions. 1-Nitropyrene was metabolized to 3-hydroxy-1-nitropyrene, 6- or 8-hydroxy-1-nitropyrene, 1-aminopyrene, N-acetyl-1-aminopyrene and other unidentified products (including some bound to protein) by an S9 preparation analogous to that used for exogenous metabolic activation in the Ames assay. 1-Nitropyrene and 3-hydroxy-1-nitropyrene were activated primarily by the 'classical' nitroreductase, while the other compounds, particularly in the presence of S9 metabolic activation, were dependent on transesterification for expression of their mutagenicity.  相似文献   

16.
Organic solvent extracts from airplane emission particulates are mutagenic for Salmonella typhimurium strain TA98. Using Salmonella tester strains deficient in enzymes required for the bioactivation of various nitroarenes, the mutagenicity present in these emissions was ascribed to the presence of nitrated polycyclic aromatic hydrocarbons. Based on the known aircraft particulate emission rates at U.S. airports, and using 1-nitropyrene (1-NP) and 1,8-dinitropyrene (1,8-DNP) as surrogates, it is calculated that at a minimum 7 kg 1-NP and 20 g, 1,8-DNP are emitted daily at a typical U.S. airport.  相似文献   

17.
The mutagenicity of fenitrothion was determined in strains of Salmonella typhimurium and Escherichia coli. Fenitrothion was found to be non-mutagenic in Salmonella typhimurium strains of TA98, TA1535 and TA1537 and in Escherichia coli WP2uvrA both with and without S9 mix, while weak mutagenicity was observed only in Salmonella typhimurium TA100 and enhanced by the addition of S9 mix. The mutagenicity observed in the TA100 strain was not expressed in a nitroreductase-deficient strain, TA100 NR, and decreased in a transacetylase-deficient strain, TA100 1,8-DNP6. The mutagenicity of fenitrothion was also examined by a gene mutation assay using the gene for hypoxanthine-guanine phosphoribosyltransferase (hgprt) in V79 Chinese hamster lung cells. Fenitrothion did not induce any increment of 6-thioguanine-resistant mutant cells at doses ranging from 0.01 to 0.3 mM regardless of the presence or absence of S9 mix. These results suggest that reduction of fenitrothion by a bacterial nitroreductase of TA100 to an active form is essential for the expression of the mutagenicity of fenitrothion in TA100 and that a bacterial transacetylase of TA100 also has an important role in the process of mutagenic activation.  相似文献   

18.
Most of the positional isomers of mono-, di-, tri- and tetranitrobiphenyls were synthesized and assayed for their mutagenicity in Salmonella typhimurium strains TA98, TA98NR and TA98/1,8DNP6 in the absence of S9 mix. In mono- and dinitrobiphenyls, the structure requirements favoring mutagenic activity are the presence of a nitro group at the 4-position and its absence at the 2-position. TA98 and TA98/1,8DNP6 were reverted by 2-position-free 4-nitro analogues, but TA98NR was not reverted. The results suggest that direct-acting mutagenicity involves the reduction of the nitro group by bacterial nitroreductase but does not involve specific esterification enzymes. Some of the tri- and tetranitrobiphenyls e.g. 3,4,3'-, 3,4,4'-, 3,4,3',4'- and 3,4,2',4'-derivatives reverted not only TA98 and TA98/1,8DNP6 but also TA98NR. Those derivatives commonly have 2 nitro groups at an adjoining position (3,4-dinitro group), whereas 2,4,2',4'-tetranitrobiphenyl, which has strong potency not only in TA98 and TA98/1,8DNP6 but also in TA98NR, possesses 2 nitro groups at the 2-position of each benzene ring.  相似文献   

19.
Mutagenicity associated with replicate organic extracts from standard reference materials 1649 ‘urban dust/organics’ (air particles), and 1650, ‘diesel particulate matter’ (diesel particles), was determined using a Salmonella microsuspension assay. The results indicate that the mutagenicity of samples such as these can readily be determined using the microsuspension assay with only 5% of the mass required for the standard plate incorporation asssay.In general, 80% of the variation in mutagenic activity was due to the bioassay procedure and 20% to the extraction process. Extracts from both samples had primarily direct-acting mutagenicity as there were no significant differences in responses with and without metabolic activation (S9). The TA98 - S9 mean air particles mutagenic activities (C.V., %) based on mass of extractable organics or particles were 4.4 (4.7%) and 0.29 (3.6%) revertants/μg, respectively, and for the diesel particles were 66 (44%) and 12 (29%) revertants/μg, respectively. More of the observed direct-acting mutagenicity in the diesel particles extracts was due to nitro-substituted compounds because there were significant reductions in activity with TA98NR (45% of TA98 -S9) and TA98-1,8-DNP6 (21% of TA98 -S9). In the air particles extracts, the TA98NR activities were not significantly different from TA98 - S9 but the TA98-1,8-DNP6 levels were.  相似文献   

20.
To clarify the mutagenic potential of surface soil in the Kinki region of Japan, particularly in Osaka and neighboring cities, 62 surface soil samples were collected and their organic extracts were examined by the Ames/Salmonella assay. All of the samples were mutagenic toward TA98 in both the presence and absence of a mammalian metabolic activation system (S9 mix). While all of the samples showed mutagenicity toward TA100 with S9 mix, only 45/62 (73%) were mutagenic without S9 mix. Fifty (81%) of the samples showed higher activity toward TA98 than TA100. The mean values of the mutagenicities of soil samples collected in Osaka prefecture (n=35) toward TA98 with and without S9 mix were 2315 and 1630 revertants per gram of soil, respectively, and these were 2.9 and 2.6 times as high as the values for samples from other prefectures (n=27), respectively. Three dinitropyrene (DNP) isomers, i.e. 1,3-, 1,6- and 1,8-DNP, and 3-nitrobenzanthrone (NBA) in the surface soil samples were quantified by fluorometric detection of the corresponding amino compounds, i.e. diaminopyrene isomers and 3-aminobenzanthrone, using high-performance liquid chromatography (HPLC). The three DNP isomers were detected in all of the soil samples (n=26) that were mainly collected in Osaka prefecture, and the amounts of 1,3-, 1,6- and 1,8-DNP were 6-1526, 11-1772 and 10-2092pg/g of soil, respectively. The contribution ratios of 1,3-, 1,6- and 1,8-DNP to the mutagenicity of soil extracts toward TA98 without S9 mix were 0.2-12, 0.3-12 and 0.5-27%, respectively. The amount of 3-NBA in soil samples (n=8) was 144-1158pg/g of soil, and the contribution ratio of 3-NBA to the mutagenicity of soil extracts was 2-38%. These results suggest that the surface soils in the Kinki region were highly polluted with mutagens and the pollution levels in Osaka prefecture were higher than those in other areas. DNP isomers and 3-NBA may be major mutagens that contaminate surface soil in this region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号