首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hu Z  Yu Y  Wang R  Yao Y  Peng H  Ni Z  Sun Q 《Gene》2011,471(1-2):13-18
Most hexaploid wheat genes are present as triplicate homoeologs derived from the ancestral species. Previously, we isolated six wheat cDNAs with open reading frame, encoding methyl CpG-binding domain proteins (MBDs). In this study, the genomic and cDNA sequences of three TaMBD2 homoeologous genes were obtained and mapped on chromosomes 5A, 5B and 5D, respectively. These sequences showed a very high conservation in the coding region and the exon/intron structure, but the cDNA sequences are distinguishable by a 9-bp insertion in coding region and a size polymorphism in the 3'-untranslated region (UTR). The expression patterns of each homeologous gene in different tissues of various developmental stages and in response to abiotic stress were analyzed by using real-time PCR. Relative mRNA abundance of the three homoeologs varied considerably in different developmental stages from seedling to developing seeds. Most notably, TaMBD2-5B and TaMBD2-5D were highly responsive to salt stress and TaMBD2-5B was specifically upregulated by low temperature in the seedling leaves. These results provide further evidence for the expression variation of genes duplicated in allopolyploids. Moreover, the variation of TaMBD2 homoeologous gene expression in response to environmental stress may enable plants to better cope with stresses in their natural environments.  相似文献   

2.
3.
YUCCA protein participates in a key rate-limiting step in the tryptophan-dependent pathway for auxin biosynthesis and is involved in numerous processes during plant development. In this study, the genomic and cDNA sequences of three TaYUC10 homoeologous genes were isolated. These sequences showed a very high conservation in coding region and the exon/intron structure, whereas their intron lengths were different. The cDNA and polypeptide chains of the three TaYUC10 genes were highly similar. These genes were most homologous to BdYUC10. Location analysis showed that TaYUC10.1 was present in chromosome 5BL. TaYUC10.3 was expressed in all parts of the wheat, but was predominant in the reproductive organs of mature wheat, such as flowering spikelets or fertilized embryos. In the fertilized embryos 28 d post-anthesis, expression of TaYUC10.3 was clearly increased with the development of seeds. This indicates that TaYUC genes may play a vital role in seed development. TaYUC10.3 overexpressed in Arabidopsis had a typical phenotype, excessive auxin accumulation also seen in higher plants, and showed increased spacing of silique and downward curling of the blade margin. Sterility was observed in adult transgenic plants, becoming more severe in late development. The floral structures of sterile plants were not integrated. TaYUC10 may be required for numerous wheat growth processes, including flower and seed development.  相似文献   

4.
Bonen L  Boer PH  Gray MW 《The EMBO journal》1984,3(11):2531-2536
We have determined the sequence of the wheat mitochondrial gene for cytochrome oxidase subunit II (COII) and find that its derived protein sequence differs from that of maize at only three amino acid positions. Unexpectedly, all three replacements are non-conservative ones. The wheat COII gene has a highly-conserved intron at the same position as in maize, but the wheat intron is 1.5 times longer because of an insert relative to its maize counterpart. Hybridization analysis of mitochondrial DNA from rye, pea, broad bean and cucumber indicates strong sequence conservation of COII coding sequences among all these higher plants. However, only rye and maize mitochondrial DNA show homology with wheat COII intron sequences and rye alone with intron-insert sequences. We find that a sequence identical to the region of the 5' exon corresponding to the transmembrane domain of the COII protein is present at a second genomic location in wheat mitochondria. These variations in COII gene structure and size, as well as the presence of repeated COII sequences, illustrate at the DNA sequence level, factors which contribute to higher plant mitochondrial DNA diversity and complexity.  相似文献   

5.
The sequences encoding the 5'-ends of three chicken fast-white myosin heavy chain (MHC) genes have been determined. When compared with the sequences of two other MHC genes it is apparent that both the exon and intron positions are conserved. All exon sequences are highly conserved; there is absolute amino acid conservation in the second and third exons. In addition, while the first and third introns diverge among the genes, the second intron is highly conserved between the five. This intron contains a 24-bp sequence that is repeated twice in one of the introns and once in the other four. Analyses indicate that this sequence, which is partially homologous to 7SL RNA, appears to be largely restricted to the MHC gene family. Analysis of the 5'-flanking sequences show that while small homologies are present between some of the genes, they have extensively diverged in this region.  相似文献   

6.
7.
Genes for an isoamylase-like debranching enzyme have been isolated from rice and Aegilops tauschii, the donor of the D genome to wheat. The structures of the genes are very similar to each other and to the maize SU1 isoamylase gene and consist of 18 exons spread over approximately 7.5 kb. Southern analysis and fluorescent in situ hybridization showed the Ae. tauschii gene to be located in the proximal region of the short arm of chromosome 7D, thus showing synteny with the localization of the rice isoamylase gene on rice chromosome 8. Analysis of the expression pattern of wheat sugary isoamylase genes indicates that they are strongly expressed in the developing endosperm 6 days after flowering. Three distinct Sugary-type cDNA sequences were isolated from the wheat endosperm that are likely to correspond to the products of the three genomes. The deduced amino acid sequence of rice and wheat Sugary-type isoamylase is compared with other sequences available in the database and the results demonstrate that there are three types of isoamylase sequences in plants: those containing 18 exons (the Sugary-type isoamylase gene), those containing 21 exons, and those containing only 1 exon. It is possible that different combinations of isoamylase genes are expressed in different tissues.  相似文献   

8.
9.
Ferritin, a protein widespread in nature, concentrates iron ∼1011–1012-fold above the solubility within a spherical shell of 24 subunits; it derives in plants and animals from a common ancestor (based on sequence) but displays a cytoplasmic location in animals compared to the plastid in contemporary plants. Ferritin gene regulation in plants and animals is altered by development, hormones, and excess iron; iron signals target DNA in plants but mRNA in animals. Evolution has thus conserved the two end points of ferritin gene expression, the physiological signals and the protein structure, while allowing some divergence of the genetic mechanisms. Comparison of ferritin gene organization in plants and animals, made possible by the cloning of a dicot (soybean) ferritin gene presented here and the recent cloning of two monocot (maize) ferritin genes, shows evolutionary divergence in ferritin gene organization between plants and animals but conservation among plants or among animals; divergence in the genetic mechanism for iron regulation is reflected by the absence in all three plant genes of the IRE, a highly conserved, noncoding sequence in vertebrate animal ferritin mRNA. In plant ferritin genes, the number of introns (n= 7) is higher than in animals (n= 3). Second, no intron positions are conserved when ferritin genes of plants and animals are compared, although all ferritin gene introns are in the coding region; within kingdoms, the intron positions in ferritin genes are conserved. Finally, secondary protein structure has no apparent relationship to intron/exon boundaries in plant ferritin genes, whereas in animal ferritin genes the correspondence is high. The structural differences in introns/exons among phylogenetically related ferritin coding sequences and the high conservation of the gene structure within plant or animal kingdoms suggest that kingdom-specific functional constraints may exist to maintain a particular intron/exon pattern within ferritin genes. In the case of plants, where ferritin gene intron placement is unrelated to triplet codons or protein structure, and where ferritin is targeted to the plastid, the selection pressure on gene organization may relate to RNA function and plastid/nuclear signaling. Received: 25 July 1995 / Accepted: 3 October 1995  相似文献   

10.
11.
The organisation of two invertase genes (invGE and invGF) linked in direct tandem repeat within the potato genome is detailed. The genes exhibit a similar intron/exon structure which differs from previously described plant invertase genes; while intron locations are conserved between the genes, minor differences in exon length are seen. Both genes encode enzymes with putative extracellular location. Biochemical analysis of gene expression showed expression in floral tissues for both genes, with expression of the upstream gene (invGE) also detected in leaf tissue. Promoter sequences from both genes have been fused to the -glucuronidase (GUS) reporter gene (uidA) and transformed into potato. One promoter-GUS reporter construct was also transformed into tobacco. Histochemical analysis of transgenic lines defined specific expression from the downstream (invGF) promoter in potato and tobacco pollen, with expression first detected in the late uninucleate stage of tobacco microspore development. The invGE promoter determined expression in pollen and other floral tissues, but also at lateral nodes in stem, root and tuber. An association of invertase expression with generative tissue, both in vegetative and sexual modes of growth, is indicated.  相似文献   

12.
Methods have been developed for the isolation of aleurone protoplasts from developing caryopses of Hordeum vulgare and Triticum aestivum in order to study transient expression of introduced genes. Chimaeric gene constructs were introduced into aleurone protoplasts by polyethylene glycol (PEG). Transient expression directed by the 35S promoter from cauliflower mosaic virus (CaMV) of the reporter gene encoding chloramphenicol acetyl transferase (CAT) was detected in aleurone protoplasts from developing barley and wheat grains. Using a similar construct, CAT activity increased when the alcohol dehydrogenase intron 1 fragment from maize was ligated between the 35S promoter and the CAT coding region. The demonstration of transient expression in protoplasts from developing aleurone layers indicates that they may be useful for investigating tissue and developmental control of genes coding for cereal seed proteins.  相似文献   

13.

Background and Aims

The cell cycle is controlled by cyclin-dependent kinases (CDKs), and CDK inhibitors are major regulators of their activities. The ICK/KRP family of CDK inhibitors has been reported in several plants, with seven members in arabidopsis; however, the phylogenetic relationship among members in different species is unknown. Also, there is a need to understand how these genes and proteins are regulated. Furthermore, little information is available on the functional differences among ICK/KRP family members.

Methods

We searched publicly available databases and identified over 120 unique ICK/KRP protein sequences from more than 60 plant species. Phylogenetic analysis was performed using 101 full-length sequences from 40 species and intron–exon organization of ICK/KRP genes in model species. Conserved sequences and motifs were analysed using ICK/KRP protein sequences from arabidopsis (Arabidopsis thaliana), rice (Orysa sativa) and poplar (Populus trichocarpa). In addition, gene expression was examined using microarray data from arabidopsis, rice and poplar, and further analysed by RT-PCR for arabidopsis.

Key Results and Conclusions

Phylogenetic analysis showed that plant ICK/KRP proteins can be grouped into three major classes. Whereas the C-class contains sequences from dicotyledons, monocotyledons and gymnosperms, the A- and B-classes contain only sequences from dicotyledons or monocotyledons, respectively, suggesting that the A- and B-classes might have evolved from the C-class. This classification is also supported by exon–intron organization. Genes in the A- and B- classes have four exons, whereas genes in the C-class have only three exons. Analysis of sequences from arabidopsis, rice and poplar identified conserved sequence motifs, some of which had not been described previously, and putative functional sites. The presence of conserved motifs in different family members is consistent with the classification. In addition, gene expression analysis showed preferential expression of ICK/KRP genes in certain tissues. A model has been proposed for the evolution of this gene family in plants.  相似文献   

14.
Plants contain more genes encoding core cell cycle regulators than other organisms but it is unclear whether these represent distinct functions. D-type cyclins (CYCD) play key roles in the G1-to-S-phase transition, and Arabidopsis (Arabidopsis thaliana) contains 10 CYCD genes in seven defined subgroups, six of which are conserved in rice (Oryza sativa). Here, we identify 22 CYCD genes in the poplar (Populus trichocarpa) genome and confirm that these six CYCD subgroups are conserved across higher plants, suggesting subgroup-specific functions. Different subgroups show gene number increases, with CYCD3 having three members in Arabidopsis, six in poplar, and a single representative in rice. All three species contain a single CYCD7 gene. Despite low overall sequence homology, we find remarkable conservation of intron/exon boundaries, because in most CYCD genes of plants and mammals, the first exon ends in the conserved cyclin signature. Only CYCD3 genes contain the complete cyclin box in a single exon, and this structure is conserved across angiosperms, again suggesting an early origin for the subgroup. The single CYCD gene of moss has a gene structure closely related to those of higher plants, sharing an identical exon/intron structure with several higher plant subgroups. However, green algae have CYCD genes structurally unrelated to higher plants. Conservation is also observed in the location of potential cyclin-dependent kinase phosphorylation sites within CYCD proteins. Subgroup structure is supported by conserved regulatory elements, particularly in the eudicot species, including conserved E2F regulatory sites within CYCD3 promoters. Global expression correlation analysis further supports distinct expression patterns for CYCD subgroups.  相似文献   

15.
In order to understand sucrose transport in developing seeds of cereals at the molecular level, we cloned from a caryopses library two cDNAs encoding sucrose transporters, designated HvSUT1 and HvSUT2. Sucrose uptake activity was confirmed by heterologous expression in yeast. Both transporter genes are expressed in maternal as well as filial tissues. In a series of in situ hybridizations we analysed the cell type-specific expression in developing seeds. HvSUT1 is preferentially expressed in caryopses in the cells of the nucellar projection and the endospermal transfer layer, which represent the sites of sucrose exchange between the maternal and the filial generation and are characterized by transfer cell formation. HvSUT2 is expressed in all sink and source tissues analysed and may have a general housekeeping role. The rapid induction of HvSUT1 gene expression in caryopses at approximately 5-6 days after fertilization coincides with increasing levels of sucrose as well as sucrose synthase mRNA and activity, and occurs immediately before the onset of rapid starch accumulation within the endosperm. Starch biosynthesis requires sucrose to be imported into the endosperm, as direct precursor for starch synthesis and to promote storage-associated processes. We discuss the possible role of HvSUT1 as a control element for the endospermal sucrose concentration.  相似文献   

16.
The FEM-1 protein of Caenorhabditis elegans functions within the nematode sex-determination pathway. Two mouse homologs, encoded by the Fem1a and Fem1b genes, have been reported. We report here the characterization of a novel human gene, designated FEM1B, that is highly homologous to the mouse Fem1b gene. FEM1B encodes a protein, designated FEM1beta, that shows >99% amino acid identity to the corresponding mouse Fem1b protein, including 100% amino acid identity in the N-terminal ANK repeat domain. FEM1beta represents the first characterized human member of the FEM-1 protein family. The human and mouse genes show conservation of coding sequence and its intron/exon organization, flanking untranslated and genomic sequences, and expression pattern in adult tissues. These findings suggest that there may be evolutionary conservation of regulation and function between the mouse and human FEM1B genes.  相似文献   

17.
Two nonallelic porcine class I MHC (SLA) genes have been isolated and characterized. Both genes are expressed in mouse L cells, directing the synthesis of class I SLA molecules that carry common monomorphic determinants but are serologically distinct. The corresponding DNA sequences have been determined. The organization of both of these genes is similar to that of other class I genes: a leader exon, three exons encoding extracellular domains, a transmembrane exon, and three intracytoplasmic exons. The two genes are highly homologous in both exon and intron segments, with average homologies of 88% and 80%, respectively. Nucleotide changes in exon 2 are clustered, whereas those in the other exons are dispersed throughout. Comparison of the swine DNA sequences with class I genes from other species reveals a generally high conservation of exons 2, 3, 4, and 6 with lower homology in the remaining protein-encoding domains. Introns are markedly less well conserved, although moderate homology is found between swine and human class I MHC genes in both introns and 3' flanking regions. Taken together with comparisons of the deduced protein sequences, these data indicate an order of swine greater than human greater than rabbit greater than mouse in the relationship of class I genes.  相似文献   

18.
19.
20.
Aquaporins, members of major intrinsic proteins (MIPs), transport water across cellular membranes and play vital roles in all organisms. Adversities such as drought, salinity, or chilling affect water uptake and transport, and numerous plant MIPs are reported to be differentially regulated under such stresses. However, MIP genes have been not yet been characterized in wheat, the largest cereal crop. We have identified 24 PIP and 11 TIP aquaporin genes from wheat by gene isolation and database searches. They vary extensively in lengths, numbers, and sequences of exons and introns, and sequences and cellular locations of predicted proteins, but the intron positions (if present) are characteristic. The putative PIP proteins show a high degree of conservation of signature sequences or residues for membrane integration, water transport, and regulation. The TIPs are more diverse, some with potential for water transport and others with various selectivity filters including a new combination. Most genes appear to be expressed as expressed sequence tags, while two are likely pseudogenes. Many of the genes are highly identical to rice but some are unique, and many correspond to genes that show differential expression under salinity and/or drought. The results provide extensive information for functional studies and developing markers for stress tolerance. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号