首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
Neurosteroids have been reported to modulate memory processes in rodents. Three analogues of dehydroepiandrosterone (DHEA), two of them previously described (7β-aminoDHEA and 7β-amino-17-ethylenedioxy-DHEA), and a new one (3β-hydroxy-5α-androstane-6,17-dione) were synthesized, and their effects were evaluated on memory. This study examined their effects on long term and short term memory in male (6 weeks old) NMRI mice in comparison with the reference drug. Long term memory was assessed using the passive avoidance task and short term memory (spatial working memory) using the spontaneous alternation task in a Y maze. Moreover, the effects of DHEA and its analogues on spontaneous locomotion were measured. In all tests, DHEA and analogues were injected at three equimolar doses (0.300–1.350–6.075 μM/kg). DHEA and its three analogues administered immediately post-training at the highest doses (6.075 μM/kg, s.c.) improved retention in passive avoidance test. Without effect per se in the spatial working memory task, the four compounds failed to reverse scopolamine (1 mg/kg, i.p.)-induced deficit in spontaneous alternation. These data suggested an action of DHEA and analogues in consolidation of long term memory particularly when emotional components are implied. Moreover, data indicated that pharmacological modulation of DHEA as performed in this study provides derivatives giving the same mnemonic profile than reference molecule.  相似文献   

14.
15.
The ability of endothelins 1 and 3 (ET-1 and ET-3) to reduce neuronal norepinephrine release through ETB receptor activation involving nitric oxide (NO) pathways in the rat anterior hypothalamus region (AHR) was previously reported. In the present work, we studied the effects of ET-1 and -3 on tyrosine hydroxylase (TH) activity and the possible involvement of NO pathways. Results showed that ET-1 and -3 (10 nM) diminished TH activity in AHR and this effect was blocked by a selective ETB receptor antagonist (100 nM BQ-788), but not by a ET(A) receptor antagonist (BQ-610). To confirm these results, 1 microM IRL-1620 (ET(B) agonist) reduced TH activity whereas 300 nM sarafotoxin S6b falled to modify it. N(omega)-Nitro-L-arginine methyl ester (10 microM), 7-nitroindazole (10 microM), 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-ona (10 microM), KT5823 (2 microM), inhibitors of nitric oxide synthase, neuronal nitric oxide synthase, NO-sensitive-guanylyl cyclase, and protein kinase G, respectively, did not modify the reduction of TH activity produced by ETs. In addition, both 100 microM sodium nitroprusside and 50 microM 8-bromoguanosine-3',5'-cyclic monophosphate (NO donor and guanosine-3',5'-cyclic monophosphate analog, respectively) diminished TH activity. Present results showed that ET-1 and ET-3 diminished TH activity through the activation of ET(B) receptors involving the NO/guanosine-3',5'-cyclic monophosphate/protein kinase G pathway. Taken jointly present and previous results it can be concluded that both ETs play an important role as modulators of norepinephrine neurotransmission in the rat AHR.  相似文献   

16.
17.
18.
The products of three genes named CARGRI, CARGRII, and CARGRIII were shown to repress the expression of CAR1 and CAR2 genes, involved in arginine catabolism. CARGRI is identical to UME6 and encodes a regulator of early meiotic genes. In this work we identify CARGRII as SIN3 and CARGRIII as RPD3. The associated gene products are components of a high-molecular-weight complex with histone deacetylase activity and are recruited by Ume6 to promoters containing a URS1 sequence. Sap30, another component of this complex, is also required to repress CAR1 expression. This histone deacetylase complex prevents the synthesis of the two arginine catabolic enzymes, arginase (CAR1) and ornithine transaminase (CAR2), as long as exogenous nitrogen is available. Upon nitrogen depletion, repression at URS1 is released and Ume6 interacts with ArgRI and ArgRII, two proteins involved in arginine-dependent activation of CAR1 and CAR2, leading to high levels of the two catabolic enzymes despite a low cytosolic arginine pool. Our data also show that the deletion of the UME6 gene impairs cell growth more strongly than the deletion of the SIN3 or RPD3 gene, especially in the Sigma1278b background.  相似文献   

19.
The phenylalanine ammonia-lyase (PAL) gene, DcPAL3, was expressed during the synthesis of anthocyanin in suspension-cultured cells of carrot (Daucus carota). There were two putative cis-elements in the DcPAL3 promoter region: the box-L and GCC-box homologs. Both of these are committed to the upregulation of promoter activity. Although box-L is known as the conserved cis-element present in the promoter region of most PAL genes of many plant species targeted by the R2R3-MYB protein, among PAL genes, the GCC-box homolog is unique to the promoter region of the DcPAL3 gene. We have isolated two proteins belonging to the ethylene-responsive element-binding factor (ERF) family, DcERF1 and DcERF2, from two different cDNA libraries prepared from anthocyanin-synthesizing cells of different cultured cell lines of carrot. The methodology employed was yeast one-hybrid screening with the GCC-box homolog as a bait. Both DcERF1 and DcERF2 bound to the GCC-box homolog sequence in vitro. Transient expression analysis showed that, in carrot protoplasts, DcERF1 was able bind to the GCC-box homolog and act as an activator of the DcPAL3 promoter. In contrast, DcERF2 itself had no ability to activate DcPAL3 promoter activity, possibly because transiently expressed DcERF2 may not be exported into the nucleus. These results suggest that DcERF1 and DcERF2 may function in different ways in committing to the upregulation of the DcPAL3 promoter activity in anthocyanin-synthesizing cells of carrot.  相似文献   

20.
Using two types of genome-wide analysis to investigate yeast genes involved in response to lactic acid and acetic acid, we found that the acidic condition affects metal metabolism. The first type is an expression analysis using DNA microarrays to investigate 'acid shock response' as the first step to adapt to an acidic condition, and 'acid adaptation' by maintaining integrity in the acidic condition. The other is a functional screening using the nonessential genes deletion collection of Saccharomyces cerevisiae. The expression analysis showed that genes involved in stress response, such as YGP1, TPS1 and HSP150, were induced under the acid shock response. Genes such as FIT2, ARN1 and ARN2, involved in metal metabolism regulated by Aft1p, were induced under the acid adaptation. AFT1 was induced under acid shock response and under acid adaptation with lactic acid. Moreover, green fluorescent protein-fused Aft1p was localized to the nucleus in cells grown in media containing lactic acid, acetic acid, or hydrochloric acid. Both analyses suggested that the acidic condition affects cell wall architecture. The depletion of cell-wall components encoded by SED1, DSE2, CTS1, EGT2, SCW11, SUN4 and YNL300W and histone acetyltransferase complex proteins encoded by YID21, EAF3, EAF5, EAF6 and YAF9 increased resistance to lactic acid. Depletion of the cell-wall mannoprotein Sed1p provided resistance to lactic acid, although the expression of SED1 was induced by exposure to lactic acid. Depletion of vacuolar membrane H+-ATPase and high-osmolarity glycerol mitogen-activated protein kinase proteins caused acid sensitivity. Moreover, our quantitative PCR showed that expression of PDR12 increased under acid shock response with lactic acid and decreased under acid adaptation with hydrochloric acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号