首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Our recent studies have shown that cathepsin L is first synthesized as an enzymatically inactive proform in endoplasmic reticulum and is successively converted into an active form during intracellular transport and we postulated that aspartic proteinases would be responsible for the intracellular propeptide-processing step of procathepsin L accompanied by the activation of enzyme (Y. Nishimura, T. Kawabata, and K. Kato (1988) Arch. Biochem. Biophys. 261, 64-71). To better understand this proposed mechanism, we investigated the effect of pepstatin, a potent inhibitor of aspartic proteinases, on the intracellular processing kinetics of cathepsin L analyzed by pulse-chase experiments in vivo with [35S]methionine in the primary cultures of rat hepatocytes. In the pepstatin-treated cells, the proteolytic conversion of cellular procathepsin L of 39 kDa to the mature enzyme was significantly inhibited and considerable amounts of proenzyme were found in the cell after 5-h chase periods. Further, the subcellular fractionation experiments demonstrated that the intracellular processing of procathepsin L in the high density lysosomal fraction was significantly inhibited and that considerable amounts of the procathepsin L form were still observed in the light density microsomal fraction after 2 h of chase. These results suggest that pepstatin treatment caused a significant inhibitory effect on the intracellular processing and also on the intracellular movement of procathepsin L from the endoplasmic reticulum to the lysosomes. These findings provide the first evidence showing that aspartic proteinase may play an important role in the intracellular proteolytic processing and activation of lysosomal cathepsin L in vivo. Therefore, we suggest that cathepsin D, a major lysosomal aspartic proteinase, is more likely to be involved in this proposed model in the lysosomes.  相似文献   

2.
Procathepsin H in kidney and liver microsomal lumen was identified to have a molecular mass of 41 kDa by immunoblot analysis. The proenzyme was then concentrated by applying the microsomal contents to a concanavalin A-Sepharose column. When the concanavalin A-adsorbed fraction was incubated at pH 4.0 at 20 degrees C, the activity measured with synthetic substrate increased 3.5 times over that of the control after 24 h incubation. Immunoblot analysis showed that acidic treatment caused the disappearance of procathepsin H. Thus the proenzyme might be processed to the mature enzyme under acidic conditions. The marked increase of enzymatic activity and the conversion of proenzyme were completely blocked with pepstatin which is a potent inhibitor of aspartic proteases. These results suggested that a protease for processing procathepsin H might be cathepsin D, a major lysosomal aspartic protease. Therefore, procathepsin H seems to be synthesized first in the enzymatically inactive form in endoplasmic reticulum and successively converted into the active form in lysosomes during biosynthesis.  相似文献   

3.
We have studied the role of N-linked oligosaccharides and proteolytic processing on the targeting of cathepsin D to the lysosomes in the human hepatoma cell line HepG2. In the presence of tunicamycin cathepsin D was synthesized as an unglycosylated 43-kDa proenzyme which was proteolytically processed via a 39-kDa intermediate to a 28-kDa mature form. Only a small portion was secreted into the culture medium. During intracellular transport the 43-kDa procathepsin D transiently became membrane-associated independently of binding to the mannose 6-phosphate receptor. Subcellular fractionation showed that unglycosylated cathepsin D was efficiently targeted to the lysosomes via intermediate compartments similar to the enzyme in control cells. The results show that in HepG2 cells processing and transport of cathepsin D to the lysosomes is independent of mannose 6-phosphate residues. Inhibition of the proteolytic processing of 53-kDa procathepsin D by protease inhibitors caused this form to accumulate intracellularly. Subcellular fractionation revealed that the procathepsin D was transported to lysosomes, thereby losing its membrane association. Procathepsin D taken up by the mannose 6-phosphate receptor also transiently became membrane-associated, probably in the same compartment. We conclude that the mannose 6-phosphate-independent membrane-association is a transient and compartment-specific event in the transport of procathepsin D.  相似文献   

4.
Angiostatin, a potent endogenous inhibitor of angiogenesis, is generated by cancer-mediated proteolysis of plasminogen. The culture medium of human prostate carcinoma cells, when incubated with plasminogen at a variety of pH values, generated angiostatic peptides and miniplasminogen. The enzyme(s) responsible for this reaction was purified and identified as procathepsin D. The purified procathepsin D, as well as cathepsin D, generated two angiostatic peptides having the same NH(2)-terminal amino acid sequences and comprising kringles 1-4 of plasminogen in the pH range of 3.0-6.8, most strongly at pH 4.0 in vitro. This reaction required the concomitant conversion of procathepsin D to catalytically active pseudocathepsin D. The conversion of pseudocathepsin D to the mature cathepsin D was not observed by the prolonged incubation. The affinity-purified angiostatic peptides inhibited angiogenesis both in vitro and in vivo. Importantly, procathepsin D secreted by human breast carcinoma cells showed a significantly lower angiostatin-generating activity than that by human prostate carcinoma cells. Since deglycosylated procathepsin D from both prostate and breast carcinoma cells exhibited a similar low angiostatin-generating activity, this discrepancy appeared to be attributed to the difference in carbohydrate structures of procathepsin D molecules between the two cell types. The seminal vesicle fluid from patients with prostate carcinoma contained the mature cathepsin D and procathepsin D, but not pseudocathepsin D, suggesting that pseudocathepsin D is not a normal intermediate of procathepsin D processing in vivo. The present study provides evidence for the first time that cathepsin D secreted by human prostate carcinoma cells is responsible for angiostatin generation, thereby causing the prevention of tumor growth and angiogenesis-dependent growth of metastases.  相似文献   

5.
Intracellular transport and processing of lysosomal cathepsin B   总被引:2,自引:0,他引:2  
Intracellular transport and processing of lysosomal cathepsin B was investigated in the subcellular fractions of rat liver by pulse-labeling experiments with [35S]methionine in vivo. A newly synthesized procathepsin B with a molecular weight of 39 kDa firstly appeared in the rough microsomal fraction at 10 min postinjection of label. This procathepsin B moved from the microsomal fractions to the Golgi subfractions at 30 min postinjection, and then a processed mature enzyme appeared in the lysosomal fraction at 60 min. These results suggest that the propeptide-processing of procathepsin B takes place in lysosomes in the course of intracellular transport from endoplasmic reticulum through Golgi complex to lysosomes.  相似文献   

6.
Structures at the proteolytic processing region of cathepsin D   总被引:7,自引:0,他引:7  
The amino acid sequences at the "proteolytic processing regions" of cathepsin Ds have been determined for the enzymes from cows, pigs, and rats in order to deduce the sites of cleavage as well as the function of the proteolytic processing of cathepsin D. For bovine cathepsin D, the "processing region" sequence was determined from a peptide isolated from the single-chain enzyme. The COOH-terminal sequence of the light chain and the NH2-terminal sequence of the heavy chain were also determined. The processing region sequence of porcine cathepsin D was determined from its cDNA structure, and the same structure from rat cathepsin D was determined from the peptide sequence of the single-chain rat enzyme. From sequence homology to other aspartic proteases whose x-ray crystallographic structures are known, such as pepsinogen and penicillopepsin, it is clear that the processing regions are insertions to form an extended beta-hairpin loop between residues 91 and 92 (porcine pepsin numbers). However, the sizes of the processing regions of cathepsin Ds from different species are considerably different. For the enzymes from rats, cows, pigs, and human, the sizes of the processing regions are 6, 9, 9, and 11 amino acid residues, respectively. The amino acid sequences within the processing regions are considerably different. In addition, the proteolytic processing sites were found to be completely different in the bovine and porcine cathepsin Ds. While in the porcine enzyme, an Asn-Ser bond and a Gly-Val bond are cleaved to release 5 residues as a consequence of the processing; in the bovine enzyme, two Ser-Ser bonds are cleaved to release 2 serine residues. These findings would argue that the in vivo proteolytic processing of the cathepsin D single chain is probably not carried out by a specific "processing protease." Model building of the cathepsin D processing region conformation was conducted utilizing the homology between procathepsin D and porcine pepsinogen. The beta-hairpin structure of the processing region was found to (i) interact with the activation peptide of the procathepsin D in a beta-structure and (ii) place the Cys residue in the processing region within disulfide linkage distance to Cys-27 of cathepsin D light chain. These observations support the view that the processing region of cathepsin D may function to stabilize the conformation of procathepsin D and may play a role in its activation.  相似文献   

7.
The presence of procathepsin D, a zymogen of the soluble lysosomal aspartic proteinase cathepsin D, was detected in rat milk using Western blot analysis and assay of proteolytic activity in acidic buffers. No other forms of cathepsin D were found. Two different polyclonal anti-procathepsin D antibodies were used for immunochemical detection of procathepsin D. Both antibodies we found to recognize rat procathepsin D. Proteolytic activity in acidic buffers was detected using a fluorogenic substrate specific for cathepsin D and was abolished by pepstatin A, a specific inhibitor of aspartic proteinases. This study represents third demonstration of presence of procathepsin D in mammal breast milk. Potential sources and physiological functions are discussed.  相似文献   

8.
The acceleration effect of chondroitin-4-sulfate(CS-) proteoglycan on the processing of procathepsin L in vitro was investigated using enzyme purified from the culture medium of MLC cells. Procathepsin L was slightly processed even when it was incubated without CS-proteoglycan for 60 min in 50 mm acetate buffer, pH 5.5, and trace amounts of the 31 kDa mature form and 35-38 kDa intermediates of cathepsin L were formed. On the other hand, in the presence of CS-proteoglycan, procathepsin L was completely converted to the mature form within the same 60 minute time period. Moreover, Z-Phe-Arg-MCA hydrolyzing activity was increased significantly by the incubation with CS-proteoglycan, while no considerable increase in the activity was observed during the incubation without CS-proteoglycan. Since the specific cathepsin L inhibitor, CLIK-195, inhibited the processing of procathepsin L accelerated by CS-proteoglycan, the trace amount of cathepsin L activity may participate in the processing. These results suggest that CS-proteoglycan may play a role in accelerating the processing of procathepsin L as an endogenous enhancer in the extracellular environment in vivo.  相似文献   

9.
Newly-synthesized soluble lysosomal enzymes are transported from the trans-Golgi network to lysosomes by a mannose 6-phosphate receptor-mediated pathway. Lysosomal storage of indigestible material has been reported to perturb the biosynthesis and the fate of lysosomal hydrolases. In this study, we have focused our attention on the last steps in the transport of newly-synthesized cathepsin D to lysosomes in sucrose-treated WI-38 fibroblasts. Pulse-chase experiments indicate that, in sucrose-treated cells, cathepsin D maturation is delayed by 2 to 4 h. By subcellular fractionation, we show that newly-synthesized cathepsin D precursors transit through organelles endowed with a high sedimentation coefficient. These organelles are recovered in the dense region of a self-forming Percoll density gradient while the bulk of hydrolytic activities is redistributed to the low density region. Only later, are the precursors delivered to organelles containing the bulk of active hydrolases. There, procathepsin D is proteolytically processed into its 31 kDa-mature form. Our results suggest that when sucrose is present, the delayed maturation of procathepsin D is related to the delivery of the polypeptides into an organelle behaving in centrifugation like lysosomes but which is poorly efficient in proteolytic processing of procathepsin D. This low proteolytic activity of this organelle could be due to its poor ability to interact with hydrolase-containing structures.  相似文献   

10.
The processing of human gastric procathepsin E to its mature form, cathepsin E, was studied at pH 3.5. The results revealed the autocatalytic and apparently one-step conversion of procathepsin E to cathepsin E within 10 min of incubation at 14 degrees C under the conditions used. Analyses of the amino acid sequences of both procathepsin E and cathepsin E showed that cleavage occurred at the Met36-Ile37 bond to produce the mature form, cathepsin E. The NH2-terminal amino acid sequence of procathepsin E thus determined was identical with that predicted from the cDNA sequence by Azuma et al. except that the NH2-terminal glutamine residue in the latter was converted into a pyroglutamic acid residue in the former and that the glycine residue at position 2 in the latter sequence was deleted in the former. On the other hand, the NH2-terminal amino acid sequence of cathepsin E was identical with that reported previously by us.  相似文献   

11.
In vitro, procathepsin D is activated to pseudocathepsin D by incubation at low pH. To investigate the mechanism of this activation, recombinant human procathepsin D and two mutants were generated in a baculovirus expression system. One mutant carried a point mutation within the catalytic domain, which resulted in a catalytically inactive enzyme form (D77A). The other carried a point mutation within the propeptide, which prevented activation by processing at the 'autoproteolysis-site' (L26P). Neither mutant is capable of processing itself to form pseudocathepsin D, and L26P is not able to process D77A. Despite the inability of L26P to cleave either its own or a wild-type prosequence, it did exhibit activity against a synthetic peptide substrate. The ability of intact precursor (zymogen) to cleave a peptide, but not a protein substrate, offers new insights into the mechanism of inhibition by the propeptide. Mature cathepsin D can process the inactive D77A mutant to the pseudoform, demonstrating that processed species are capable of cleaving zymogen molecules in an intermolecular interaction. In addition, kinetic studies provide evidence for a two-phase mechanism for the conversion of procathepsin D to pseudocathepsin D, one phase where the first molecules of pseudocathepsin D are formed at a low rate and a second phase where the process is autocatalytically accelerated by newly formed pseudocathepsin D molecules. Finally, with the help of the mutants L26P and D77A it was observed that at least two additional proteinase activities, found in conditioned media from insect cell culture, are capable of activating procathepsin D by cleaving it within the proregion. This observation suggests that there are likely to be multiple proteinases in the extracellular matrix that are capable of activating procathepsin D, thereby triggering the second autocatalytic phase. This may also be important for solid tumors, where the presence of cathepsin D has been correlated with tumor growth and invasion.  相似文献   

12.
Procathepsin D is a precursor of the human lysosomal protease cathepsin D. Due to its short half-life, procathepsin D is difficult to obtain in quantities sufficient to allow structural and enzymatic studies. To obtain large quantities of this precursor, procathepsin D was expressed using the T7 promoter vector pET3a in bacteria that carry a chromosomal copy of the T7 RNA polymerase gene under the control of the lac promoter. At high cell density in rich medium, basal levels of T7 RNA polymerase were sufficient to express recombinant procathepsin D without addition of an exogenous inducer of the lac promoter. The recombinant protein, constituting almost half of the total cell protein, accumulated in intracytoplasmic inclusion bodies and was isolated from the insoluble fraction of lysed cells. Antibodies prepared against the purified recombinant protein were shown to crossreact with native human placental and porcine spleen cathepsin D. Recombinant procathepsin D was solubilized in denaturants and was refolded. After extended preincubation of the denatured protein at acid pH to allow folding and activation of the zymogen, pepstatin inhibitable catalytic proteolysis was detected. These data demonstrated that the glycosylated aspartic protease, procathepsin D can be refolded and activated in an unglycosylated form and thus provides a system for the study of procathepsin D structure and function.  相似文献   

13.
The molecular mechanism by which heparin modulates the processing of procathepsin L in the extracellular environment is proposed. We show that heparin reduces the stability of the pro form of cathepsin L at pH 5 by binding to a putative heparin binding motif (BBXB) in the pro-domain. Mutations to this motif on procathepsin L reduce heparin binding affinity and heparin-induced destabilization; in contrast, heparin only slightly destabilizes the mature cathepsin L domain. Gel analysis further shows that heparin makes procathepsin L a much better substrate for cathepsin L. Thus, heparin enhances the rate of zymogen activation by destabilization upon binding to the BBXB motif. Determining the mechanism by which procathepsin L is activated in the extracellular matrix is important to the understanding of the role that cathepsin L plays in tumour invasion.  相似文献   

14.
Effects of bafilomycin A1, an inhibitor of vacuolar H(+)-ATPase, on the synthesis and processing of cathepsin D and cathepsin H were investigated in primary cultured rat hepatocytes. Pulse-chase experiments showed that after being synthesized as procathepsin D and procathepsin H the precursors were converted into mature forms in the control cells as the chase time elapsed. However, in the presence of 5 x 10(-7) M of bafilomycin A1, both precursors were largely secreted into the medium and no mature forms were found within the cells. Thus bafilomycin A1 mimics lysosomotropic amines with regard to perturbation of the targeting of lysosomal acid hydrolases. In contrast, bafilomycin A1 was found not to inhibit processings of proalbumin and procomplement component 3, which are thought to occur at the acidic trans-Golgi, implying that the proteolytic event of the proproteins is not sensitive to an increase of intra-Golgi pH. The results suggest that bafilomycin A1 is useful as a pH-perturbant to study the role of acidity in living cells.  相似文献   

15.
Various biosynthetic forms of porcine spleen cathepsin D (Erickson, A. H. and Blobel, G. (1979) J. Biol. Chem. 254, 11771-11774), isolated by immunoprecipitation of in vivo- and in vitro-synthesized products, have been characterized by partial NH2-terminal sequence analysis. Two short lived and functionally distinct NH2-terminal sequence extensions, a "pre" sequence and a "pro" sequence, have been detected. Both sequence extensions are present in preprocathepsin D which is the primary translation product immunoprecipitated after translation of porcine spleen mRNA in a wheat germ cell-free system. Preprocathepsin D is not glycosylated and has an approximate Mr = 43,000. Its 20-residue pre sequence resembles the signal sequences of presecretory proteins in abundance of Leu residues (7 out of 20 residues). Addition of dog pancreatic microsomal vesicles to the translation system resulted in the cleavage of the pre sequence and yielded segregated and glycosylated procathepsin D (Mr = 46,000) that was indistinguishable from its in vivo-synthesized counterpart detected after pulse-labeling of cultured porcine kidney cells. Some of this in vivo-synthesized procathepsin D was secreted and persisted as such in the culture medium. The remainder was converted within a period of 15 min to 2 h to single chain cathepsin D (Mr = 44,000) by removal of a pro sequence which was estimated to be 44 residues. Its partial sequence showed considerable sequence homology to the 44-residue activation peptide of pepsinogen. It is possible, therefore, that the prosequence of procathepsin D serves as an activation peptide that keeps the enzyme inactive during intracellular transport to the lysosome. The enzymatically active single chain form of cathepsin D undergoes further cleavage into a light and a heavy chain (Mr = 15,000 and 30,000, respectively) over a period of 2-24 h after synthesis. The oligosaccharide moieties of procathepsin D and of the single chain and heavy chain forms of cathepsin D are cleaved by endoglycosidase H. Treatment of cells with tunicamycin arrests the biosynthetic pathway of cathepsin D at procathepsin D. The nonglycosylated procathepsin D is not proteolytically processed and its secretion is greatly inhibited.  相似文献   

16.
Expression of rat procathepsin B in yeast led to the secretion of both the latent and mature forms of the enzyme. Culture in the presence of a cysteine proteinase inhibitor prevented this processing. We have expressed and purified a mutant form of rat procathepsin B whose active-site cysteine residue has been changed to a serine, and which also lacks the glycosylation site in the mature region of the protein. This non-active mutant protein was secreted essentially in an unprocessed form. The purified protein has been incubated with a variety of proteinases, and results indicate that cathepsins D and L, as well as mature cathepsin B itself, can produce a processed (single-chain) form of cathepsin B from this precursor. Amino-terminal sequencing of these processed forms has revealed that they are all elongated by a few residues with respect to the mature form found in vivo. The action of a combination of cathepsin B with dipeptidylpeptidase I produced a single-chain form of cathepsin B with the correct amino terminus. This work has also shown that the processing of procathepsin B to a single-chain form can be an autocatalytic process, in at least an intermolecular manner.  相似文献   

17.
We have assigned the biosynthetic processing steps of cathepsin D to intracellular compartments which are involved in its transport to lysosomes in HepG2 cells. Cathepsin D was synthesized as a 51-kDa proenzyme. After formation of 51-55-kDa intermediates due to processing of N-linked oligosaccharides, procathepsin D was proteolytically processed to an intermediate 44-kDa and the mature 31-kDa enzyme. The intersection of the biosynthetic pathway of cathepsin D with the endocytic pathway was labeled with horseradish peroxidase and monitored biochemically by 3,3'-diaminobenzidine cytochemistry. Horseradish peroxidase was used either as a fluid-phase marker to label the entire endocytic pathway or conjugated to transferrin (Tf) to label endosomes only. Directly after biosynthesis cathepsin D was accessible neither to horseradish peroxidase nor Tf-horseradish peroxidase. Newly synthesized 51-55-kDa species of cathepsin D present in the trans-Golgi reticulum were accessible to both horseradish peroxidase and Tf-horseradish peroxidase. The accessibility of trans-Golgi reticulum to both endocytosed horseradish peroxidase and Tf-horseradish peroxidase was monitored by colocalization with a secretory protein, alpha 1anti-trypsin. The proteolytic processing of 51-55-kDa to 44-kDa cathepsin D occurred in compartments which were fully accessible to fluid-phase horseradish peroxidase. Tf-horseradish peroxidase had access to only 20% of 44-kDa cathepsin D while it had no access to 31-kDa cathepsin D. In contrast, the 31-kDa species was completely accessible to fluid-phase horseradish peroxidase. We conclude that proteolytic processing of 51-55-kDa to 44-kDa cathepsin D occurs in endosomes, whereas the processing of 44-31-kDa cathepsin D takes place in lysosomes.  相似文献   

18.
The secretion and activation of the major cathepsin L1 cysteine protease involved in the virulence of the helminth pathogen Fasciola hepatica was investigated. Only the fully processed and active mature enzyme can be detected in medium in which adult F. hepatica are cultured. However, immunocytochemical studies revealed that the inactive procathepsin L1 is packaged in secretory vesicles of epithelial cells that line the parasite gut. These observations suggest that processing and activation of procathepsin L1 occurs following secretion from these cells into the acidic gut lumen. Expression of the 37-kDa procathepsin L1 in Pichia pastoris showed that an intermolecular processing event within a conserved GXNXFXD motif in the propeptide generates an active 30-kDa intermediate form. Further activation of the enzyme was initiated by decreasing the pH to 5.0 and involved the progressive processing of the 37 and 30-kDa forms to other intermediates and finally to a fully mature 24.5 kDa cathepsin L with an additional 1 or 2 amino acids. An active site mutant procathepsin L, constructed by replacing the Cys(26) with Gly(26), failed to autoprocess. However, [Gly(26)]procathepsin L was processed by exogenous wild-type cathepsin L to a mature enzyme plus 10 amino acids attached to the N terminus. This exogenous processing occurred without the formation of a 30-kDa intermediate form. The results indicate that activation of procathepsin L1 by removal of the propeptide can occur by different pathways, and that this takes place within the parasite gut where the protease functions in food digestion and from where it is liberated as an active enzyme for additional extracorporeal roles.  相似文献   

19.
Procathepsins B and L in the hepatic endoplasmic lumen were identified as having a molecular weight of 39,000 by immunoblot analysis. The proenzymes were then purified to remove the mature enzymes by concanavalin A-Sepharose chromatography. The concanavalin A-adsorbed fractions containing the proenzymes showed no appreciable activities of cathepsins B and L. When those fractions were incubated at pH 3.0, the enzymatic activities markedly increased: the activities of cathepsins B and L after 36 h incubation were 60 and 210 times those of the controls, respectively. Immunoblot analysis showed that after 36 h incubation the proenzymes disappeared and the mature enzymes increased. Thus the proenzymes were processed to the mature enzymes under acidic conditions of pH 3.0. The marked increases of enzymatic activities and the conversion of the proenzymes to the mature forms were completely blocked with pepstatin, which is a potent inhibitor of aspartic proteases. The results strongly suggested that a processing protease for procathepsins B and L might be cathepsin D, a major lysosomal aspartic protease. Indeed, lysosomal cathepsin D could convert microsomal procathepsin B to the mature enzyme in vitro. Therefore, procathepsins B and L seem first to be synthesized as enzymatically inactive forms in endoplasmic reticulum and successively may be converted into active forms by cathepsin D in lysosomal compartments.  相似文献   

20.
G E Conner  G Richo 《Biochemistry》1992,31(4):1142-1147
Procathepsin D is the intracellular aspartyl protease precursor of cathepsin D, a major lysosomal enzyme. Procathepsin D is rapidly processed inside the cell, and, thus, examination of its proteolyic activation and structure has been difficult. To study this proenzyme, a nonglycosylated form of the human fibroblast procathepsin D was expressed in Escherichia coli, refold in vitro, and purified by affinity chromatography on pepstatinyl agarose. Sequence analysis of the refolded, autoactivated enzyme allowed determination of the autoproteolytic cleavage site. The sequence surrounding this cleavage site between residues LeuP26 and IleP27 (in the "pro" region) resembled the first cleavage site found during activation of other aspartyl proteases. Thus, the autoactivated procathepsin D is analogous to the pepsin activation intermediate, which has been termed pseudopepsin. The enzymatic activity, thermal and pH stability, and fluorescence spectra of pseudocathepsin D were compared to mature, predominantly two-chain, cathepsin D isolated from human placenta. The results indicated that pseudocathepsin D and mature enzyme have a similar Km toward a peptide substrate and cleave a protein substrate at identical sites. Temperature stability of the recombinant enzyme was similar to that of the tissue-derived enzyme. However, the recombinant enzyme had increased stability at low pH when compared to the glycosylated tissue-derived two-chain cathepsin D. Fluorescence spectra of the recombinant and tissue-derived enzymes were identical. Thus, the absence of asparagine-linked oligosaccharides and the presence of the remaining segment of propeptide did not significantly alter the structural and enzymatic properties of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号