首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
AIMS: To demonstrate that Vibrio harveyi produces various types of toxins and how the production of those toxins is related with luminescence. METHODS AND RESULTS: Luminescence and toxicity of eight V. harveyi were evaluated. We demonstrated that all V. harveyi emitting luminescence were isolated from marine organisms and also showed that they were highly pathogenic when compared with culture collection V. harveyi based on cytotoxic assay test. On the contrary, V. harveyi isolated from shrimp farm showed no luminescence but showed high pathogenicity based on toxicity test. The effect of protease inhibitors on pathogenicity and luminescence was also investigated. We demonstrated that light emission of pathogenic V. harveyi remarkably decreased after addition of protease inhibitor. Furthermore, extracellular proteins from cell-free culture supernatant of luminescent and nonluminescent V. harveyi were compared using SDS-PAGE analysis. Results showed that there were differences in molecular weight and amount of proteins. CONCLUSIONS: Vibrio harveyi parasiting marine organisms have both luminescence and pathogenicity. Based on this study, luminescence and protease toxin activity in V. harveyi are related. Moreover, this paper clarified that V. harveyi produces various types of toxins. SIGNIFICANCE AND IMPACT OF THE STUDY: The current study demonstrated that V. harveyi produces two kinds of toxins, haemolysin and protease toxin. It may be clear roots of V. harveyi toxin.  相似文献   

2.
AIM: To demonstrate the influence of copper on luminescence and toxin production in Vibrio harveyi. METHODS AND RESULTS: The effect of copper concentration on the expression of both luminescence and toxin of V. harveyi was investigated. Copper concentration of less than 40 ppm had no effect on the growth. While V. harveyi cultured with 40 ppm copper concentration showed decreased luminescence as measured by spectrofluorophotometer and as observed. LuxD gene, which is related to luminescence expression, was monitored using real-time RT-PCR. Result showed that the concentration of cDNA coding for luxD was lower in V. harveyi with copper. Toxic activity against both HeLa cells and shrimp haemocytes was also lower in the culture supernatant of V. harveyi grown with 40 ppm copper concentration. Moreover, V. harveyi extracellular proteins were analysed using SDS-PAGE. Results showed that culture supernatant from V. harveyi grown without copper had thicker band indicating a higher concentration of the putative cysteine protease, one of the major toxin of V. harveyi. CONCLUSIONS: This study proved that both luminescence and toxin were repressed by copper. SIGNIFICANCE AND IMPACT OF THE STUDY: The current study demonstrated that copper inhibited expression of phenotype of V. harveyi. Furthermore, it may inhibit quorum sensing of V. harveyi.  相似文献   

3.
4.
N-beta-Hydroxybutanoyl homoserine lactone (HBHL), the autoinducer of the luminescent system of Vibrio harveyi, has been identified as the first small compound to restore virulence to avirulent mutants of Xenorhabdus nematophilus. HBHL stimulated the level of lipase activity excreted by avirulent X. nematophilus and lowered the phenoloxidase activity in the hemolymph of insects infected with X. nematophilus, parameters that are both associated with insect pathogenesis. Moreover, mortality of the insects infected with avirulent X. nematophilus was restored upon injection with HBHL. Chloroform extraction of medium conditioned with wild-type but not avirulent X. nematophilus led to the isolation of a compound with the same chromatographic mobility as HBHL as well as the ability to stimulate the luminescence of a dim autoinducer-dependent mutant of V. harveyi. Transfer of the V. harveyi lux operon into avirulent and wild-type X. nematophilus generated dim and bright luminescent strains, respectively, which responded to HBHL and an agonist and antagonist in a manner analogous to their effects on the luminescence of dim autoinducer-deficient and bright wild-type strains of V. harveyi, indicating that similar HBHL-dependent regulatory systems exist in these two bacterial species.  相似文献   

5.
An autoinducer required for the growth-dependent development of luminescence in Vibrio harveyi has been purified, structurally identified, and chemically synthesized. The autoinducer, which is excreted by the cells, was extracted with chloroform from conditioned media in which V. harveyi cells had been grown. The concentrated extract was separated on a silica gel column and the autoinducer activity further purified by thin layer, paper, and high performance liquid chromatography. The structure of the partially purified autoinducer was identified by 1H NMR and mass spectrometry as N-(beta-hydroxybutyryl)homoserine lactone. This compound was chemically synthesized by condensation of beta-hydroxybutyrate with alpha-amino-gamma-butyrolactone hydrobromide using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide as a carboxyl group activator. The pure synthetic autoinducer gave the characteristic NMR and mass spectra, co-migrated with the natural autoinducer on thin layer plates, and specifically stimulated induction of luminescence of V. harveyi. Light emission of a regulatory dark mutant of V. harveyi could be stimulated over 1000-fold by the addition of N-(beta-hydroxybutyryl)homoserine lactone, reaching intensities comparable to that of the native strain. The similarity in structure of the autoinducer of V. harveyi to that of Vibrio fischeri suggests that the regulation of luminescence induction in these bacteria may be related in spite of their differences in lux gene organization.  相似文献   

6.
7.
8.
目的:用生物学方法检测长双歧杆菌NCC2705是否产生群体感应系统信号分子AI-2。方法:将长双歧杆菌NCC2705不同时间点的培养上清分别加至AI-2特异报告系统哈氏弧菌BB170中,以空白培养基上清为对照,用荧光光度计对哈氏弧菌发光强度进行计量,推测出长双歧杆菌NCC2705上清中是否含有分泌的AI-2,并由此推断AI-2的活性。结果:通过微孔板检测系统对加入长双歧杆菌NCC2705培养上清的哈氏弧菌BB170进行检测,发现双歧杆菌上清的加入增强了哈氏弧菌BB170发出的荧光强度。结论:长双歧杆菌NCC2705中存在依赖于luxS/AI-2的群体感应系统,并能够分泌有活性的AI-2,为进一步研究长双歧杆菌NCC2705AI-2及luxS基因的功能打下基础。  相似文献   

9.
Many bacteria control gene expression in response to cell population density, and this phenomenon is called quorum sensing. In Gram-negative bacteria, quorum sensing typically involves the production, release and detection of acylated homoserine lactone signalling molecules called autoinducers. Vibrio harveyi, a Gram-negative bioluminescent marine bacterium, regulates light production in response to two distinct autoinducers (AI-1 and AI-2). AI-1 is a homoserine lactone. The structure of AI-2 is not known. We have suggested previously that V. harveyi uses AI-1 for intraspecies communication and AI-2 for interspecies communication. Consistent with this idea, we have shown that many species of Gram-negative and Gram-positive bacteria produce AI-2 and, in every case, production of AI-2 is dependent on the function encoded by the luxS gene. We show here that LuxS is the AI-2 synthase and that AI-2 is produced from S-adenosylmethionine in three enzymatic steps. The substrate for LuxS is S-ribosylhomocysteine, which is cleaved to form two products, one of which is homocysteine, and the other is AI-2. In this report, we also provide evidence that the biosynthetic pathway and biochemical intermediates in AI-2 biosynthesis are identical in Escherichia coli, Salmonella typhimurium, V. harveyi, Vibrio cholerae and Enterococcus faecalis. This result suggests that, unlike quorum sensing via the family of related homoserine lactone autoinducers, AI-2 is a unique, 'universal' signal that could be used by a variety of bacteria for communication among and between species.  相似文献   

10.
Three bacterial enrichment cultures (ECs) were isolated from the digestive tract of Pacific white shrimp Penaeus vannamei, by growing the shrimp microbial communities in a mixture of N-acyl homoserine lactone (AHL) molecules. The ECs, characterized by denaturing gradient gel electrophoresis analysis and subsequent rRNA sequencing, degraded AHL molecules in the degradation assays. Apparently, the resting cells of the ECs also degraded one of the three types of quorum-sensing signal molecules produced by Vibrio harveyi in vitro [i.e. harveyi autoinducer 1 (HAI-1)]. The most efficient AHL-degrading ECs, EC5, was tested in Brachionus experiments. EC5 degraded the V. harveyi HAI-1 autoinducer in vivo, neutralizing the negative effect of V. harveyi autoinducer 2 (AI-2) mutant, in which only the HAI-1- and CAI-1-mediated components of the quorum-sensing system are functional on the growth of Brachionus. This suggests that EC5 interferes with HAI-1-regulated metabolism in V. harveyi. These AHL-degrading ECs need to be tested in other aquatic systems for their probiotic properties, preferably in combination with specific AI-2-degrading bacteria.  相似文献   

11.
Vibrio anguillarum, which causes terminal hemorrhagic septicemia in fish, was previously shown to possess a LuxRI-type quorum-sensing system (vanRI) and to produce N-(3-oxodecanoyl)homoserine lactone (3-oxo-C10-HSL). However, a vanI null mutant still activated N-acylhomoserine lactone (AHL) biosensors, indicating the presence of an additional quorum-sensing circuit in V. anguillarum. In this study, we have characterized this second system. Using high-pressure liquid chromatography in conjunction with mass spectrometry and chemical analysis, we identified two additional AHLs as N-hexanoylhomoserine lactone (C6-HSL) and N-(3-hydroxyhexanoyl)homoserine lactone (3-hydroxy-C6-HSL). Quantification of each AHL present in stationary-phase V. anguillarum spent culture supernatants indicated that 3-oxo-C10-HSL, 3-hydroxy-C6-HSL, and C6-HSL are present at approximately 8.5, 9.5, and 0.3 nM, respectively. Furthermore, vanM, the gene responsible for the synthesis of these AHLs, was characterized and shown to be homologous to the luxL and luxM genes, which are required for the production of N-(3-hydroxybutanoyl)homoserine lactone in Vibrio harveyi. However, resequencing of the V. harveyi luxL/luxM junction revealed a sequencing error present in the published sequence, which when corrected resulted in a single open reading frame (termed luxM). Downstream of vanM, we identified a homologue of luxN (vanN) that encodes a hybrid sensor kinase which forms part of a phosphorelay cascade involved in the regulation of bioluminescence in V. harveyi. A mutation in vanM abolished the production of C6-HSL and 3-hydroxy-C6-HSL. In addition, production of 3-oxo-C10-HSL was abolished in the vanM mutant, suggesting that 3-hydroxy-C6-HSL and C6-HSL regulate the production of 3-oxo-C10-HSL via vanRI. However, a vanN mutant displayed a wild-type AHL profile. Neither mutation affected either the production of proteases or virulence in a fish infection model. These data indicate that V. anguillarum possesses a hierarchical quorum sensing system consisting of regulatory elements homologous to those found in both V. fischeri (the LuxRI homologues VanRI) and V. harveyi (the LuxMN homologues, VanMN).  相似文献   

12.
Regulation of quorum sensing in Vibrio harveyi by LuxO and sigma-54   总被引:3,自引:0,他引:3  
The bioluminescent marine bacterium Vibrio harveyi controls light production (lux) by an elaborate quorum-sensing circuit. V. harveyi produces and responds to two different autoinducer signals (AI-1 and AI-2) to modulate the luciferase structural operon (luxCDABEGH) in response to changes in cell-population density. Unlike all other Gram-negative quorum-sensing organisms, V. harveyi regulates quorum sensing using a two-component phosphorylation-dephosphorylation cascade. Each autoinducer is recognized by a cognate hybrid sensor kinase (called LuxN and LuxQ). Both sensors transduce information to a shared phosphorelay protein called LuxU, which in turn conveys the signal to the response regulator protein LuxO. Phospho-LuxO is responsible for repression of luxCDABEGH expression at low cell density. In the present study, we demonstrate that LuxO functions as an activator protein via interaction with the alternative sigma factor, sigma54 (encoded by rpoN). Our results suggest that LuxO, together with sigma54, activates the expression of a negative regulator of luminescence. We also show that phenotypes other than lux are regulated by LuxO and sigma54, demonstrating that in Vibrio harveyi, quorum sensing controls multiple processes.  相似文献   

13.
Mutagenesis with transposon mini-Mulac was used previously to identify a regulatory locus necessary for expression of bioluminescence genes, lux, in Vibrio harveyi (M. Martin, R. Showalter, and M. Silverman, J. Bacteriol. 171:2406-2414, 1989). Mutants with transposon insertions in this regulatory locus were used to construct a hybridization probe which was used in this study to detect recombinants in a cosmid library containing the homologous DNA. Recombinant cosmids with this DNA stimulated expression of the genes encoding enzymes for luminescence, i.e., the luxCDABE operon, which were positioned in trans on a compatible replicon in Escherichia coli. Transposon mutagenesis and analysis of the DNA sequence of the cloned DNA indicated that regulatory function resided in a single gene of about 0.6-kilobases named luxR. Expression of bioluminescence in V. harveyi and in the fish light-organ symbiont Vibrio fischeri is controlled by density-sensing mechanisms involving the accumulation of small signal molecules called autoinducers, but similarity of the two luminescence systems at the molecular level was not apparent in this study. The amino acid sequence of the LuxR product of V. harveyi, which indicates a structural relationship to some DNA-binding proteins, is not similar to the sequence of the protein that regulates expression of luminescence in V. fischeri. In addition, reconstitution of autoinducer-controlled luminescence in recombinant E. coli, already achieved with lux genes cloned from V. fischeri, was not accomplished with the isolation of luxR from V. harveyi, suggesting a requirement for an additional regulatory component.  相似文献   

14.
15.
16.
Disruption of quorum sensing, bacterial cell-to-cell communication by means of small signal molecules, has been suggested as a new anti-infective strategy for aquaculture. However, data about the impact of quorum sensing on the virulence of aquatic pathogens are scarce. In this study, a model system using gnotobiotically cultured Artemia franciscana was developed in order to determine the impact of mutations in the quorum sensing systems of Aeromonas hydrophila, Vibrio anguillarum and V. harveyi on their virulence. Mutations in the autoinducer 2 (AI-2) synthase gene luxS, the AI-2 receptor gene luxP or the response regulator gene luxO of the dual channel quorum sensing system of V. harveyi abolished virulence of the strain towards Artemia. Moreover, the addition of an exogenous source of AI-2 could restore the virulence of an AI-2 non-producing mutant. In contrast, none of the mutations in either the acylated homoserine lactone (AHL)-mediated component of the V. harveyi system or the quorum sensing systems of Ae. hydrophila and V. anguillarum had an impact on virulence of these bacteria towards Artemia. Our results indicate that disruption of quorum sensing could be a good alternative strategy to combat infections caused by V. harveyi.  相似文献   

17.
The quorum-sensing disrupter (5Z)-4-bromo-5-(bromomethylene)-3-butyl-2(5H)-furanone (furanone) of the alga Delisea pulchra was found to inhibit the swarming motility of Escherichia coli completely at 13 microg cm-2 (also at 20 microg ml-1) but did not inhibit its growth rate at 13-52 microg cm-2 or from 20 to 100 microg ml-1. Swimming was not inhibited by the furanone at 20-40 microg ml-1. In addition, confocal scanning laser microscopy revealed that this furanone at 60 microg ml-1 inhibited the biofilm formation of E. coli, as it decreased its thickness by 55%, reduced the number of water channels and decreased the percentage of live cells by 87%. This suggests that natural furanone may be used as a new method to control bacterial biofilms that does not involve toxicity. Furanone at 10 microg ml-1 also inhibited by 3300-fold the quorum sensing of Vibrio harveyi via autoinducer 1 (AI-1) and inhibited by 5500-fold that of V. harveyi via of autoinducer 2 (AI-2) as well as inhibited by 26-600-fold the quorum sensing of E. coli via AI-2; hence, this furanone is a non-specific intercellular signal antagonist.  相似文献   

18.
AIMS: Physiological responses of marine luminous bacteria, Vibrio harveyi (ATCC 14216) and V. fischeri (UM1373) to nutrient-limited normal strength (35 ppt iso-osmolarity) and low (10 ppt hypo-osmolarity) salinity conditions were determined. METHODS AND RESULTS: Plate counts, direct viable counts, actively respiring cell counts, nucleoid-containing cell counts, and total counts were determined. Vibrio harveyi incubated at 22 degrees C in nutrient-limited artificial seawater (ASW) became nonculturable after approximately 62 and 45 d in microcosms of 35 ppt and 10 ppt ASW, respectively. In contrast, V. fischeri became nonculturable at approximately 55 and 31 d in similar microcosms. Recovery of both culturability and luminescence of cells in the viable but nonculturable state was achieved by addition of nutrient broth or nutrient broth supplemented with a carbon source, including luminescence-stimulating compounds. Temperature upshift from 22 degrees C to 30 degrees C or 37 degrees C did not result in recovery from nonculturability. CONCLUSIONS: The study confirms entry of V. harveyi and V. fischeri into the viable but nonculturable state under low-nutrient conditions and demonstrates nutrient-dependent resuscitation from this state. SIGNIFICANCE AND IMPACT OF THE STUDY: This study confirms loss of luminescence of V. harveyi and V. fischeri on entry into the viable but nonculturable state and suggests that enumeration of luminescent cells in water samples may be a rapid method to deduce the nutrient status of a water sample.  相似文献   

19.
Swem LR  Swem DL  Wingreen NS  Bassler BL 《Cell》2008,134(3):461-473
Quorum sensing, a process of bacterial cell-cell communication, relies on production, detection, and response to autoinducer signaling molecules. LuxN, a nine-transmembrane domain protein from Vibrio harveyi, is the founding example of membrane-bound receptors for acyl-homoserine lactone (AHL) autoinducers. We used mutagenesis and suppressor analyses to identify the AHL-binding domain of LuxN and discovered LuxN mutants that confer both decreased and increased AHL sensitivity. Our analysis of dose-response curves of multiple LuxN mutants pins these inverse phenotypes on quantifiable opposing shifts in the free-energy bias of LuxN for occupying its kinase and phosphatase states. To understand receptor activation and to characterize the pathway signaling parameters, we exploited a strong LuxN antagonist, one of fifteen small-molecule antagonists we identified. We find that quorum-sensing-mediated communication can be manipulated positively and negatively to control bacterial behavior and, more broadly, that signaling parameters can be deduced from in vivo data.  相似文献   

20.
AIMS: To determine the host range of the Vibrio harveyi myovirus-like bacteriophage (VHML) and the cholera toxin conversion bacteriophage (CTX Phi) within a range of Vibrio cholerae and V. mimicus and V. harveyi, V. cholerae and V. mimicus isolates respectively. METHODS AND RESULTS: Three V. harveyi, eight V. cholerae and five V. mimicus isolates were incubated with VHML and CTX Phi. Polymerase chain reaction (PCR) was used to determine the presence of VHML and CTX Phi in infected isolates. We demonstrated that it was possible to infect one isolate of V. cholerae (isolate ACM #2773/ATCC #14035) with VHML. This isolate successfully incorporated VHML into its genome as evident by positive PCR amplification of the sequence coding part of the tail sheath of VHML. Attempts to infect all other V. cholerae and V. mimicus isolates with VHML were unsuccessful. Attempts to infect V. cholerae non-01, V. harveyi and V. mimicus isolates with CTX Phi were unsuccessful. CONCLUSIONS: Bacteriophage infection is limited by bacteriophage-exclusion systems operating within bacterial strains and these systems appear to be highly selective. One system may allow the co-existence of one bacteriophage while excluding another. VHML appears to have a narrow host range which may be related to a common receptor protein in such strains. The lack of the vibrio pathogenicity island bacteriophage (VPI Phi) in the isolates used in this study may explain why infections with CTX Phi were unsuccessful. SIGNIFICANCE AND IMPACT OF THE STUDY: The current study has demonstrated that Vibrio spp. bacteriophages may infect other Vibrio spp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号