首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ascorbate Transport and Intracellular Concentration in Cerebral Astrocytes   总被引:2,自引:1,他引:2  
Abstract: Regulation of the initial rate of uptake and steady-state concentration of ascorbate (reduced vitamin C) was investigated in rat cerebral astrocytes. Although these cells did not synthesize vitamin C, they accumulated millimolar concentrations of ascorbate when incubated with medium containing the vitamin at a level (200 µ M ) typical of brain extracellular fluid. Initial rate of [14C]-ascorbate uptake and intracellular ascorbate concentration were dependent on extracellular Na+ and sensitive to the anion transport inhibitor sulfinpyrazone. Comparison of the efflux profiles of ascorbate and 2',7'-bis(carboxyethyl)-5 (or -6)-carboxyfluorescein from astrocytes permeabilized with digitonin localized most intracellular ascorbate to the cytosol. Pretreatment of astrocytes with dibutyryl cyclic AMP (dBcAMP) doubled their initial rate of sulfinpyrazone-sensitive [14C]ascorbate uptake compared with cells treated with either n -butyric acid or vehicle. dBcAMP also increased steady-state intracellular ascorbate concentration by 39%. The relatively small size of the change in astrocytic ascorbate concentration was explained by the finding that dBcAMP increased the rate of efflux of the vitamin from ascorbate-loaded cells. These results indicate that uptake and efflux pathways are stimulated by cyclic AMP-dependent mechanisms and that they regulate the cytosolic concentration of ascorbate in astrocytes.  相似文献   

2.
The role of monoamine oxidase (MAO) type A and B on the metabolism of dopamine (DA) in discrete regions of the monkey brain was studied. Monkeys were administered (–)-deprenyl (0.25 mg/kg) or clorgyline (1.0 mg/kg) or deprenyl and clorgyline together by intramuscular injections for 8 days. Levels of DA and its metabolites, dihydroxy phenylacetic acid (DOPAC) and homovanillic acid (HVA) were estimated in frontal cortex (FC), motor cortex (MC), occipital cortex (OC), entorhinal cortex (EC), hippocampus (HI), hypothalamus (HY), caudate nucleus (CN), globus pallidus (GP) and substantia nigra (SN). (–)-Deprenyl administration significantly increased DA levels in FC, HY, CN, GP and SN (39–87%). This was accompanied by a reduction in the levels of DOPAC (37–66%) and HVA (27–79%). Clorgyline administration resulted in MAO-A inhibition by more than 87% but failed to increase DA levels in any of the brain regions studied. Combined treatment of (–)-deprenyl and clorgyline inhibited both types of MAO by more than 90% and DA levels were increased (57–245%) in all brain regions studied with a corresponding decrease in the DOPAC (49–83%) and HVA (54–88%) levels. Our results suggest that DA is metabolized preferentially, if not exclusively by MAO-B in some regions of the monkey brain.  相似文献   

3.
In vitro.MAO‐A activity was inhibited 16‐25%, and MAO‐B activity was inhibited 20‐50% by SE treatment (12.5, 25 and 50 μg), In vivo.male C57BL/6 mice Received intraperitoneal injection of SE (20 mg/kg/day) for 14 days. The results showed that MAO‐A activity of pre‐SE‐treatment mice brain was inhibited in whole brain, cerebral cortex, substantia nigra. MAO‐B activity of pre‐SE‐treatment mice brain was inhibited in substantia nigra and cerebellum than saline‐treated control group. These results suggest that SE inhibits MAO activity in vivo.which would be expected to results in anti‐depressive and neuroprotective effects.  相似文献   

4.
The oxidative deamination of serotonin (5-HT) to 5-hydroxyindoleacetic acid (5-HIAA) by rat primary astrocyte cultures was investigated in intact cells using HPLC. All detectable 5-HIAA accumulated in the extracellular medium, and its rate of production was proportional to the 5-HT concentration over the tested range of 5 x 10(-7) to 10(-4) M. At 5 x 10(-7) M 5-HT, intracellular 5-HT was detectable only in astrocytes treated with monoamine oxidase (MAO) inhibitors. These findings are consistent with the idea that 5-HT taken up into astrocytes is not stored for re-release, but is rapidly metabolized to 5-HIAA, which is then extruded from the cell. At 5 x 10(-7) M 5-HT, 5-HIAA formation in intact cells was blocked 63% by the selective high-affinity 5-HT uptake inhibitor fluoxetine. 5-HT oxidation to 5-HIAA is carried out principally by MAO-A, because clorgyline was more effective at inhibiting the production of 5-HIAA than was pargyline. Radioenzymatic determinations of MAO activity in cell homogenates supported these findings, because under these conditions clorgyline was 1,000-fold more effective than pargyline at inhibiting MAO activity toward 14C-labelled 5-HT. However, the relatively selective MAO-B substrate beta-phenylethylamine (PEA) was also oxidized, showing that these cultures also contained MAO-B activity; the Km values for MAO-A oxidation of 5-HT and MAO-B oxidation of PEA were 135 and 45 microM, and Vmax values were 88 and 91 nmol/mg of total cell protein/h, respectively. Higher concentrations of PEA (greater than 20 microM) were oxidized by both MAO-A and MAO-B isozymes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The synthesis of carnosine (beta-Ala-His) by astroglia-rich primary cultures was much higher if the cells were cultivated in Ham's nutrient mixture F-12 than if they were grown in Dulbecco's modified Eagle's medium. Carnosine synthesis was not affected by the presence of insulin, transferrin, phorbol myristate acetate, or dexamethasone. However, dibutyryl cyclic AMP and other agents that can, directly or indirectly, activate cyclic AMP-dependent protein kinases strongly lower the rate of carnosine synthesis. The depression of carnosine synthesis was dependent on the concentration of dibutyryl cyclic AMP. The effect was maximal (approximately 80% inhibition) in cultures preincubated with 1 mM dibutyryl cyclic AMP for 4 days. The adenylate cyclase activator forskolin, the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine, and 8-bromo-cyclic AMP caused the same depression as dibutyryl cyclic AMP, whereas neither butyrate nor dibutyryl cyclic GMP elicited any effect.  相似文献   

6.
Dibutyryl cyclic AMP (dBcAMP) is known to induce maturation and differentiation in astrocytes. As myo-inositol is an important osmoregulator in astrocytes, we examined the effects of maturation and biochemical differentiation on the kinetic properties of myo-inositol transport. Treatment of astrocytes with dBcAMP significantly decreased the Vmax of myo-inositol uptake, but the effect on Km was not significant. The myo-inositol content of astrocytes was significantly decreased in cells treated for 5 days with dBcAMP as compared with untreated controls. Maximum suppression of myo-inositol uptake occurred 7 days after exposure of astrocytes to dBcAMP; this was gradually reversible when dBcAMP was removed from the medium. After exposure to hypertonic medium for 6 h, mRNA expression of the myo-inositol co-transporter was diminished by approximately 36% in astrocytes treated with dBcAMP as compared with untreated cells. It appears that myo-inositol transporters in astrocytes treated with dBcAMP are either decreased in number or inactivated during maturation and differentiation, suggesting that the stage of differentiation and biochemical maturation of astrocytes is an important factor in osmoregulation.  相似文献   

7.
In the presence of 7 mM glucose, dibutyryl cyclic AMP induced electrical activity in otherwise silent mouse pancreatic B cells. This activity was blocked by cobalt or D600, two inhibitors of Ca2+ influx. Under similar conditions, dibutyryl cyclic AMP stimulated 45Ca2+ influx (5-min uptake) in islet cells; this effect was abolished by cobalt and partially inhibited by D600. The nucleotide also accelerated 86Rb+ efflux from preloaded islets, did not modify glucose utilization and markedly increased insulin release. Its effects on release were inhibited by cobalt, but not by D600. These results show that insulin release can occur without electrical activity in B cells and suggest that cyclic AMP not only mobilizes intracellular Ca, but also facilitates Ca2+ influx in insulin secreting cells.  相似文献   

8.
Pyruvate Carboxylase Activity in Primary Cultures of Astrocytes and Neurons   总被引:2,自引:17,他引:2  
Abstract: The activity of the pyruvate carboxylase was determined in brains of newborn and adult mice as well as primary cultures of astrocytes, of cerebral cortex neurons, and of cerebellar granule cells. The activity was found to be 0.25 ± 0.14, 1.24 ± 0.07, and 1.75 ± 0.13 nmol · min−1· mg−1 protein in, respectively, neonatal brain, adult brain, and astrocytes. Neither of the two types of neurons showed any detectable enzyme activity (i.e., < 0.05 nmol · min−1· mg−1). It is therefore concluded that pyruvate carboxylase is an astrocytic enzyme.  相似文献   

9.
The total activities of monoamine oxidase (MAO) and the ratio of type B/type A activities were determined in mouse neuroblastoma N1E-115 cells, and in NX31T and NG108-15 hybrid cells derived from mouse neuroblastoma X rat sympathetic ganglion hybrid or mouse neuroblastoma X rat glioma hybrid cells. N1E-115 and NX31T cells possessed type A activities exclusively, although NG108-15 cells showed both type A (65-90%) and type B (10-35%) MAO activities. The activity of type A MAO in NX31T and N1E-115 cells was relatively constant during culturing periods in the presence or absence of dibutyryl cyclic AMP (Bt2cAMP), whereas total MAO activity and the ratio of type B MAO/type A MAO in NG108-15 cells increased as a function of culture periods. Prostaglandin E1 (PGE1) and theophylline, the best known combination to increase intracellular cyclic AMP content of NG108-15 cells, caused similar increases of MAO and of the type B/type A ratio in NG108-15 cells. The results suggest that MAO activity and expression of MAO B activity are regulated in NG108-15 cells in a cyclic AMP-dependent manner.  相似文献   

10.
为探讨简便、高效的大脑皮质星形胶质细胞体外培养方法,本研究取新生24 h内的ICR小鼠大脑皮层,采用物理方法将其分成约1 mm^3,震荡过滤后进行培养。通过拍照的方式记录原代培养1 d、3 d、7 d、14 d、21 d、28 d、35 d和原代培养14 d后再传代培养14 d(记为P2-14 d)细胞形态;通过实时定量PCR和Western blotting比较原代培养1周、2周、3周、4周、5周和原代培养2周后再传代培养2周(即P2-2)的星形胶质细胞内胶质纤维酸性蛋白(glial fibrillary acidic protein,GFAP)基因和蛋白水平变化。选取GFAP、S100-β和谷氨酸转运蛋白(excitatory amino acid transporter 1,EAAT1)标记星形胶质细胞,微管相关蛋白(microtubuleassociated protein 2,MAP-2)、离子钙接头蛋白-1(ionized calcium-binding adapter molecule 1,Iba-1)和髓鞘相关糖蛋白(myelin associated glycoprotein,MAG)抗体分别标记神经元、小胶质细胞和少突胶质细胞。通过免疫荧光染色鉴定细胞种类及纯度。研究结果显示细胞生长良好,原代培养4周星形胶质细胞内GFAP比2周、3周、5周和传代培养2周的细胞更加稳定。经免疫荧光鉴定,星形胶质细胞纯度在95%以上。本实验采用相对较简单经济的方法培养出高纯度且生理状态相对较稳定的原代星形胶质细胞,该细胞模型不仅可以用于星形胶质细胞生理功能研究,还可以用于中枢神经系统相关疾病的体外研究。  相似文献   

11.
Primary cultures of astrocytes and neurons derived from neonatal and embryonic mouse cerebral cortex, respectively, were incubated with [3-14C]acetoacetate or [2-14C]glucose. The utilization of glucose and acetoacetate, the production of lactate, D-3-hydroxybutyrate, and 14CO2, and the incorporation of 14C and of 3H from 3H2O into lipids and lipid fractions were measured. Both cell types used acetoacetate as an energy substrate and as a lipid precursor; lactate was the major product of glucose metabolism. About 60% of the acetoacetate that was utilized by neurons was oxidized to CO2, whereas this was only approximately 20% in the case of cultured astrocytes. This indicates that the rate at which 14C-labeled Krebs cycle intermediates exchange with pools of unlabeled intermediates is much higher in astrocytes than in neurons. Acetoacetate is a better precursor for the synthesis of fatty acids and cholesterol than glucose, presumably because it can be used directly in the cytosol for these processes; preferential incorporation into cholesterol was not observed in these in vitro systems. We conclude that ketone bodies can be metabolized both by the glial cells and by the neuronal cells of developing mouse brain.  相似文献   

12.
Benzodiazepine Receptors on Primary Cultures of Mouse Astrocytes   总被引:2,自引:2,他引:0  
Benzodiazepines bind to glial membranes on a single type of site, with a high affinity (KD = 5 x 10(-9) M) on about 100 fmol of sites per mg protein. The number of binding sites is increased when the membranes are treated with Triton X-100. Antiepileptic drugs such as clonazepam and phenobarbital and hypnotic drugs such as Ro-11-3128 and Ro-11-6896 are able in pharmacological concentrations to displace [3H]flunitrazepam from its glial binding sites.  相似文献   

13.
Abstract: Synthesis, uptake, release, and oxidative metabolism of citrate were investigated in neurons and astrocytes cultured from cerebral cortex or cerebellum. In addition, the possible role of citrate as a donor of the carbon skeleton for biosynthesis of neurotransmitter glutamate was studied. All cell types expressed the enzyme citrate synthase at a high activity, the cerebellar granule neurons containing the enzyme at a higher activity than that found in the astrocytes from the two brain regions or the cortical neurons. Saturable citrate uptake could not be detected in any of the cell types, but the astrocytes, and, in particular, those of cerebellar origin, had a very active de novo synthesis and release of citrate (~70 nmol × h?1× mg of protein?1). The rate of release of citrate from neurons was <5% of this value. Using [14C]citrate it could be shown that citrate was oxidatively metabolized to 14CO2 at a modest rate (~1 nmol × n?1× mg?1 of protein) with slightly higher rates in astrocytes compared with neurons. Experiments designed to investigate the ability of exogenously supplied citrate to serve as a precursor for synthesis of transmitter glutamate in cerebellar granule neurons failed to demonstrate this. Rather than citrate serving this purpose it may be suggested that astrocytically released citrate may regulate the extracellular concentration of Ca2+ and Mg2+ by chelation, thereby modulating neuronal excitability.  相似文献   

14.
Histamine stimulates cyclic AMP accumulation in astrocyte-enriched and neuronal primary cultures from rat brain in the presence of the phosphodiesterase inhibitor isobutylmethylxanthine. The response in the astrocyte cultures (Emax = 304 +/- 44% over basal, EC50 = 43 +/- 5 microM) was much higher than in neuronal cultures (Emax = 24 +/- 2%, EC50 = 14 +/- 7 microM). The histamine effect in astrocytes was competitively inhibited by the H2 antagonists cimetidine (Ki = 1.1 +/- 0.2 microM) and ranitidine (Ki = 46 +/- 10 nM) but was insensitive to the H1 antagonist mepyramine (1 microM). The two selective H2 agonists impromidine and dimaprit behaved as partial agonists and showed relative potencies (139 and 0.5, respectively) consistent with an interaction with H2 receptors. The more selective H1 agonist 2-thiazolylethylamine (0.01-1 mM) did not potentiate the response to impromidine (10 microM). Thus, in contrast to what is generally observed in intact cell preparations from brain, the histamine-induced cyclic AMP accumulation in astroglial cells is mediated solely by H2 receptors. The small effect shown in neuronal cultures also appears to be mediated by H2 receptors.  相似文献   

15.
[3H]Flunitrazepam binds to intact and homogenized mouse astrocytes and neurons in primary cultures. In intact cells, the binding is to a single, high-affinity, saturable population of benzodiazepine binding sites with a KD of 7 nM and Bmax of 6,033 fmol/mg protein in astrocytic cells and a KD of 5 nM and Bmax of 924 fmol/mg protein in neurons. After homogenization, the Bmax values decrease drastically in both cell types, but most in astrocytes. The temperature and time dependency are different for the two cell types, with a faster association and dissociation in astrocytes than in neurons and a greater temperature sensitivity in the astrocytes. Moreover, flunitrazepam binding sites on neuronal and astrocytic cells have different pharmacological profiles. In intact astrocytic cells, Ro 5-4864 (Ki = 4 nM) is the most potent displacing compound, followed by diazepam (Ki = 6 nM) and clonazepam (Ki = 600 nM). In intact neurons, the relative order of potency of these three compounds is different: diazepam (Ki = 7 nM) is the most potent, followed by clonazepam (Ki = 26 nM) and Ro 5-4864, which has little effect. After homogenization the potency of diazepam decreases. We conclude that both neuronal and astrocytic cells possess high-affinity [3H]flunitrazepam binding sites. The pharmacological profile and kinetic characteristics differ between the two cell types and are further altered by homogenization.  相似文献   

16.
Inhibition of net uptake of 42K by different concentrations of ouabain was studied in primary cultures of astrocytes and in primary cultures of neurons in order to investigate whether there is a pronounced difference between ouabain sensitivity in the two cell types and to determine the genuine magnitudes of the ouabain-sensitive and the ouabain-resistant potassium uptakes. In morphologically differentiated astrocytes, obtained after treatment with dibutyryl cyclic AMP (dBcAMP), the sensitivity to ouabain was slightly lower than in neurons, but astrocytes which had not been treated with dBcAMP showed sensitivity similar to the neurons (which likewise were not treated). In the presence of elevated potassium concentrations (12 and 24 mM) ouabain sensitivity was decreased, although only by a factor of 2-3. Accordingly, maximum inhibition of the uptake required under all conditions studied, at most, 1.0 mM ouabain. Like total uptake, this ouabain-sensitive uptake was several times less intense in neurons than in astrocytes, where it reached its maximum value at an external potassium concentration of 12 mM. Subtraction of the ouabain-sensitive uptake from the total uptake revealed a considerable ouabain-resistant uptake. This ouabain-resistant uptake was studied in detail in the astrocytes, where it was found to increase with increasing potassium concentration over the whole concentration range 3-24 mM and to exceed substantially the maximum amount that can be accumulated by diffusion.  相似文献   

17.
Abstract: Use of the irreversible inhibitors clorgyline and deprenyl showed that rat brain mitochondria contain type A and type B monoamine oxidase (MAO). Tyramine is a substrate for both types of MAO, whereas serotonin is a preferential substrate for type A MAO. In contrast to MAO in other tissues, type A MAO in brain tissue oxidizes β-phenylethylamine (PEA) at high concentrations (0.5 and 1.0 mM). The proportions of type A and type B MAO activities in the mitochondria estimated from the double-sigmoidal inhibition curves of tyramine oxidation were about 70:30 irrespective of the concentration of tyramine. With PEA as substrate, the ratios of type A to type B activities were found to increase from low values at low concentrations to about 1 at 0.5-1.0 mM-PEA, and even higher at further increased concentrations of PEA. At very low (0.01 mM) and high (10.0 mM) concentrations of PEA, single-sigmoidal curves were obtained; with the high PEA concentration the activity was highly sensitive to clorgyline, whereas with the low concentration it was highly sensitive to deprenyl. In deprenyl-pretreated mitochondrial preparations, all the remaining activity towards 0.5-1.0 mM-PEA was shown to be highly sensitive to clorgyline, demonstrating that this activity was indeed due to oxidation by type A MAO. The opposite result was obtained with deprenyl as inhibitor of clorgyline-pretreated preparations, demonstrating that PEA at this concentration was also oxidized by type B MAO in rat brain mitochondria. The K3 values of type A and type B MAO for PEA were significantly different. On Lineweaver-Burk analysis, plots with PEA as substrate for type A MAO in a deprenyl-treated preparation were linear over a wide concentration range, whereas those for type B MAO in a clorgyline-treated preparation were not linear, but showed substrate inhibition at higher concentrations of the substrate. It is concluded from the present findings that the effect of the substrate concentration must be considered in studies on the characteristics of multiple forms of MAO in various organs and species.  相似文献   

18.
Rat pineal glands, cultured under 95% air and 5% CO2, lost 50% of their tryptophan hydroxylase activity within 5 h. This loss was accelerated by the addition of cycloheximide or puromycin to the medium. Activity was, however, largely maintained in 95% O2 and 5% CO2. Under these conditions, L-noradrenaline (100 microM), L-isoproterenol (10 microM), and dibutyryl cyclic AMP (1 mM) induced enzyme activity. They failed to do so when 95% air and 5% CO2 was used. Noradrenaline induced serotonin N-acetyltransferase activity with either atmosphere.  相似文献   

19.
Monoamine oxidase (MAO) A and B are important enzymes that metabolize biogenic amines throughout the body. Previous studies had suggested that both MAO A and B consist of two subunits of molecular masses of 63 and 60 kilodaltons, respectively. The cDNAs encoding one subunit of human liver MAO A and B have been expressed in mammalian cells by transfection of the individual clones. The proteins expressed from these cDNAs are shown to be catalytically active. Similar to the endogenous enzymes, the expressed MAO A prefers serotonin as a substrate and is sensitive to the inhibitor clorgyline. In contrast, the expressed MAO B prefers phenylethylamine as a substrate and is sensitive to the inhibitor deprenyl. These results suggest that a single polypeptide of MAO A (or B), existing as either a monomer or homodimer, is enzymatically active. The ability to obtain functional MAO A and B from their respective cDNA clones allows us to study further the structure and function relationships of these important enzymes.  相似文献   

20.
Abstract: It has been proposed that hyperammonemia may be associated with valproate therapy. As astrocytes are the primary site of ammonia detoxification in brain, the effects of valproate on glutamate and glutamine metabolism in astrocytes were studied. It is well established that, because of compartmentation of glutamine synthetase, astrocytes are the site of synthesis of glutamine from glutamate and ammonia. The reverse reaction is catalyzed by the ubiquitous enzyme glutaminase, which is present in both neurons and astrocytes. In astrocytes exposed to 1.2 mM valproate, glutaminase activity increased 80% by day 2 and remained elevated at day 4; glutamine synthetase activity was decreased 30%. Direct addition of valproate to assay tubes with enzyme extracts from untreated astrocytes had significant effects only at concentrations of 10 and 20 mM, When astrocytes were exposed for 4 days to 0.3, 0.6, or 1.2 mM valproate and subsequently incubated with l -[U-14C]glutamate, label incorporation into [14C]glutamine was decreased by 11, 25, and 48%, respectively, and is consistent with a reduction in glutamine synthetase activity. Label incorporation from l -[U-14C]glutamate into [14C]aspartate also decreased with increasing concentrations of valproate. Following a 4-day exposure to 0.6 mM valproate, the glutamine levels increased 40% and the glutamate levels 100%. These effects were not directly proportional to valproate concentration, because exposure to 1.2 mM valproate resulted in a 15% decrease in glutamine levels and a 25% increase in glutamate levels compared with control cultures. Intracellular aspartate was inversely proportional to all concentrations of extracellular valproate, decreasing 60% with exposure to 1.2 mM valproate. These results indicate that valproate increases glutaminase activity, decreases glutamine synthetase activity, and alters Krebs-cycle activity in astrocytes, suggesting a possible mechanism for hyperammonemia in brain during valproate therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号