首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Due to the internal nature of mammalian development, much of the research performed is of a static nature and depends on interpolation between stages of development. This approach cannot explore the dynamic interactions that are essential for normal development. While roller culture overcomes the problem of inaccessibility of the embryo, the constant motion of the medium and embryos makes it impossible to observe and record development. We have developed a static mammalian culture system for imaging development of the mouse embryo. Using this technique, it is possible to sustain normal development for periods of 18-24 h. The success of the culture was evaluated based on the rate of embryo turning, heart rate, somite addition, and several gross morphological features. When this technique is combined with fluorescent markers, it is possible to follow the development of specific tissues or the movement of cells. To highlight some of the strengths of this approach, we present time-lapse movies of embryonic turning, somite addition, closure of the neural tube, and fluorescent imaging of blood circulation in the yolk sac and embryo.  相似文献   

2.
BACKGROUND: The rabbit is used extensively in developmental toxicity testing, yet basic information on rabbit embryo development is lacking. The goals of this study were to refine a rabbit embryo morphology scoring system, and use it to evaluate rabbit whole embryo cultures (WEC). METHODS: A total of 265 conceptuses were harvested between GD 8.0 and 12.0 (coitus = GD 0) at 6-hr intervals and examined in detail. Discreet developmental landmarks were then established for 18 morphological features and assigned scores ranging from 0 up to 6. The scoring system was then validated on a subset of randomly selected in vivo conceptuses, and was used to evaluate conceptuses grown for 12, 24, 36, or 48 hr in WEC beginning from GD 9.0 or 10.0. A few embryos also were examined using microscopic computed tomography (microCT)-based virtual histologytrade mark to assess the utility of this technology. RESULTS: Morphology scores of in vivo developed conceptuses increased linearly (r2 = 0.98) with advancing gestational age, from means of 0.0 on GD 8.0 to 67.9 on GD 12.0. Application of the scoring system, supplemented with evidence from Virtual histologytrade mark, indicated that the WEC system supported normal morphological development of rabbit conceptuses. However, when explanted at GD 9, the rate of development was about 20% slower than in vivo, whereas the rate of development in WEC from GD 10 was indistinguishable from in vivo. CONCLUSIONS: This work enhances the evaluation tools available to study mechanisms of normal and abnormal development in this widely used animal testing species.  相似文献   

3.
Mouse embryos of the NMRI strain between the 7th and 9th day of gestation were isolated from the uterus and dissected into the various tissue derivatives in order to investigate newly synthesized proteins during morphogenesis. The day 7 embryo was fragmented into trophoblast and ectoplacental cone, distal and proximal endoderm, extraembryonic and embryonic ectoderm. The day 8 and day 9 embryos were divided into trophoblast and placental anlage, yolk sac, amnion, and allantois, as well as cranial, central, and caudal embryonic tissue. The intact embryos were incubated in Dulbecco's minimum essential medium in the presence of 35S-methionine for 4 h, then dissected into the various fragments, and further processed for two-dimensional gel electrophoresis. Protein synthesis of the isolated tissue derivatives was analyzed and compared for the three developmental stages. Concerning the proteins with isoelectric points in the range of 4.5 to 8.0 and molecular weight ratio (M(r)) values between 20,000 and 200,000, we found several significant quantitative and qualitative differences in the various tissue fragments. In addition, we observed further quantitative and qualitative differences in protein synthesis during the postimplantation period investigated. We propose that the differences reflect some of the cell lineage- and developmental stage-specific changes in gene expression during early mammalian differentiation.  相似文献   

4.
大规模动物细胞培养的问题及对策   总被引:3,自引:0,他引:3  
大规模动物细胞培养在生物技术产业化进程中显示出强大的潜力。本文综述了大规模动物细胞培养过程中出现的问题及其解决办法 ,包括细胞培养环境、基因工程途径改建细胞系及过程监控等。对于这些进展的充分了解对优化细胞培养工艺、提高产品质量具有重要意义  相似文献   

5.
雌性生殖细胞发育是动物繁殖的基石,哺乳动物卵母细胞和早期胚胎在其生长发育过程中有许多独特的现象和规律,涉及一系列蛋白质合成/降解和磷酸化等状态的动态改变。对卵母细胞分裂、成熟调控机理以及植入前胚胎发育规律的研究是发育生物学领域的一项重要课题。蛋白质组学是以细胞或组织内全部的蛋白质为研究对象,系统鉴定、定量蛋白质并研究这些蛋白质功能的科学。随着蛋白质分离、鉴定技术的快速发展,蛋白质组学为卵母细胞发生、分化、成熟以及质量控制等相关研究提供了新的方法和内容,如在蛋白质定量、修饰、定位和相互作用等方面提供其他组学技术不可获得的重要信息。这些信息将有助于揭示哺乳动物卵母细胞成熟和早期胚胎发育的分子机制,对于进一步完善卵母细胞的体外成熟培养体系,提高胚胎体外生产、体细胞克隆和转基因动物生产效率具有重要意义。  相似文献   

6.
In vitro developmental model systems have been an important tool for advancing basic research in the embryology and teratology fields. The rat and zebrafish embryo models have had broad utility in both fields for many decades. Furthermore embryonic stem cells, applied as a basic research tool, have broad applications across the development fields and many other fields including cancer, regeneration and epigenetic research. These models have historically been applied in mechanistic studies but were also considered promising for evaluating teratogenic potential of test substances. In recent years, in vitro teratogenicity assays have become an area of interest for supporting the 3 Rs (reduction, refinement, and replacement of animal use). Generation of such assays also provides a means to facilitate early assessment of test agents at a higher throughput without excessive use of animals. In this review, the three models are described with an emphasis of how they are being developed and/or refined to support teratogenicity assessment as screening tools. An overview of the state of the science and future directions are described. Birth Defects Research (Part C) 90:87–98, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

7.
A series of high-density media for mammalian cell culture were developed by step-fortifications of most nutrient components in RPMI-1640 medium. Each medium constituting the series was constructed to meet in vitro cell growth limitations. Four different cell lines were cultivated in the media series, and their growth characteristics were observed. Maximum cell densities varied in the range of 0.4 to 1.3 x 10(7) cells/mL, depending on cell lines. Cell growth responses to each of the media series were analyzed in terms of cell density and cell mass. Step increases of cell mass in the range of 1.3 to 3.7 g/L were observed according to the step-fortifications of nutrients. Also, the characteristics of each cell line were compared in terms of metabolic yields and specific productions of lactic acid and ammonium ion. The effect of step-fortifications of nutrients on the production of monoclonal antibody was also examined. Apparent differences in metabolic characteristics among cell lines were observed. Experimental results suggested that the different cell sizes and metabolic characteristics of each cell line resulted in cell-line-specific responses to the step-fortifications. The significant influence of nutritional fortifications on high-density culture of mammalian cells was evaluated. (c) 1993 John Wiley & Sons, Inc.  相似文献   

8.
A new bacterial cellulose substrate for mammalian cell culture   总被引:2,自引:0,他引:2  
A new substrate for mammalian cell culture was developed using a cellulose membrane produced byAcetobacter aceti. Modification of the ionic charge of the membrane and adsorption of collagen to it promoted cellular adhesion to the membrane surface. The growth of eight kinds of cells on the membrane, was comparable to that achieved in plastic Petri dishes. The membrane was tested for use in the production of recombinant Erythroid Differentiation Factor (EDF)/activin A using genetically engineered Chinese hamster ovary cells. Both the viability of the cells and production of EDF/activin A were maintained for about 1 month, while cultures on plastic dishes lasted only 12 days. It was considered that the mechanism of improved cell viability was related to the ultrastructure of the cellulose membrane.  相似文献   

9.
哺乳动物早期胚胎端粒和端粒酶重编程   总被引:1,自引:0,他引:1  
端粒位于真核染色体末端,是稳定染色体末端的重要元件。端粒酶(TER)是一种特殊的细胞核糖核蛋白(RNP)反转录酶(RT),其核心酶包括蛋白亚基和RNA元件。在DNA复制过程中的端粒丢失可以被有活性的端粒酶修复回来。哺乳动物端粒酶在发育中受调控,端粒的重编程可能是由于早期胚胎不同时期的端粒酶活性而造成的。因此,研究端粒和端粒酶重编程在早期胚胎发育中是非常重要的。该文综述了端粒和端粒酶的结构和功能,及其与哺乳动物早期胚胎发育的关系,并在此基础上展望了端粒和端粒酶在克隆动物胚胎发育的基础研究。  相似文献   

10.
Experimentation in shaken microplate formats offers a potential platform technology for the rapid evaluation and optimization of cell culture conditions. Provided that cell growth and antibody production kinetics are comparable to those found in currently used shake flask systems then the microwell approach offers the possibility to obtain early process design data more cost effectively and with reduced material requirements. This work describes a detailed engineering characterization of liquid mixing and gas–liquid mass transfer in microwell systems and their impact on suspension cell cultures. For growth of murine hybridoma cells producing IgG1, 24‐well plates have been characterized in terms of energy dissipation (P/V) (via Computational Fluid Dynamics, CFD), fluid flow, mixing and oxygen transfer rate as a function of shaking frequency and liquid fill volume. Predicted kLa values varied between 1.3 and 29 h?1; liquid‐phase mixing time, quantified using iodine decolorization experiments, varied from 1.7 s to 3.5 h; while the predicted P/V ranged from 5 to 35 W m?3. CFD simulations of the shear rate predicted hydrodynamic forces will not be detrimental to cells. For hybridoma cultures however, high shaking speeds (>250 rpm) were shown to have a negative impact on cell growth, while a combination of low shaking speed and high well fill volume (120 rpm, 2,000 µL) resulted in oxygen limited conditions. Based on these findings a first engineering comparison of cell culture kinetics in microwell and shake flask formats was made at matched average energy dissipation rates. Cell growth kinetics and antibody titer were found to be similar in 24‐well microtiter plates and 250 mL shake flasks. Overall this work has demonstrated that cell culture performed in shaken microwell plates can provide data that is both reproducible and comparable to currently used shake flask systems while offering at least a 30‐fold decrease in scale of operation and material requirements. Linked with automation this provides a route towards the high throughput evaluation of robust cell lines under realistic suspension culture conditions. Biotechnol. Bioeng. 2010; 105: 260–275. © 2009 Wiley Periodicals, Inc.  相似文献   

11.
BACKGROUND: The rodent whole embryo culture (WEC) system is a well‐established model for characterizing developmental toxicity of test compounds and conducting mechanistic studies. Laboratories have taken various approaches in describing type and severity of developmental findings of organogenesis‐stage rodent embryos, but the Brown and Fabro morphological score system is commonly used as a quantitative approach. The associated score criteria is based upon developmental stage and growth parameters, where a series of embryonic structures are assessed and assigned respective scores relative to their gestational stage, with a Total Morphological Score (TMS) assigned to the embryo. This score system is beneficial because it assesses a series of stage‐specific anatomical landmarks, facilitating harmonized evaluation across laboratories. Although the TMS provides a quantitative approach to assess growth and determine developmental delay, it is limited to its ability to identify and/or delineate subtle or structure‐specific abnormalities. Because of this, the TMS may not be sufficiently sensitive for identifying compounds that induce structure or organ‐selective effects. METHOD: This study describes a distinct morphological score system called the “Dysmorphology Score System (DMS system)” that has been developed for assessing gestation day 11 (approximately 20–26 somite stage) rat embryos using numerical scores to differentiate normal from abnormal morphology and define the respective severity of dysmorphology of specific embryonic structures and organ systems. This method can also be used in scoring mouse embryos of the equivalent developmental stage. RESULT AND CONCLUSION: The DMS system enhances capabilities to rank‐order compounds based upon teratogenic potency, conduct structure‐ relationships of chemicals, and develop statistical prediction models to support abbreviated developmental toxicity screens. Birth Defects Res (Part B) 89:485–492, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

12.
The production of biopharmaceuticals from mammalian cell culture is hindered by apoptosis, which is the primary cause of cell death in these cultures. As a tool for optimization of culture yield, this study presents a population-based model describing the progression of apoptosis in a monoclonal antibody (mAb)-producing Chinese hamster ovary (CHO) cell culture. Because mAb production does not cease when apoptosis begins, the model was designed to incorporate subpopulations at various stages in the progression of apoptosis. The model was validated against intracellular measurements of caspase activity as well as cell density, nutrient levels, and toxic metabolites. Since the specific details of apoptotic mechanisms have not been elucidated in this cell line, we employed a model comparison analysis that suggests the most plausible pathways of activation.  相似文献   

13.
Interploid sexual hybridizations were completed in 2001 and 2002 between seven lemon (Citrus limon(L.) Burm. f.) varieties, Key lime (C. aurantifolia (Cristm.) Swing), Palestine sweet lime (C. imettioides Tan.), Lakeland limequat (C. aurantifolia x Fortunella japonica (Thumb.) Swing.), and Etrog citron (C. medica L.) as diploid progenitors and four allotetraploid somatic hybrids (Key lime + Valencia orange, Hamlin orange + Femminello lemon, Valencia orange + Rough lemon, and Valencia orange+ Femminello lemon) in efforts to generate improved seedless triploid acid fruit hybrids. Efficient recovery of triploid progeny from such crosses requires embryo rescue to avoid embryo abortion due to endosperm failure. Germination of rescued genetically diverse immature embryos was induced on two culture media (EME and Gamborgs B5), with two sucrose concentrations (50 or 70 g l–1). All media contained 0.5 g l–1 malt extract and 4.50 M GA3. Germination of globular, heart and torpedo shaped embryos (defined as small embryos) was significantly (p < 0.05) affected by medium and genotype. Gamborgs medium induced 82.89% germination. Of germinated embryos, 11–65% developed into normal plants with differences among crosses. Cotyledonary embryos (defined as immature embryos with fully developed cotyledons) germinated and developed into normal plants at higher rates than less-developed embryos. In efforts to improve the efficiency of plant recovery, small embryos from Todo el año × HF and Lisbon × HF crosses conducted during 2002 were rescued and cultured on three media (MS, Gamborgs, and RMA) for comparison. Media did not significantly affect the proportion of normal plant recovery.  相似文献   

14.
BACKGROUND: Ginseng has been widely used around the world for many years. Knowledge is limited, however, on its effects on embryonic development. METHODS: Whole embryo culture was used to explore the developmental toxicity of ginsenoside Rb1 (GRb1) on mouse embryos. All embryos were exposed to different concentrations of GRb1, and scored for their growth and differentiation at the end of the 48-hr culture period. RESULTS: Total morphological score decreased significantly at the concentration of GRb1 of 30 microg/ml and was further reduced at 50 microg/ml. Yolk sac was affected at the lower concentration of 15 microg/ml. Developments of midbrain, forebrain, and optic system were relatively sensitive to GRb1 and were affected at the concentration of 30 microg/ml. Allantois, flexion, branchial arch, and limb buds were affected at 50 microg/ml. At this concentration, the embryonic crown-rump length, head length, and somite number were also reduced significantly compared to the control group. CONCLUSIONS: These results suggest that GRb1 has teratogenic effect during the mouse organogenetic period. We suggest that before more data in humans is available, ginseng should be used with caution by pregnant women in the first trimester.  相似文献   

15.
Mammalian whole embryo culture (WEC) was developed long before transgenic and gene targeted animals are widely used. Electroporation (EP) into cultured rodent embryos has expanded the potential to analyze gene functions in mammalian embryos by transferring exogenous plasmid vectors or small nucleotides in region- and stage-specific ways. This method is quite simple, and therefore enables us to analyze gene functions more quickly than genetic manipulation. In this review, we introduce combinatorial methods of WEC and EP, and summarize various applications in developmental neurobiology.  相似文献   

16.
The design of basal and feed media in mammalian cell culture is paramount towards ensuring acceptable upstream process performance in various operation modes, especially fed‐batch culture. Mammalian cell culture media designs have evolved from the classical formulations designed by Eagle and Ham, to today's formulations designed from continuous improvement and statistical frameworks. Feed media is especially important for ensuring robust cell growth, productivity, and ensuring the product quality of recombinant therapeutics are within acceptable ranges. Numerous studies have highlighted the benefit of various media designs, supplements, and feed addition strategies towards the resulting cell culture process. In this work we highlight the use of a top‐down level approach towards feed media design enabled by the use of select surfactants for the targeted enrichment of a chemically defined feed media. The use of the enriched media was able to improve product titers at g/L levels, without adversely impacting the growth of multiple Chinese Hamster Ovary cell lines or the product quality of multiple recombinant antibodies. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:1023–1033, 2013  相似文献   

17.
Quadrat analysis was used to investigate the spatial distribution of seven mammalian cell lines in culture. The number of cells in replicate unit areas of the culture was determined, and the variance to mean ratio used as an index of random and nonrandom spatial distribution. Only mouse SV3T3 cells distributed themselves randomly throughout the entire culture growth cycle. The remaining six lines all assumed a nonrandom distribution at some point in their growth cycles. Mouse L929 cells displayed avoidance behavior, and spaced themselves at regular intervals in a uniform spatial distribution. The five remaining lines (mouse S180, rat C6, hamster CHO, canine MDCK, and human BeWo) formed multicellular clusters, and were distributed aggregatively rather than randomly. Random walk migration can account for the random distribution of SV3T3 cells. Random walk combined with contact inhibition of movement provides a satisfactory explanation for the uniform distribution of L929 cells. Random walk and contact inhibition are incompatible with cell clustering, however. Thus other mechanisms of motility or adhesiveness must contribute to cell clustering. It is possible that random walk and contact inhibition may be less common components of cell movement than generally assumed.  相似文献   

18.
In mammals, embryonic development is more difficult to analyze than in non-mammalian species because this development occurs in utero. Interestingly, whole embryo culture allows the normal development of mouse post-implantation embryos for up to 2 days in vitro. One limitation of this technology has been the difficulty of performing loss-of-gene function studies in this system. RNA interference (RNAi), whereby double-stranded RNA molecules suppress the expression of complementary genes, has rapidly become a widely used tool for gene function analyses. We have combined the technologies of mouse whole embryo culture and RNAi to allow the molecular dissection of developmental processes. Here, we review the manipulation by topical injection followed by directional electroporation of endoribonuclease-prepared siRNA to demonstrate that this technology may be useful to knock down genes in a tissue- and region-specific manner in several organs of the developing mouse embryo.  相似文献   

19.
A convenient and reliable method for culturing cotton embryos is needed to obtain interspecific hybrids of this genus. C.A. Beasley and I.P. Ting (Amer. J. Bot. 60, 130, 1973) developed a phytohormone-supplemented medium (BTP) upon which the growth of ovules was similar that of in situ ovules. This medium was examined for in-ovulo embryo culture. Although good ovule growth occurred on BTP no embryos developed to maturity. However, when the medium was supplemented with NH 4 + , more than 50% of the ovules produced mature embryos, and many of these germinated precociously after 8–10 weeks of culture. After germination seedlings were established on a separate medium designed to give balanced root and shoot growth. Subsequently young plants could be transferred to pots for greenhouse culture.  相似文献   

20.
We report here a novel approach to direct gene expression in the mouse somite based on the combined application of adenovirus-mediated gene delivery and whole embryo ex vivo culture. As proof of principle, we show functional analysis of somites microinjected with an engineered virus expressing an activated form of Smoothened, the signaling receptor for Sonic Hedgehog (SHH). As adenovirus can infect many embryonic tissues in the mouse, this method may provide an effective alternative to conventional transgenesis for targeted spatial and temporal gene expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号