首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Cyclic nucleotide phosphodiesterase activity of several tissues of rat is inhibited by an endogenous factor isolated from rat adipocytes following exposure of these cells to agents that raise intracellular cyclic AMP levels. The inhibitory action was demonstrated with varying cAMP concentrations from 0.1-400 muM. Enzyme from 10,000 X g supernatant of epididymal adipose tissue was inhibited approximately 2-3 fold more than the plasma membrane of adipocytes by a given concentration of the feedback regulator. Kinetic analysis of cAMP phosphodiesterase of plasma membrane showed that feedback regulator (8.8 U/ml) inhibited the Vmax 48%. The maximum inhibition of phosphodiesterase by feedback regulator (20 U/ml) was about 80%. The apparent Km for cAMP was increased. The ability of phosphodiesterase from several tissues of rat (10,000 X g supernatant) to hydrolyze cAMP and cGMP was tested. Feedback regulator inhibited cGMP hydrolysis in cardiac muscle and 5 other tissues 23-92% more than it inhibited the hydrolysis of cAMP. The physiological significance of this inhibitory effect can begin to be clarified when the feedback regulator is purified to homogeneity and characterized.  相似文献   

3.
4.
Phosphatidyl inositol and lysophosphatidyl choline have been identified as activators of a partially purified brain cyclic nucleotide phosphodiesterase previously shown to be regulated in vitro by Ca2+ and a Ca2+-binding protein. Microgram quantities of either phospholipid produced a linear, immediate and reversible activation of the enzyme in the absence of Ca2+ and the Ca2+-dependent regulator (CDR). Fatty acids were also found to activate the phosphodiesterase to varying degrees, with oleic acid being the most effective. Phosphatidyl choline, phosphatidyl ethanolamine, phosphatidyl serine and lysophosphatidyl ethanolamine were not effective as activators. Only sodium dodecyl sulfate, of a variety of nonionic, cationic, and anionic detergents tested, activated the phosphodiesterase. Sodium dodecyl sulfate produced a modest degree of activation over a narrow concentration range, followed by enzyme denaturation at higher concentrations.The interaction of the phosphodiesterase with the phospholipid activators has been compared to its interaction with the Ca2+·CDR complex. Both Ca2+·CDR and lysophosphatidyl choline decreased the thermal stability of the enzyme to a similar extent. The apparent Km of the lysophosphatidyl choline-dependent phosphodiesterase activity was approximately 30 μm with guanosine-3′,5′-monophosphate (cGMP) as substrate and 1 mm with adenosine-3′,5′-monophosphate (cAMP) as substrate. With increasing lysophosphatidyl choline concentration, the apparent Km for each nucleotide remained unchanged while the V increased. The apparent Kd for Mg2+ of the lysophosphatidyl choline-dependent phosphodiesterase activity was approximately 3 μm and was unaffected by lysophosphatidyl choline concentration. Activation of the phosphodiesterase by lysophosphatidyl choline was characterized by a high degree of positive cooperativity, exhibiting a Hill coefficient of 3.8. Fluphenazine was a competitive inhibitor of both Ca2+·CDR and lysophosphatidyl choline activation of the enzyme.  相似文献   

5.
The boiled supernatant fraction from rat cerebrum contained factors which inhibited the basal activity of a Ca2+-dependent phosphodiesterase from rat cerebrum. Two inhibitory fractions were isolated by DEAE-cellulose or Sephadex chromatography and were deemed proteins, based on their sensitivity to trypsin digestion. The inhibitory fractions eluted from DEAE-cellulose columns prior to the Ca2+-dependent activator protein. The inhibitory factors, unlike the activator protein, were stable to heat treatment under alkaline conditions. The inhibitory factors caused both an increase in Km for cyclic GMP and a decrease in V. In the presence of calcium ions and purified activator protein, the Ca2+-dependent phosphodiesterase was not inhibited by the factors, but instead was slightly stimulated. The inhibitory factors caused a slight apparent stimulation of a Ca2+-independent phosphodiesterase from rat cerebrum but this proved instead to be a nonspecific stabilizing effect which was minimicked by bovine serum albumin. After prolonged alkaline treatment, the purified activator protein caused a modest Ca2+-independent activation of Ca2+-dependent phosphodiesterase. The inhibitory factors antagonized the activation of Ca2+-dependent phosphodiesterase by alkaline treated activator protein or by lysophosphatidylcholine. The inhibitory factors had no effect on activity of trypsinized Ca2+-dependent phosphodiesterase. Of various other proteins, only casein mimicked the effects of the inhibitory factors on phoshodiesterase activity.  相似文献   

6.
A new assay for cyclic nucleotide phosphodiesterase activity by high-performance liquid chromatography with on-line radiochemical detection has been developed. The method is based on the measurement of 3H-labeled nucleoside monophosphates formed from cyclic nucleotides by the action of 3',5'-cyclic-nucleotide phosphodiesterase (PDE). The reaction products are determined from the incubation mixture after removal of the protein by injection of an aliquot into the liquid chromatograph. The detection limit with counting efficiency of 30% is 20 fmol of 3H-labeled product, which makes the method suitable for detection of low PDE activities.  相似文献   

7.
《Life sciences》1996,59(21):PL337-PL341
Intracellular concentrations of cyclic nucleotides is regulated by cyclic nucleotide phosphodiesterases and calmodulin-dependent cyclic nucleotide phosphodiesterases (CaMPDE), one of the most intensively studied and best characterized phosphodiesterases. In the present study, the effect of an antiparkinsonian agent, deprenyl (selegeline hydrochloride) which is believed to be a selective inhibitor of monoamine oxidase-B, on bovine brain calmodulin-dependent cyclic nucleotide phosphodiesterase (CaMPDE) isozymes have been investigated. The findings indicated that deprenyl inhibited brain 60kDa isozyme, however the inhibition for brain 63kDa CaMPDE was observed to a lesser extent. The inhibition of brain 60kDa CaMPDE was overcome by increasing the concentration of calmodulin suggesting that deprenyl may be calmodulin antagonist or act specifically and reversibly on the action of calmodulin. The 60kDa CaMPDE isozyme is predominantly expressed in brain and its inhibition can result in increased intracellular levels of cAMP. The increased intracellular levels of cAMP have a protective role for dopaminergic neurons. Therefore, deprenyl may be a valuable tool to investigate the physiological roles of brain CaMPDE isozymes in progression of Parkinson's disease and gives a new insight into the action of this drug.  相似文献   

8.
The soluble high Km form of cyclic nucleotide phosphodiesterase (EC 3.4.1.17) was purified over 2000-fold from bovine brain homogenates principally using blue dextran-Sepharose chromatography. The purified protein has a specific enzymic activity of 167 units/mg and appears homogeneous when examined by polyacrylamide gel electrophoresis. The enzyme has a molecular weight of 1.26 +/- 0.05 x 10(5) consisting of two apparently identical polypeptide chains. Kinetic measurements indicate that the substrates cyclic GMP and cyclic AMP each have a single Km value, 9 +/- 1 micron and 150 +/- 50 micron, respectively, that the two cyclic nucleotides compete for the same catalytic site, that the blue dye of blue dextran-Sepharose is a competitive inhibitor for the cyclic nucleotides, and that the Vmax with cyclic AMP as substrate is about an order of magnitude larger than that for cyclic GMP. Bovine brain calmodulin stimulates the catalytic rate of the purified enzyme in the presence of Ca2+ by increasing the Vmax associated with each cyclic nucleotide substrate.  相似文献   

9.
10.
The boiled supernatant fraction from rat cerebrum contained factors which inhibited the basal activity of a Ca2+-dependent phosphodiesterase from rat cerebrum. Two inhibitory fractions were isolated by DEAE-cellulose or Sephadex chromatography and were deemed proteins, based on their sensitivity to trypsin digestion. The inhibitory fractions eluted from DEAE-cellulose columns prior to the Ca2+-dependent activator protein. The inhibitory factors, unlike the activator protein, were stable to heat treatment under alkaline conditions. The inhibitory factors caused both an increase in Km for cyclic GMP and a decrease in V. In the presence of calcium ions and purified activator protein, the Ca2+-dependent phosphodiesterase was not inhibited by the factors, but instead was slightly stimulated. The inhibitory factors caused a slight apparent stimulation of a Ca2+-independent phosphodiesterase from rat cerebrum but this proved instead to be a nonspecific stabilizing effect which was mimicked by bovine serum albumin. After prolonged alkaline treatment, the purified activator protein caused a modest Ca2+-independent activation of Ca2+-dependent phosphodiesterase. The inhibitory factors antagonized the activation of Ca2+-dependent phosphodiesterase by alkaline treated activator protein or by lysophosphatidylcholine. The inhibitory factors had no effect on activity of trypsinized Ca2+-dependent phosphodiesterase. Of various other proteins, only casein mimicked the effects of the inhibitory factors on phosphodiesterase activity.  相似文献   

11.
Cyclic nucleotide phosphodiesterase activity (3', 5'-cyclic-nucleotide 5'-nucleotidohydrolase, 3.1.2.17) was studied in homogenates of WI-38 human lung fibroblasts using 0.1--200 microgram cyclic nucleotides. Activities were observed with low Km for cyclic AMP(2--5 micron) and low Km for cyclic GMP (1--2 micron) as well as with high Km values for cyclic AMP (100--125 micron) and cyclic GMP (75--100 micron). An increased low Km cyclic AMP phosphodiesterase activity was found upon exposure of intact fibroblasts to 3-isobutyl-1-methylxanthine, an inhibitor of phosphodiesterase activity in broken cell preparations, as well as to other agents which elevate cyclic AMP levels in these cells. The enhanced activity following exposure to 3-isobutyl-1-methylxanthine was selective for the low Km cyclic AMP phosphodiesterase since there was no change in activity of low Km cyclic GMP phosphodiesterase activity or in high Km phosphodiesterase activity with either nucleotide as substrate. The enhanced activity due to 3-isobutyl-1-methylxanthine appeared to involve de novo synthesis of a protein with short half-life (30 min), based on experiments involving cycloheximide and actinomycin D. This activity was also enhanced with increased cell density and by decreasing serum concentration. Studies of some biochemical properties and subcellular distribution of the enzyme indicated that the induced enzyme was similar to the non-induced (basal) low Km cyclic AMP phosphodiesterase.  相似文献   

12.
Calmodulin-dependent cyclic nucleotide phosphodiesterase from bovine brain is found to be composed of two distinct subunits, 60,000- and 63,000-dalton polypeptides. Peptide mapping of the subunits by partial proteolysis demonstrated that the 60-kDa polypeptide is not derived from the 63-kDa species. The interaction of the enzyme with three monoclonal antibodies, A6, C1, and A2, and the analysis of immunocomplexes by sucrose density gradient centrifugation revealed that calmodulin-dependent cyclic nucleotide phosphodiesterase exists in three different forms, i.e. (a) homodiamer of 60-kDa, (b) heterodimer of 60- and 63-kDa, and (c) homodimer of 63-kDa. A6 antibody reacts with both 60- and 63-kDa polypeptides indicating that they are immunologically related. C1 and A2 antibodies react with only 60-kDa polypeptide species. By using C1 Sepharose 4B affinity column chromatography, the 63-kDa homodimer which did not bind to the column (Fraction I) was separated from the 60-kDa polypeptide containing isozymes (the heterodimer and the 60-kDa homodimer) which were retained on the column and later eluted as a mixture (Fraction II). Fraction I, the 63-kDa homodimer enzyme, has higher Vmax toward cGMP as substrate than cAMP whereas the opposite was found with Fraction II. The specific activity of Fraction II enzyme toward cAMP was approximately 500 mumol/min/mg, the highest value ever reported for brain calmodulin-dependent cyclic nucleotide phosphodiesterase preparations.  相似文献   

13.
14.
Cyclic nucleotide phosphodiesterase has been partially purified by calmodulin-Sepharose affinity chromatography from a soluble extract of Neurospora crassa. The phosphodiesterase activity remained bound to the affinity column even in the presence of 6 M urea and could only be eluted by calcium chelation. The enzyme exhibits cAMP and cGMP phosphodiesterase activities. Both activities can be enhanced by calmodulin in a Ca2+-dependent manner. Stimulation of cyclic nucleotide phosphodiesterase by calmodulin can be inhibited by calmodulin antagonists such as pimozide, trifluoperazine and chlorpromazine.  相似文献   

15.
A series of synthetic pentasubstituted analogs of quercetin were evaluated for their ability to inhibit the various phosphodiesterase isoforms resolved from rat brain cytosol by isoelectric focusing. All the tested compounds were more potent in inhibiting the calcium plus calmodulin-independent isoforms than the dependent ones. Out of the two calcium-independent cyclic AMP-specific isoforms present in brain preparations, the Rolipram-sensitive enzyme proved to be the most sensitive to flavonoid inhibition. In contrast with the antidepressant compound Rolipram which is totally devoid of anticalmodulin property, these flavonoid derivatives exhibited anticalmodulin activity as illustrated by their higher inhibitory potency toward the calmodulin-dependent isoform in the presence of calcium plus calmodulin than in the presence of EGTA and by the ability of [3H] penta-O-ethylquercetin to bind to calmodulin in a calcium-dependent way.  相似文献   

16.
17.
Cyclic nucleotide phosphodiesterase (3',5'-cyclic nucleotide nucleotidohydrolase, EC 3.1.4.17) activity isolated from Phaseolus vulgaris L. cv. Limberg seedlings was partially purified and characterized by fractional (NH4)2SO4 precipitation, DEAE-cellulose chromatography, chromatography on 3',5'-cAMP-agarose, gel permeation chromatography and chromatofocusing. A crude enzyme preparation, a 30–65% (NH4)2SO4 pellet, showed an acidic pH optimum. The enzyme activity was stimulated by imidazole and divalent cations such as Ca2+, Mg2+ and Mn2+, whereas NaF, PPi and Fe3+ were inhibitory. Isobutylmethylxanthine had no significant effect on the plant enzyme. An MI of 42 000 was estimated by gel permeation high performance liquid chromatography. By chromatography on 3',5'-cAMP-agarose a phosphodiesterase was resolved that produced 5'-AMP as sole reaction product.  相似文献   

18.
The procedure described allowed a convenient analysis of cyclic nucleotide phosphodiesterase. The different phosphodiesterase forms present in a crude cytosolic preparation from rat heart were separated by isoelectric focusing on a polyacrylamide gel plate. Phosphodiesterase activity bands were rendered evident by a specific staining method. They were then characterized by means of their substrate specificity and their sensitivity to selective phosphodiesterase inhibitors. The correspondence between the stain bands and the previously described activity peaks, obtained by a preparative technique and detected by radioisotopic enzyme assay, was also investigated.  相似文献   

19.
The cell-cycle-related activities of the cAMP- and cGMP-dependent phosphodiesterases of Physarum polycephalum were assayed. The activities of plasmodial homogenate and of selected subcellular fractions were measured. The results suggested the presence of both cAMP- and cGMP-dependent phosphodiesterase in the isolated nuclei of P. polycephalum. In addition, they reveal that the cAMP- and cGMP-dependent phosphodiesterase activities of the subcellular fractions fluctuate throughout the cell cycle. The whole-cell homogenates exhibit no cell-cycle-related changes in the presence of 5 X 10(-4) M cGMP. Kinetic data suggest the presence of multiple phosphodiesterase activities in the homogenate and its particulate fractions for the cGMP-dependent enzyme. Multiple cAMP activities are also suggested for the particulate fractions. The Km values indicate that the substrate affinities of the phosphodiesterases from P. polycephalum are similar to those found previously in mammalian systems.  相似文献   

20.
1. Isoelectric focusing on a flat gel bed of the rat heart cytosolic fraction resolved cyclic nucleotide phosphodiesterase activity into several forms, characterized by their substrate specificity, kinetic constants and dependence towards Ca2+ and calmodulin. A peak of pI 4.9 displayed 20 times more affinity for cyclic GMP than for cyclic AMP and was markedly inhibited by EGTA. A less substrate-specific form, only slightly sensitive to EGTA inhibition, focused at pH 5.45. Several overlapping peaks detected between pH 5.55 and pH6 specifically hydrolysed cyclic AMP, with non-Michaelian kinetics; these peaks were insensitive to Ca2+ chelation. 2. Isoelectric focusing did not dissociate enzyme-calmodulin complexes, as none of the resulting peaks was activatable by calmodulin plus Ca2+. 3. Some new information on rat cardiac phosphodiesterase is obtained with this technique, which is convenient for routine analytical studies of phosphodiesterase, as well as for preparative purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号