首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The anthracycline antibiotic daunomycin (DM) is useful for the treatment of leukemia but has side-effects such as alopecia. Using immunocytochemistry, we show that, after a single i.v. injection, DM accumulates in the nuclei of matrix cells and in the outer root sheath of hair follicles. DM-positive matrix cells are detectable up to 48 h after injection and exhibit a characteristic granular morphology, which is not observed in saline-injected controls. TUNEL-staining has revealed that DM injection induces programmed cell death (PCD) in rat hair follicles. Cells undergoing PCD are detectable as late as 5 days postinjection in both the matrix and outer root sheath. Newly developed double-staining has shown that some of the DM-positive matrix cell nuclei are also TUNEL-positive. Staining for activated caspase-3 has demonstrated immunopositive cells following DM administration both in the matrix and in the outer root sheath. Ultrastructural immunocytochemistry has shown the presence of DM-positive cells with two different types of morphology. About half of the immunopositive cells exhibit a morphology typical of classical apoptosis (PCD type 1), whereas the other half show signs of autophagic cell death (PCD type 2). Interestingly, little, if any, DM accumulation or apoptosis has been detected in the dermal hair papillae. This may have a bearing on potential regeneration of the hair follicles. Thus, DM accumulates in a characteristic pattern in hair follicles. This accumulation is associated with the induction of two morphologically distinct forms of PCD.  相似文献   

2.
It is critical to understand how stem cell activity is regulated during regeneration. Hair follicles constitute an important model for organ regeneration because, throughout adult life, they undergo cyclical regeneration. Hair follicle stem cells—epithelial cells located in the follicle bulge—are activated by periodic β-catenin activity, which is regulated not only by epithelial-derived Wnt, but also, through as-yet-undefined mechanisms, the surrounding dermal microenvironment. The matricellular protein connective tissue growth factor (CCN2) is secreted into the microenvironment and acts as a multifunctional signaling modifier. In adult skin, CCN2 is largely absent but is unexpectedly restricted to the dermal papillae and outer root sheath. Deletion of CCN2 in dermal papillae and the outer root sheath results in a shortened telogen-phase length and elevated number of hair follicles. Recombinant CCN2 causes decreased β-catenin stability in keratinocytes. In vivo, loss of CCN2 results in elevated numbers of K15-positive epidermal stem cells that possess elevated β-catenin levels and β-catenin–dependent reporter gene expression. These results indicate that CCN2 expression by dermal papillae cells is a physiologically relevant suppressor of hair follicle formation by destabilization of β-catenin and suggest that CCN2 normally acts to maintain stem cell quiescence.  相似文献   

3.
Hair follicles are complex organs composed of the dermal papilla (DP), dermal sheath (DS), outer root sheath (ORS), inner root sheath (IRS) and hair shaft. Development of hair follicles begins towards the end of the first trimester of pregnancy and is controlled by epidermal–mesenchymal interaction (EMI), which is a signaling cascade between epidermal and mesenchymal cell populations. Hair grows in cycles of various phases. Specifically, anagen is the growth phase, catagen is the involuting or regressing phase and telogen is the resting or quiescent phase. Alopecia is not life threatening, but alopecia often causes severe mental stress. In addition, the number of individuals afflicted by alopecia patients has been increasing steadily. Currently there are two methods employed to treat alopecia, drug or natural substance therapy and human hair transplantation. Although drug or natural substance therapy may retard the progress of alopecia or prevent future hair loss, it may also accelerate hair loss when the medication is stopped after prolonged use. Conversely, the transplantation of human hair involves taking plugs of natural hair from areas in which occipital hair is growing and transplanting them to bald areas. However, the number of hairs that can be transplanted is limited in that only three such operations can generally be performed. To overcome such problems, many researchers have attempted to revive hair follicles by culturing hair follicle cells or mesenchymal cells in vitro and then implanting them in the treatment area.  相似文献   

4.
The capacity of lower follicle dermal sheath to restore hair growth was tested by removing the lower halves of follicles, and then immediately implanting material containing dermal sheath cells from these bases, into the remaining upper epidermal follicle cavity. Over 60% of recipient follicles produced stout emergent vibrissa fibres and some operations resulted in multiple hair production from a single follicle. Histological examination revealed new dermal papillae within large bulb structures which were sited below the level of amputation--a feature that indicated that the new dermal papilla was derived from implanted material. For many follicles, the failure to produce emergent fibres could be accounted for after histological examination. These results provide clear evidence that lower follicle dermal sheath cells are capable of replacing those of the dermal papilla and it shows that they can do so in the context of the upper follicle. However, because elements of lower follicle epidermis were present in the implant material, the interactive sequence of events cannot be established. Dermal sheath cells have immense potential for papilla cell replacement: questions remain as to whether the distinction between sheath and papilla cells is one of context, or whether the transition requires specific external influences.  相似文献   

5.
The amount and distribution of fibronectin associated with hair follicles was found to vary during the hair growth cycle in the rat. Immunocytochemical staining of follicles in mid-late anagen (the growth stage) revealed the presence of fibronectin in the dermal papilla matrix, in the basement membrane separating this from the epithelial cells of the hair bulb, and in the basement membrane and connective tissue sheath which underly the cells of the outer root sheath. Early in catagen, the transitional stage, staining of the dermal papilla matrix disappeared. Fibronectin persisted in the basement membrane and connective tissue sheath, which undergo corrugation and apparent thickening in catagen. After follicle shortening, the telogen (resting) stage is reached, at which point fibronectin staining was found to be minimal, being restricted to the basement membrane around the secondary germ. The onset of anagen, involving cell division and follicle elongation, was associated with a great increase in the amount of fibronectin in this zone and in and around the dermal papilla. Analysis of entry into anagen by [3H]thymidine incorporation and autoradiography revealed that growth could be detected before the increase in fibronectin expression. However, growing cells, even in a suprabasal position, always had some fibronectin at their surface. Immunoelectron microscopy of early anagen follicles confirmed the light microscopic findings and also showed that fibronectin was present in small vesicles close to the surface of dermal papilla and some epithelial cells. Increased deposition of laminin and type IV collagen in early anagen follicles was also noted, emphasizing the importance of basement membrane components during morphogenetic events in vivo.  相似文献   

6.
Disruption of the c-Kit/stem cell factor (SCF) signaling pathway interferes with the survival, migration, and differentiation of melanocytes during generation of the hair follicle pigmentary unit. We examined c-Kit, SCF, and S100 (a marker for precursor melanocytic cells) expression, as well as melanoblast/melanocyte ultrastructure, in perinatal C57BL/6 mouse skin. Before the onset of hair bulb melanogenesis (i.e., stages 0-4 of hair follicle morphogenesis), strong c-Kit immunoreactivity (IR) was seen in selected non-melanogenic cells in the developing hair placode and hair plug. Many of these cells were S100-IR and were ultrastructurally identified as melanoblasts with migratory appearance. During the subsequent stages (5 and 6), increasingly dendritic c-Kit-IR cells successively invaded the hair bulb, while S100-IR gradually disappeared from these cells. Towards the completion of hair follicle morphogenesis (stages 7 and 8), several distinct follicular melanocytic cell populations could be defined and consisted broadly of (a) undifferentiated, non-pigmented c-Kit-negative melanoblasts in the outer root sheath and bulge and (b) highly differentiated melanocytes adjacent to the hair follicle dermal papilla above Auber's line. Widespread epithelial SCF-IR was seen throughout hair follicle morphogenesis. These findings suggest that melanoblasts express c-Kit as a prerequisite for migration into the SCF-supplying hair follicle epithelium. In addition, differentiated c-Kit-IR melanocytes target the bulb, while non-c-Kit-IR melanoblasts invade the outer root sheath and bulge in fully developed hair follicles.  相似文献   

7.
Expression of prostaglandin E(2) receptor subtypes in mouse hair follicles.   总被引:4,自引:0,他引:4  
We investigated the mRNA distribution of the prostaglandin (PG) E(2) receptor subtypes and cyclooxygenases (COXs) in hair follicles of the mouse dorsal skin. In the 3-week hair follicles, which are in the anagen phase, EP3 and EP4 mRNA were expressed in the dermal papilla cells and the outer root sheath cells located in the hair bulb region, respectively. In the 8-week hair follicles, which are in the telogen phase, the signals for both EP3 and EP4 mRNAs had disappeared. To study the hair cycle-dependent expression of mRNAs for the EPs and COXs, an area of dorsal hair was depilated from 8-week-old mice. On days 8 and 12 after depilation, EP3 and EP4 mRNA were reexpressed in the dermal papilla cells and the outer root sheath cells, and the induction of COX-2 mRNA was also observed in the outer root sheath cells, the upper area of EP4 expression site. These results suggest that EP3 and EP4 receptors may involve in the development and regrowth of the hair follicles.  相似文献   

8.
A confocal laser microscope was used to examine the distribution pattern of actin bundles in whole-mounts of human hair follicles stained with fluorescently labeled phalloidin. Actin bundles were found exclusively in the epithelial outer root sheath of the lower and middle portions of the follicle. In the growth stage, the lower follicle was characterized by well-developed actin bundles arranged circumferentially in the innermost and outermost cell layers of the outer root sheath. Actin bundles in the innermost cells were aligned end-to-end so that they formed complete circular bands surrounding the inner root sheath. In the outermost cells, actin bundles ran underneath the basal plasma membrane to which they attached at both ends. In contrast, in the quiescent stage, actin bundles in the lower follicle were disposed radially toward the follicle surface where they terminated perpendicular to the basal plasma membrane. In the middle follicle, circumferential actin bundles were found only in the intermediate layer of the outer root sheath throughout the hair cycle. Immunofluorescent anti-myosin and anti-α-actinin staining showed a striated pattern along actin bundles. Vinculin was localized at both ends of actin bundles, corresponding to the cell-to-cell or cell-to-substrate adherens junctions. Glycerinated follicles changed in shape on the addition of MgATP, suggesting a contraction of actin bundles. From these observations, we conclude that actin bundles in the hair follicle are comparable to stress fibers and that they serve as a tensile scaffold for the growth and integrity of the follicle. Received: 6 May 1995 / Accepted: 25 October 1995  相似文献   

9.
HM Hu  SB Zhang  XH Lei  ZL Deng  WX Guo  ZF Qiu  S Liu  XY Wang  H Zhang  EK Duan 《PloS one》2012,7(7):e40124
Estrogen dysregulation causes hair disorder. Clinical observations have demonstrated that estrogen raises the telogen/anagen ratio and inhibits hair shaft elongation of female scalp hair follicles. In spite of these clinical insights, the properties of estrogen on hair follicles are poorly dissected. In the present study, we show that estrogen induced apoptosis of precortex cells and caused premature catagen by up-regulation of TGF β2. Immediately after the premature catagen, the expression of anagen chalone BMP4 increased. The up-regulation of BMP4 may further function to prevent anagen transition and maintain telogen. Interestingly, the hair follicle stem cell niche was not destructed during these drastic structural changes caused by estrogen. Additionally, dermal papilla cells, the estrogen target cells in hair follicles, kept their signature gene expressions as well as their hair inductive potential after estrogen treatment. Retention of the characteristics of both hair follicle stem cells and dermal papilla cells determined the reversibility of the hair cycle suppression. These results indicated that estrogen causes reversible hair cycle retardation by inducing premature catagen and maintaining telogen.  相似文献   

10.
A three-dimensional culture model for isolated murine pelage hair follicles in a type I collagen gel has been utilized to study the effects of selected growth factors on follicle cell proliferation and release of collagenolytic factors. Cultured follicle organoids differentially express cytokeratins 6 and 14 in a pattern suggesting they contain cells of the outer root sheath, inner root sheath and follicle matrix. Using incorporation of [3H]thymidine as a measure of proliferation, follicle organoids show a peak of DNA synthesis between day 1 and 5 of culture, depending on plating density, and then have a low rate of DNA synthesis. Thymidine incorporation is stimulated by transforming growth factor-alpha (TGF-alpha) in a dose-dependent response. Only peripheral cells presumably of the outer root sheath, incorporate thymidine in basal or stimulated conditions. TGF-beta 1 and TGF-beta 2 inhibit constitutive cell proliferation and oppose growth stimulation by TGF-alpha. Hair follicles lyse the collagen gel matrix when exposed to certain cytokines. Epidermal growth factor (EGF) and TGF-alpha stimulate gel lysis, but TGF-beta 1, TGF-beta 2 and cholera toxin do not. Other skin-derived cells, such as interfollicular epidermal cells, dermal fibroblasts, or combinations thereof, do not lyse gels in this culture model even when exposed to growth factors. Combinations of EGF or TGF-alpha with TGF-beta 1 or TGF-beta 2 are synergistic for collagenase release. These cytokines stimulate release of multiple species of matrix metalloproteinases, but the 92-kDa and 72 kDa type IV procollagenases and their activated derivatives predominate on zymograms. In cytokine-stimulated follicles, both peripheral and centrally located cells in the organoids express the 72-kDa type IV collagenase and a similar immunostaining pattern is present in developing follicles in vivo. Thus growth factors appear to work in concert for certain hair follicle responses and in opposition for others. These combined actions may play a role in different phases of hair follicle development that require cell replication and invasion into the deeper dermis.  相似文献   

11.
This study was conducted to further explore the effects of selenium on the blood antioxidant capacity in rats exposed to fluoride to find out the optimal dosage level of selenium. Animals were divided into prevention sequence (Selenium?→?NaF, water?→?NaF) and treatment sequence (NaF?→?Selenium, NaF?→?water) (sodium fluoride 50?mg/L; sodium selenite 0.375, 0.75, 1.5?mg/L). The exposure time was 12?months. Then, the fluidity of erythrocyte membrane by electron spin resonance was analyzed, and the blood was collected for GSH-Px and SOD activity, total antioxidant capacity (T-AOC) and uric acid assay, sialic acid and MDA content. The results showed that, compared with control group, GSH-Px activity and T-AOC level increased significantly (P??0.05). The fluidity of erythrocyte membrane showed significant increase (P?相似文献   

12.

Background  

Skin stem cells contribute to all three major lineages of epidermal appendages, i.e., the epidermis, the hair follicle, and the sebaceous gland. In hair follicles, highly proliferative committed progenitor cells, called matrix cells, are located at the base of the follicle in the hair bulb. The differentiation of these early progenitor cells leads to specification of a central hair shaft surrounded by an inner root sheath (IRS) and a companion layer. Multiple signaling molecules, including bone morphogenetic proteins (BMPs), have been implicated in this process.  相似文献   

13.
Expression and the role of E- and P-cadherin in the histogenesis of the surface epidermis and hair follicles were examined using the upper lip skin of the mouse. P-cadherin is expressed exclusively in the proliferating region of these tissues, that is in the germinative layer of the surface epidermis, the outer root sheath and the hair matrix. E-cadherin is coexpressed in these layers but this molecule was also detected in non-proliferating regions such as the intermediate layer of the surface epidermis and the immature regions of the inner root sheath. Neither P- nor E-cadherin was detected in fully keratinized layers such as the horny layer of the surface epidermis, the outermost layer of the outer root sheath and the mature hair fibres. These two cadherins were not detected in dermal cells. We cultured pieces of the upper lip skin in vitro in the absence or presence of a monoclonal antibody to E-cadherin (ECCD-1) or to P-cadherin (PCD-1). In control cultures, skin morphogenesis normally occurred in a pattern whereby the hair follicles grew and dermal cells were condensed to form the dermal sheath. A mixture of ECCD-1 and PCD-1, however, induced abnormal morphogenesis in the skin in several respects. (1) The cuboidal or columnar arrangement of basal epithelial cells was distorted. (2) Hair follicles were deformed. (3) Condensation of dermal cells was suppressed, causing a homogeneous distribution of these cells. These results suggest that cadherins present in epidermal cells are involved not only in maintaining the arrangement of these cells but also in inducing dermal condensation.  相似文献   

14.
The intermediate filament keratin, K15, is present in variable abundance in stratified epithelia. In this study we have isolated and characterized the sheepK15gene, focusing on its expression in the follicles of sheep and mice. We show thatK15is expressed throughout the hair cycle in the basal layer of the outer root sheath that envelops the follicle. Strikingly, however, in large medullated wool follicles, a small group of basal outer root sheath cells located in the region thought to contain hair follicle stem cells areK15-negative. In the follicle bulbK15is expressed in cells situated next to the dermal papilla but not in the inner bulb cells. Elsewhere,K15is expressed at a low, variable level in the basal layer of the epidermis and sebaceous gland, often in a punctate pattern. In the esophagus of the sheepK15expression is restricted to the basal layer, in contrast to human esophagus where it is expressed throughout the epithelium. Transgenic mouse lines established with a 15-kb sheepK15gene construct exhibited faithful expression and showed no phenotypic consequences ofK15overexpression. An investigation of transgene expression showed thatK15is continuously expressed in outer root sheath cells during the hair cycle. Given its expression in the mitotically active basal cell layers of diverse epithelia and the follicle,K15expression appears to signal an early stage in the pathway of keratinocyte differentiation that precedes the decision of a cell to become epidermal or hair-like.  相似文献   

15.
Hair follicle morphogenesis requires coordination of multiple signals and communication between its epithelial and mesenchymal constituents. Cell adhesion protein platforms, which include integrins and integrin-linked kinase (ILK), are critical for hair follicle formation. However, their precise contribution to this process is poorly understood. We show that in the absence of ILK, the hair follicle matrix lineage fails to develop, likely due to abnormalities in development of apical–basal cell polarity, as well as in laminin-511 and basement membrane assembly at the tip of the hair bud. These defects also result in impaired specification of hair matrix and absence of precortex and inner sheath root cell lineages. The molecular pathways affected in ILK-deficient follicles are similar to those in the absence of epidermal integrin β1 and include Wnt, but not sonic hedgehog, signaling. ILK-deficient hair buds also show abnormalities in the dermal papilla. Addition of exogenous laminin-511 restores morphological and molecular markers associated with hair matrix formation, indicating that ILK regulates hair bud cell polarity and functions upstream from laminin-511 assembly to regulate the developmental progression of hair follicles beyond the germ stage.  相似文献   

16.
In early postnatal mouse skin, the NG2 proteoglycan is expressed in the subcutis, the dermis, the outer root sheath of hair follicles, and the basal keratinocyte layer of the epidermis. With further development, NG2 is most prominently expressed by stem cells in the hair follicle bulge region, as also observed in adult human skin. During telogen and anagen phases of the adult hair cycle, NG2 is also found in stem cell populations that reside in dermal papillae and the outer root sheaths of hair follicles. Ablation of NG2 produces alterations in both the epidermis and subcutis layers of neonatal skin. Compared with wild type, the NG2 null epidermis does not achieve its full thickness due to reduced proliferation of basal keratinocytes that serve as the stem cell population in this layer. Thickening of the subcutis is also delayed in NG2 null skin due to deficiencies in the adipocyte population.  相似文献   

17.
18.
Cui Z  Hu Y  Wang H  Zeng Y  Dong B  Zhu H  Dong Z  Liu Z 《Biotechnology letters》2012,34(3):433-440
A new line of outer root sheath (ORS) cells was established from hair follicles of Jining grey goat by using a mechanical separation combined with enzyme digestion. Cell morphology is described at different phases. The chromosome analysis of ORS cells, identification of the ORS cells and morphological reversion test were detected at the 4th and 40th passages. The ORS cells were healthy and the growth characteristics were stable with a population doubling time of 52 h. Chromosome analysis showed that >58% of cells were diploid. Test for ORS cell line CK19 expression was positive. This newly established ORS cell line not only lays the foundation for further studying on the growth, regeneration, development law of goat hair follicle but also provides a mirror for the research of human hair in medical field.  相似文献   

19.
Localization of sex steroid receptors in human skin   总被引:10,自引:0,他引:10  
Sex steroid hormones are involved in regulation of skin development and functions as well as in some skin pathological events. To determine the sites of action of estrogens, androgens and progestins, studies have been performed during the recent years to accurately localize receptors for each steroid hormone in human skin. Androgen receptors (AR) have been localized in most keratinocytes in epidermis. In the dermis, AR was detected in about 10% of fibroblasts. In sebaceous glands, AR was observed in both basal cells and sebocytes. In hair follicles, AR expression was restricted to dermal papillar cells. In eccrine sweat glands, only few secretory cells were observed to express AR. Estrogen receptor (ER) alpha was poorly expressing, being restricted to sebocytes. In contrast, ERbeta was found to be highly expressed in the epidermis, sebaceous glands (basal cells and sebocytes) and eccrine sweat glands. In the hair follicle, ERbeta is widely expressed with strong nuclear staining in dermal papilla cells, inner sheath cells, matrix cells and outer sheath cells including the buldge region. Progesterone receptors (PR) staining was found in nuclei of some keratinocytes and in nuclei of basal cells and sebocytes in sebaceous glands. PR nuclear staining was also observed in dermal papilla cells of hair follicles and in eccrine sweat glands. This information on the differential localization of sex steroid receptors in human skin should be of great help for future investigation on the specific role of each steroid on skin and its appendages.  相似文献   

20.
Summary Tritium-labeled 1,25 (OH2) vitamin D3, when injected into vitamin D-deficient adult and pregnant rats is concentrated and retained strongest in nuclei of cells in the outer root sheath of the hair, followed by the stratum granulosum, spinosum, and basale of the epidermis. In the hair follicle, in addition to the most heavily labeled outer root sheath, nuclear labeling exists also in cells of the hair bulb and of the inner root sheath, as well as in basal cells of the sebaceous gland. In contrast, cells of the dermal papilla and the connective tissue of the dermis are generally unlabeled, except for labeled cells in the outer connective tissue sheath at the infundibulum of vibrissae of 20-day fetal rats and a few scattered labeled cells in the dermis, probably macrophages. In the developing hair, in 18- and 20-day fetal rats, a distinct topographic pattern of labeled cells can be seen, which is characteristic of the different stages of hair follicle development. In the hair germ, heavily labeled cells appear first in the stratum spinosum. In the hair peg, they remain in this position in its juxtaepidermal portion; however, when a dermal papilla develops, heavily labeled cells assume a marginal position. This suggests a sequential epidermal-epidermal and mesenchymal-epidermal receptor induction. Injection of tritium labeled 25 (OH) vitamin D3 did not show nuclear concentration in these tissues and excess unlabeled 25 (OH) vitamin D3 — unlike excess 1,25 (OH2) vitamin D3 — did not prevent nuclear uptake of tritium labeled 1,25 (OH2) vitamin D3. The results indicate differential effects of 1,25 (OH2) vitamin D3 on different structures in the epidermis and dermis.Supported by US PHS grant PCM8200569  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号