首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lu CW  Roth MJ 《Journal of virology》2003,77(20):10841-10849
Entry of retroviruses into host cells requires the fusion between the viral and cellular membranes. It is unclear how receptor binding induces conformational changes within the surface envelope protein (SU) that activate the fusion machinery residing in the transmembrane envelope protein (TM). In this report, we have isolated a point mutation, Q252R, within the proline-rich region of the 4070A murine leukemia virus SU that altered the virus-cell binding characteristics and induced cell-cell fusion. Q252R displays a SU shedding-sensitive phenotype. Cell-cell fusion is receptor dependent and is observed only in the presence of MuLV Gag-Pol. Both cellular binding and fusion by Q252R are greatly enhanced in conjunction of G100R, a mutation within the SU variable region A which increases viral binding through an independent mechanism. Deletion of a conserved histidine (His36) at the SU N terminus abolished cell-cell fusion by G100R/Q252R Env without compromising virus-cell binding. Although G100R/Q252R virus has no detectable titer, replacement of the N-terminal nine 4070A SU amino acids with the equivalent ecotropic MuLV sequence restored viral infectivity. These studies provide insights into the functional cooperation between multiple elements of SU required to signal receptor binding and activate the fusion machinery.  相似文献   

2.
Passage of 4070A murine leukemia virus (MuLV) in D17 cells resulted in a G-to-R change at position 100 within the VRA of the envelope protein (Env). Compared with 4070A MuLV, virus with the G100R Env displayed enhanced binding on target cells, internalized the virus more rapidly, and increased the overall viral titer in multiple cell types. This provides a direct correlation between binding strength and efficiency of viral entry. Deletion of a His residue at the SU N terminus eliminated the transduction efficiency by the G100R virus, suggesting that the G100R virus maintains the regulatory characteristics of 4070A viral entry. The improved transduction efficiency of G100R Env would be an asset for gene delivery systems.  相似文献   

3.
Chimeras were previously generated between the ecotropic (Moloney-MuLV) and amphotropic (4070A) SU and TM proteins of murine leukemia virus (MuLV). After passage in D17 cells, three chimeras with junctions in the C terminus of SU (AE5, AE6, and AE7), showed improved kinetics of viral spreading, suggesting that they had adapted. Sequencing of the viruses derived from the D17 cell lines revealed second-site changes within the env gene. Changes were detected in the receptor binding domain, the proline-rich region, the C terminus of SU, and the ectodomain of TM. Second-site changes were subcloned into the parental DNA, singly and in combination, and tested for viability. All viruses had maintained their original cloned mutations and junctions. Reconstruction and passage of AE7 or AE6 virus with single point mutations recovered the additional second-site changes identified in the parental population. The AE5 isolate required changes in the VRA, the VRC, the VRB-hinge region, and the C terminus of SU for efficient infection. Passage of virus, including the parental 4070A, in D17 cells resulted in a predominant G100R mutation within the receptor binding domain. Viruses were subjected to titer determination in three cell types, NIH 3T3, canine D17, and 293T. AE6 viruses with changes in the proline-rich region initially adapted for growth on D17 cells could infect all cell types tested. AE6-based chimeras with additional mutations in the C terminus of SU could infect D17 and 293T cells. Infection of NIH 3T3 cells was dependent on the proline-rich mutation. AE7-based chimeras encoding L538Q and G100R were impaired in infecting NIH 3T3 and 293T cells.  相似文献   

4.
Fusion peptides are hydrophobic sequences located at the N terminus of the transmembrane (TM) envelope proteins of the orthomyxoviruses and paramyxoviruses and several retroviruses. The Moloney murine leukemia virus TM envelope protein, p15E, contains a hydrophobic stretch of amino acids at its N terminus followed by a region rich in glycine and threonine residues. A series of single amino acid substitutions were introduced into this region, and the resulting proteins were examined for their abilities to be properly processed and transported to the cell surface and to induce syncytia in cells expressing the ecotropic receptor. One substitution in the hydrophobic core and several substitutions in the glycine/threonine-rich region that prevented both cell-cell fusion and the transduction of NIH 3T3 cells when incorporated into retroviral vector particles were identified. In addition, one mutation that enhanced the fusogenicity of the resulting envelope protein was identified. The fusion-defective mutants trans dominantly interfered with the ability of the wild-type envelope protein to cause syncytium formation in a cell-cell fusion assay, although no trans-dominant inhibition of transduction was observed. Certain substitutions in the hydrophobic core that prevented envelope protein processing were also found. These data indicate that the N-terminal region of p15E is important both for viral fusion and for the correct processing and cell surface expression of the viral envelope protein.  相似文献   

5.
The transmembrane subunits of viral envelope proteins are thought to perform all of the functions required for membrane fusion during entry of enveloped viruses. However, changes in a conserved SPHQ motif near the N terminus of the receptor binding subunit of a murine leukemia virus (MLV) envelope protein block infection and induction of cell-cell fusion but not receptor binding. Here we report evidence that a histidine-to-arginine change at position 8 (H8R) in the SPHQ motif of Moloney MLV blocks infection by arresting virus-cell fusion at the hemifusion state. In cell-cell fusion assays, H8R envelope protein induced mixing of membrane outer leaflet lipids but did not lead to content mixing, a finding indicative of fusion pore formation. Kinetic studies of virus-cell fusion showed that lipid mixing of H8R virus membranes begins much later than for wild-type virus. The length of the delay in lipid mixing decreased upon addition of two second-site changes that increase H8R virus infection to 100-fold less than the wild-type virus. Finally, chlorpromazine, dibucaine, and trifluoperazine, agents that induce pores in an arrested hemifusion state, rescued infection by H8R virus to within 2.5-fold of the level of wild-type virus infection and cell-cell fusion to half that mediated by wild-type envelope protein. We interpret these results to indicate that fusion progressed to the hemifusion intermediate but fusion pore formation was inhibited. These results establish that membrane fusion of Moloney MLV occurs via a hemifusion intermediate. We also interpret these findings as evidence that histidine 8 is a key switch-point residue between the receptor-induced conformation changes that expose fusion peptide and those that lead to six-helix bundle formation.  相似文献   

6.
Lu CW  Roth MJ 《Journal of virology》2001,75(9):4357-4366
The function of the N terminus of the murine leukemia virus (MuLV) surface (SU) protein was examined. A series of five chimeric envelope proteins (Env) were generated in which the N terminus of amphotropic 4070A was replaced by equivalent sequences from ecotropic Moloney MuLV (M-MuLV). Viral titers of these chimeras indicate that exchange with homologous sequences could be tolerated, up to V17eco/T15ampho (crossover III). Constructs encoding the first 28 amino acids (aa) of ecotropic M-MuLV resulted in Env expression and binding to the receptor; however, the virus titer was reduced 5- to 45-fold, indicating a postbinding block. Additional exchange beyond the first 28 aa of ecotropic MuLV Env resulted in defective protein expression. These N-terminal chimeras were also introduced into the AE4 chimeric Env backbone containing the amphotropic receptor binding domain joined at the hinge region to the ecotropic SU C terminus. In this backbone, introduction of the first 17 aa of the ecotropic Env protein significantly increased the titer compared to that of its parental chimera AE4, implying a functional coordination between the N terminus of SU and the C terminus of the SU and/or transmembrane proteins. These data functionally dissect the N-terminal sequence of the MuLV Env protein and identify differential effects on receptor-mediated entry.  相似文献   

7.
Functional Domains in the Retroviral Transmembrane Protein   总被引:7,自引:6,他引:1       下载免费PDF全文
The envelope glycoproteins of the mammalian type C retroviruses consist of two subunits, a surface (SU) protein and a transmembrane (TM) protein. SU binds to the viral receptor and is thought to trigger conformational changes in the associated TM protein that ultimately lead to the fusion of viral and host cell membranes. For Moloney murine leukemia virus (MoMuLV), the envelope protein probably exists as a trimer. We have previously demonstrated that the coexpression of envelope proteins that are individually defective in either the SU or TM subunits can lead to functional complementation (Y. Zhao et al., J. Virol. 71:6967–6972, 1997). We have now extended these studies to investigate the abilities of a panel of fusion-defective TM mutants to complement each other. This analysis identified distinct complementation groups within TM, with implications for interactions between different regions of TM in the fusion process. In viral particles, the C-terminal 16 amino acids of the MoMuLV TM (the R peptide) are cleaved by the viral protease, resulting in an increased fusogenicity of the envelope protein. We have examined the consequences of R peptide cleavage for the different TM fusion mutants and have found that this enhancement of fusogenicity can only occur in cis to certain of the TM mutants. These results suggest that R peptide cleavage enhances the fusogenicity of the envelope protein by influencing the interaction of two distinct regions in the TM ectodomain.  相似文献   

8.
Analogous to cellular glycoproteins, viral envelope proteins contain N-terminal signal sequences responsible for targeting them to the secretory pathway. The prototype foamy virus (PFV) envelope (Env) shows a highly unusual biosynthesis. Its precursor protein has a type III membrane topology with both the N and C terminus located in the cytoplasm. Coexpression of FV glycoprotein and interaction of its leader peptide (LP) with the viral capsid is essential for viral particle budding and egress. Processing of PFV Env into the particle-associated LP, surface (SU), and transmembrane (TM) subunits occur posttranslationally during transport to the cell surface by yet-unidentified cellular proteases. Here we provide strong evidence that furin itself or a furin-like protease and not the signal peptidase complex is responsible for both processing events. N-terminal protein sequencing of the SU and TM subunits of purified PFV Env-immunoglobulin G immunoadhesin identified furin consensus sequences upstream of both cleavage sites. Mutagenesis analysis of two overlapping furin consensus sequences at the PFV LP/SU cleavage site in the wild-type protein confirmed the sequencing data and demonstrated utilization of only the first site. Fully processed SU was almost completely absent in viral particles of mutants having conserved arginine residues replaced by alanines in the first furin consensus sequence, but normal processing was observed upon mutation of the second motif. Although these mutants displayed a significant loss in infectivity as a result of reduced particle release, no correlation to processing inhibition was observed, since another mutant having normal LP/SU processing had a similar defect.  相似文献   

9.
Damico R  Rong L  Bates P 《Journal of virology》1999,73(4):3087-3094
The retrovirus avian sarcoma and leukosis virus (ASLV) enters cells via pH-independent membrane fusion. This reaction is catalyzed by the viral glycoprotein Env, composed of a membrane-distal subunit, SU, and a membrane-anchored subunit, TM. Previous mutational analysis of a variable region, central within the SU subunit, indicates that this region constitutes part of the receptor-binding domain for subgroup A envelope (EnvA) and furthermore that basic residues (R210, R213, R223, R224, and K227) within this region are critical determinants of efficient ASLV infection. Substitutions of these basic residues exert effects on both receptor binding and postbinding events in EnvA-mediated entry. In this study, we performed biochemical analysis of the EnvA protein from three of the receptor-binding domain mutants (R213A/K227A, R213A/R223A/R224A, and R213S) to define the role of this domain in early molecular events in the entry pathway. Protease sensitivity assays demonstrated that receptor binding was sufficient to trigger conformational changes in the SU subunit of mutants R213A/K227A and R213S similar to those in the wild-type EnvA, while R213A/R223A/R224A was constitutively sensitive to protease. In contrast, all three receptor-binding domain mutants disrupted receptor-triggered conversion of EnvA to an active, membrane-binding conformation as assessed by liposome flotation assays. Our results demonstrate that mutations in the receptor-binding site can dissociate receptor-triggered conformational changes in the SU subunit from membrane binding. Furthermore, they suggest that communication between the receptor-binding subunit, SU, and the fusogenic subunit, TM, is crucial for efficient activation of the fusogenic state of EnvA. Analysis of these mutants continues earlier observations that binding to the cellular receptor provides the trigger for efficient activation of this pH-independent viral envelope protein.  相似文献   

10.
It was previously reported that truncation or proteolytic removal of the C-terminal 16 amino acids (the R peptide) from the cytoplasmic tail of the murine leukemia virus (MuLV) envelope protein greatly increases its fusion activity. In this study, to investigate the specificity of the effect of the R peptide on the fusion activity of viral envelope proteins, we expressed simian immunodeficiency virus (SIV)-MuLV chimeric proteins in which the entire cytoplasmic tail of the SIV envelope protein was replaced by either the full-length MuLV cytoplasmic tail or a truncated MuLV cytoplasmic tail with the R peptide deleted. Extensive fusion of CD4-positive cells with the chimeric protein containing a truncated MuLV cytoplasmic tail was observed. In contrast, no cell fusion activity was found for the chimeric protein with a full-length MuLV cytoplasmic tail. We constructed another SIV-MuLV chimeric protein in which the MuLV R peptide was added to an SIV envelope protein cytoplasmic tail 17 amino acids from its membrane-spanning domain. No fusion activity was observed within this construct, while the corresponding truncated SIV envelope protein lacking the R peptide showed extensive fusion activity. No significant difference in the transport or surface expression was observed among the various SIV-MuLV chimeric proteins and the truncated SIV envelope protein. Our results thus demonstrate that the MuLV R peptide has profound inhibitory effects on virus-induced cell fusion, not only with MuLV but also in a distantly related retroviral envelope protein which utilizes a different receptor and fuses different cell types.  相似文献   

11.
A retroviral Env molecule consists of a surface glycoprotein (SU) complexed with a transmembrane protein (TM). In turn, these complexes are grouped into oligomers on the surfaces of the cell and of the virion. In the case of murine leukemia viruses (MuLVs), the SU moieties are polymorphic, with SU proteins of different viral isolates directed towards different cell surface receptors. During maturation of the released virus particle, the 16 C-terminal residues of TM (the R peptide or p2E) are removed from the protein by the viral protease; this cleavage is believed to activate the membrane-fusing potential of MuLV Env. We have tested the possibility that different MuLV Env proteins in the same cell can interact with each other, both physically and functionally, in mixed oligomers. We found that coexpressed Env molecules can be precipitated out of cell lysates by antiserum which reacts with only one of them. Furthermore, they can evidently cooperate with each other: if one Env species lacks the R peptide, then it can apparently induce fusion if the SU protein of the other Env species encounters its cognate receptor on the surface of another cell. This functional interaction between different Env molecules has a number of implications with respect to the mechanism of induction of membrane fusion, for the genetic analysis of Env function, and for the design of targeted retroviral vectors for gene therapy.  相似文献   

12.
Entry of ecotropic murine leukemia virus initiates when the envelope surface protein recognizes and binds to the virus receptor on host cells. The envelope transmembrane protein then mediates fusion of viral and host cell membranes and penetration into the cytoplasm. Using a genetic selection, we isolated an infectious retrovirus variant containing three changes in the surface protein-histidine 8 to arginine, glutamine 227 to arginine, and aspartate 243 to tyrosine. Single replacement of histidine 8 with arginine (H8R) resulted in almost complete loss of infectivity, even though the mutant envelope proteins were stable and efficiently incorporated into virions. Virions carrying H8R envelope were proficient at binding cells expressing receptor but failed to induce cell-cell fusion of XC cells, indicating that the histidine at position 8 plays an essential role in fusion during penetration of the host cell membrane. Thus, there is at least one domain in SU that is involved in fusion; the fusion functions do not reside exclusively in TM. In contrast, envelope with all three changes induced cell-cell fusion of XC cells and produced virions that were 10,000-fold more infectious than those containing only the H8R substitution, indicating that changes at positions 227 and 243 can suppress a fusion defect caused by loss of histidine 8 function. Moreover, the other two changes acted synergistically, indicating that both compensate for the loss of the same essential function of histidine 8. The ability of these changes to suppress this fusion defect might provide a means for overcoming postbinding defects found in targeted retroviral vectors for use in human gene therapy.  相似文献   

13.
The cytoplasmic tail of the murine leukemia virus (MuLV) envelope (Env) protein is known to play an important role in regulating viral fusion activity. Upon removal of the C-terminal 16 amino acids, designated as the R peptide, the fusion activity of the Env protein is activated. To extend our understanding of the inhibitory effect of the R peptide and investigate the specificity of inhibition, we constructed chimeric influenza virus-MuLV hemagglutinin (HA) genes. The influenza virus HA protein is the best-studied membrane fusion model, and we investigated the fusion activities of the chimeric HA proteins. We compared constructs in which the coding sequence for the cytoplasmic tail of the influenza virus HA protein was replaced by that of the wild-type or mutant MuLV Env protein or in which the cytoplasmic tail sequence of the MuLV Env protein was added to the HA cytoplasmic domain. Enzyme-linked immunosorbent assays and Western blot analysis showed that all chimeric HA proteins were effectively expressed on the cell surface and cleaved by trypsin. In BHK21 cells, the wild-type HA protein had a significant ability after trypsin cleavage to induce syncytium formation at pH 5.1; however, neither the chimeric HA protein with the full-length cytoplasmic tail of MuLV Env nor the full-length HA protein followed by the R peptide showed any syncytium formation. When the R peptide was truncated or mutated, the fusion activity was partially recovered in the chimeric HA proteins. A low-pH conformational-change assay showed that similar conformational changes occurred for the wild-type and chimeric HA proteins. All chimeric HA proteins were capable of promoting hemifusion and small fusion pore formation, as shown by a dye redistribution assay. These results indicate that the R peptide of the MuLV Env protein has a sequence-dependent inhibitory effect on influenza virus HA protein-induced membrane fusion and that the inhibitory effect occurs at a late stage in fusion pore enlargement.  相似文献   

14.
The epitope specificities and functional activities of monoclonal antibodies (MAbs) specific for the murine leukemia virus (MuLV) SU envelope protein subunit were determined. Neutralizing antibodies were directed towards two distinct sites in MuLV SU: one overlapping the major receptor-binding pocket in the N-terminal domain and the other involving a region that includes the most C-terminal disulfide-bonded loop. Two other groups of MAbs, reactive with distinct sites in the N-terminal domain or in the proline-rich region (PRR), did not neutralize MuLV infectivity. Only the neutralizing MAbs specific for the receptor-binding pocket were able to block binding of purified SU and MuLV virions to cells expressing the ecotropic MuLV receptor, mCAT-1. Whereas the neutralizing MAbs specific for the C-terminal domain did not interfere with the SU-mCAT-1 interaction, they efficiently inhibited cell-to-cell fusion mediated by MuLV Env, indicating that they interfered with a postattachment event necessary for fusion. The C-terminal domain MAbs displayed the highest neutralization titers and binding activities. However, the nonneutralizing PRR-specific MAbs bound to intact virions with affinities similar to those of the neutralizing receptor-binding pocket-specific MAbs, indicating that epitope exposure, while necessary, is not sufficient for viral neutralization by MAbs. These results identify two separate neutralization domains in MuLV SU and suggest a role for the C-terminal domain in a postattachment step necessary for viral fusion.  相似文献   

15.
The cellular tropism of the feline immunodeficiency virus (FIV) is affected by changes in variable region 3 (V3) of the surface (SU) envelope glycoprotein (Verschoor, E. J., et al., J. Virol. 69:4752-4757, 1995). By using high-dose DNA transfection, an FIV molecular clone with a non-CRFK-tropic V3 acquired the ability to replicate in CRFK cells. A single point mutation from a methionine to a threonine in the ectodomain of its transmembrane (TM) envelope glycoprotein was responsible for this change in viral tropism. This substitution is located in the putative SU interactive region, between the fusion peptide and the membrane-spanning region. Our results show that this region of the TM envelope glycoprotein constitutes an additional determinant for cell tropism.  相似文献   

16.
Taylor GM  Gao Y  Sanders DA 《Journal of virology》2001,75(22):11244-11248
Mice expressing the Fv-4 gene are resistant to infection by ecotropic murine leukemia viruses (MuLVs). The Fv-4 gene encodes an envelope (Env) protein whose putative receptor-binding domain resembles that of ecotropic MuLV Env protein. Resistance to ecotropic MuLVs appears to result from viral interference involving binding of the endogenously expressed Fv-4 env-encoded protein to the ecotropic receptor, although the immune system also plays a role in resistance. The Fv-4 env-encoded protein is processed normally and can be incorporated into virus particles but is unable to promote viral entry. Among the many sequence variations between the transmembrane (TM) subunit of the Fv-4 env-encoded protein and the TM subunits of other MuLV Env proteins, there is a substitution of an arginine residue in the Fv-4 env-encoded protein for a glycine residue (gly-491 in Moloney MuLV Env) that is otherwise conserved in all of the other MuLVs. This residue is present in the MuLV TM fusion peptide sequence. In this study, gly-491 of Moloney MuLV Env has been replaced with other residues and a mutant Env bearing a substitution for gly-487 was also created. G491R recapitulates the Fv-4 Env phenotype in cell culture, indicating that this substitution is sufficient for creation of an Env protein that can establish the interference-mediated resistance to ecotropic viruses produced by the Fv-4 gene. Analysis of the mutant MuLV Env proteins also has implications for an understanding of the role of conserved glycine residues in fusion peptides and for the engineering of organismal resistance to retroviruses.  相似文献   

17.
J A Ragheb  H Yu  T Hofmann    W F Anderson 《Journal of virology》1995,69(11):7205-7215
The murine leukemia virus (MuLV) envelope protein was examined to determine which sequences are responsible for the differences in direct membrane fusion observed with the ecotropic and amphotropic MuLV subtypes. These determinants were studied by utilizing amphotropic-ecotropic chimeric envelope proteins that have switched their host range but retain their original fusion domain (TM subunit). Fusion was tested both in rodent cells and in 293 cells bearing the human homolog of the ecotropic MuLV receptor. The results demonstrate that the amphotropic TM is able to mediate cell-to-cell fusion to an extent equivalent to that mediated by the ecotropic TM, indicating that their fusion domains are equivalent. The "murinized" human homolog of the ecotropic receptor supports syncytium formation as well as the native murine receptor. These findings suggest that interactions between the ecotropic envelope protein and conserved sequences in the ecotropic receptor are the principal determinants of syncytium formation. The relationship of the fusion phenotype to pH-dependent infection and the route of viral entry was examined by studying virions bearing the chimeric envelope proteins. Such virions appear to enter cells via a pathway that is directed by the host range-determining region of their envelope rather than by sequences that confer pH dependence. Therefore, the pH dependence of infection may not reflect the initial steps in viral entry. Thus, it appears that both the syncytium phenotype and the route of viral entry are properties of the viral receptor, the amino-terminal half of the ecotropic envelope protein, or the interaction between the two.  相似文献   

18.
Murine leukemia virus ecotropic and amphotropic envelope expression vectors were genetically engineered to generate truncations of the p15E TM cytoplasmic tail. The ecotropic construct CEET has the entire cytoplasmic tail of TM deleted, while the CEETR construct has only the R peptide portion of the tail deleted, thereby producing a TM subunit (p12E) that is identical to the one found in mature virions. The analogous amphotropic constructs were called CAET and CAETR. These envelopes, as opposed to their p15E TM counterparts, mediate cell-to-cell fusion at neutral pH in both transformed and nontransformed cell lines. Though the TM cytoplasmic domain is not required, its presence appears to augment such cell-to-cell fusion. This envelope-dependent fusion requires the presence of the viral receptor on the cell surface. Ecotropic virions bearing the p12E TM contain wild-type levels of the envelope complex and have near-normal titers. In contrast, virions which lack the cytoplasmic domain of TM (e.g., CEET) have 10- to 100-fold-lower titers but contain normal amounts of envelope. Both of the corresponding amphotropic virions contain normal amounts of envelope but have 10- to 100-fold-lower titers. Using immunofluorescent detection of envelope to monitor the fate of receptor-bound virions, we found that ecotropic murine leukemia virus envelope disappears from the cell surface while amphotropic envelope persists on the cell surface after virus binding. This pattern of immunofluorescence is consistent with the proposed routes of cell entry for these viruses, i.e., by endocytosis and direct fusion, respectively. In this assay, ecotropic virions bearing the genetically engineered p12E TM also appear to be internalized despite the ability of their envelope to mediate fusion at neutral pH in the same target cells. Our results show that direct fusion at neutral pH is a natural consequence of the surface expression of the mature ecotropic envelope and its receptor. We propose that the processing of the R peptide from the envelope TM (p15E) to yield p12E, at the time of virus budding or within virions, renders the envelope competent to fuse.  相似文献   

19.
Mammalian type C retroviral envelope proteins contain a variable proline-rich region (PRR), located between the N-terminal receptor-binding domain and the more highly conserved C-terminal portion of the surface (SU) subunit. We have investigated the role of the PRR in the function of murine leukemia virus (MuLV) envelope protein. In the MuLVs, the PRR contains a highly conserved N-terminal sequence and a hypervariable C-terminal sequence. Despite this variability, the amphotropic PRR could functionally substitute for the ecotropic PRR. The hypervariable region of the PRR was not absolutely required for envelope protein function. However, truncations in this region resulted in decreased levels of both the SU and TM proteins in viral particles and increased amounts of the uncleaved precursor protein, Pr85. In contrast, the N-terminal conserved region was essential for viral infectivity. Deletion of this region prevented the stable incorporation of envelope proteins into viral particles in spite of normal envelope protein processing, wild-type levels of cell surface expression, and a wild-type ability to induce syncytia in an XC cell cocultivation assay. However, higher levels of the SU protein were shed into the supernatant, suggesting a defect in SU-TM interactions. Our data are most consistent with a role for the PRR in stabilizing the overall structure of the protein, thereby affecting the proper processing of Pr85, SU-TM interactions, and the stable incorporation of envelope proteins into viral particles. In addition, we have demonstrated that the PRR can tolerate the insertion of a peptide-binding domain, making this a potentially useful site for constructing targetable retroviral vectors.  相似文献   

20.
We have identified mutations in the human immunodeficiency virus type 1 (HIV-1) matrix protein (MA) which block infectivity of virions pseudotyped with murine leukemia virus (MuLV) envelope (Env) glycoproteins without affecting infectivity conferred by HIV-1 Env or vesicular stomatitis virus G glycoproteins. This inhibition is very potent and displays a strong transdominant effect; infectivity is reduced more than 100-fold when wild-type and mutant molecular clones are cotransfected at a 1:1 ratio. This phenomenon is observed with both ecotropic and amphotropic MuLV Env. The MA mutations do not affect the incorporation of MuLV Env into virions. We demonstrate that in HIV-1 virions pseudotyped with MuLV Env, the HIV-1 protease (PR) efficiently catalyzes the cleavage of the p15(E) transmembrane (TM) protein to p12(E). Immunoprecipitation analysis of pseudotyped virions reveals that the mutant MA blocks this HIV-1 PR-mediated cleavage of MuLV TM. Furthermore, the transdominant inhibition exerted by the mutant MA on wild-type infectivity correlates with the relative level of p15(E) cleavage. Consistent with the hypothesis that abrogation of infectivity imposed by the mutant MA is due to inhibition of p15(E) cleavage, mutant virions are significantly more infectious when pseudotyped with a truncated p12(E) form of MuLV Env. These results indicate that HIV-1 Gag sequences can influence the viral PR-mediated processing of the MuLV TM Env protein p15(E). These findings have implications for the development of HIV-1-based retroviral vectors pseudotyped with MuLV Env, since p15(E) cleavage is essential for activating membrane fusion and virus infectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号