首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Young (3-days-old) embryonic chick hearts have slowly-rising spontaneous action potentials, dependent on tetrodotoxin-insensitive slow Na+ channels. When the hearts were placed into organ culture for 5-11 days, action potential duration was markedly increased by 260-370%, and a notch appeared between the initial spike phase and the plateau phase in some hearts. The spike amplitude was mainly dependent on [Na]0, whereas the plateau amplitude was dependent on [Ca]0. Thus, the young embryonic hearts develop slow Ca2+-Na+ channels (while retaining the slow Na+ channels) during organ culture, and the spike phase and the plateau phase of the slow action potentials are mainly dependent on currents through slow Na+ channels and through slow Ca2+-Na+ channels, respectively. The effects of Mn2+ (a specific blocker of slow Ca2+-Na+ channels) and verapamil (a blocker of slow Na+ channels as well as of slow Ca2+-Na+ channels) on the spike phase and the plateau phase were examined. Mn2+ (0.5 mM) and verapamil (5 microM) depressed the plateau duration and overshoot. Verapamil did not decrease the maximum rate of rise (Vmax), but Mn++ produced a small, but significant, decrease. High concentrations (10/30 microM) of verapamil depressed the action potential amplitude and Vmax, and abolished the spontaneous action potentials. These results indicate that slow Ca2+-Na+ channels appear de novo during organ culture of young embryonic hearts.  相似文献   

2.
In the nervous system, voltage-gated Ca2+ channels regulate numerous processes critical to neuronal function including secretion of neurotransmitters, initiation of action potentials in dendritic regions of some neurons, growth cone elongation, and gene expression. Because of the critical role which Ca2+ channels play in signaling processes within the nervous system, disruption of their function will lead to profound disturbances in neuronal function. Voltage-gated Ca2+ channels are the targets of several relatively rare neurological or neuromuscular diseases resulting from spontaneously-occurring mutations in genes encoding for parts of the channel proteins, or from autoimmune attack on the channel protein responses. Mutations in CACNAIA, which encodes for the alpha1A subunit of P/Q-type Ca2+ channels, lead to symptoms seen in familial hemiplegic migraine, episodic ataxia type 2, and spinocerebellar ataxia type 6. Conversely, autoimmune attack on Ca2+ channels at motor axon terminals causes peripheral cholinergic nerve dysfunction observed in Lambert-Eaton Myasthenic Syndrome (LEMS), the best studied of the disorders targeting voltage-gated Ca2+ channels. LEMS is characterized by decreased evoked quantal release of acetylcholine (ACh) and disruption of the presynaptic active zones, the sites at which ACh is thought to be released. LEMS is generally believed to be due to circulating antibodies directed specifically at the Ca2+ channels located at or near the active zone of motor nerve terminals (P/Q-type) and hence involved in the release of ACh. However, other presynaptic proteins have also been postulated to be targets of the autoantibodies. LEMS has a high degree of coincidence (approximately 60%) with small cell lung cancer; the remaining 40% of patients with LEMS have no detectable tumor. Diagnosis of LEMS relies on characteristic patterns of electromyographic changes; these changes are observable at neuromuscular junctions of muscle biopsies from patients with LEMS. In the majority of LEMS patients, those having detectable tumor, the disease is thought to occur as a result of immune response directed initially against voltage-gated Ca2+ channels found on the lung tumor cells. In these patients, effective treatment of the underlying tumor generally causes marked improvement of the symptoms of LEMS as well. Animal models of LEMS can be generated by chronic administration of plasma, serum or immunoglobulin G to mice. These models have helped dramatically in our understanding of the pathogenesis of LEMS. This "passive transfer" model mimics the electrophysiological and ultrastructural findings seen in muscle biopsies of patients with LEMS. In this model, we have shown that the reduction in amplitude of Ca2+ currents through P/Q-type channels is followed by "unmasking" of an L-type Ca2+ current not normally found at the motor nerve terminal which participates in release of ACh from terminals of mice treated with plasma from patients with LEMS. It is unclear what mechanisms underlie the development of this novel L-type Ca2+ current involved in release of ACh at motor nerve terminals during passive transfer of LEMS.  相似文献   

3.
We report that both Na+ and Ca2+ currents are involved in the action potentials and in the hormone release from rat somatotrophs in primary culture. Single somatotrophs were identified by reverse hemolytic plaque assay (RHPA) and transmembrane voltage and currents were recorded using the whole-cell mode of the patch-clamp technique. Somatotrophs displayed a mean resting potential of -80mV and an average input resistance of 5.7G omega. Most of the cells showed spontaneous or evoked action potentials. Single action potentials or the initial spike in a burst were characterized by their high amplitude and short duration. Tetrodotoxin (TTX, 1 microM) blocked single action potentials and the initial spikes in a burst, whereas action potentials of long duration and low amplitude persisted. Cobalt (2 mM) plus TTX (1 microM) blocked all the action potentials. Voltage-clamp experiments confirmed the presence of both a TTX-sensitive Na+ current and Co2(+)-sensitive Ca2+ currents. TTX or Na(+)-free medium slightly decreased the basal release of GH but did not markedly modify hGRF-stimulated GH release. However, Co2+ (2 mM), which partially decreased the basal release, totally blocked hGRF-stimulated release. We conclude that (1) Na+ currents which initiate rapid action potentials may participate in spontaneous GH release; (2) Ca2+ currents, which give rise to long duration action potentials and membrane voltage fluctuation, are probably involved in both basal and hGRF-stimulated GH releases.  相似文献   

4.
The depressant action of four Ca antagonists, including a novel drug, tiapamil, on Ca channels was investigated using a conventional microelectrode technique. "All or none" slow action potentials were recorded in K+-depolarized guinea-pig papillary muscles. Verapamil and diltiazem decreased the amplitude and maximum rate of rise (Vmax) of the slow action potentials at concentrations up to 2 microM. The depressant effect of a novel Ca-antagonist, tiapamil, on the slow action potentials was as marked as that of verapamil and diltiazem. However, prenylamine was less potent than the other 3 drugs. In addition, the action of all drugs on the slow action potentials was enhanced as the frequency of stimulation was increased between 0.0083 and 1 Hz. It was concluded that tiapamil, as verapamil and diltiazem, produced a frequency-dependent blockade of the slow Ca channel.  相似文献   

5.
Ca(2+)-induced Ca2+ release (CICR) occurs in frog motor nerve terminals after ryanodine receptors (RyRs) are primed for activation by conditioning large Ca2+ entry. We studied which type of RyR exists, whether CICR occurs without conditioning Ca2+ entry and how RyRs are primed. Immunohistochemistry revealed the existence of RyR3 in motor nerve terminals and axons and both RyR1 and RyR3 in muscle fibers. A blocker of RyR, 8-(N,N-diethylamino)octyl 3,4,5-trimethoxybenzoate hydrochloride (TMB-8) slightly decreased rises in intracellular Ca2+ ([Ca2+]i) induced by a short tetanus (50 Hz, 1-2s), but not after treatment with ryanodine. Repetitive tetani (50 Hz for 15s every 20s) produced repetitive rises in [Ca2+]i, whose amplitude overall waxed and waned. TMB-8 blocked the waxing and waning components. Ryanodine suppressed a slow increase in end-plate potentials (EPPs) induced by stimuli (33.3 Hz, 15s) in a low Ca2+, high Mg2+ solution. KN-62, a blocker of Ca(2+)/calmoduline-activated protein kinase II (CaMKII), slightly reduced short tetanus-induced rises in [Ca2+]i, but markedly the slow waxing and waning rises produced by repetitive tetani in both normal and low Ca2+, high Mg2+ solutions. Likewise, KN-62, but not KN-04, an inactive analog, suppressed slow increases in EPP amplitude and miniature EPP frequency during long tetanus. Thus, CICR normally occurs weakly via RyR3 activation by single impulse-induced Ca2+ entry in frog motor nerve terminals and greatly after the priming of RyR via CaMKII activation by conditioning Ca2+ entry, thus, facilitating transmitter exocytosis and its plasticity.  相似文献   

6.
The effects of nicardipine, a dihydropyridine Ca2(+)-channel antagonist, on neuromuscular transmission and impulse-evoked release of acetylcholine were compared with those of nifedipine. In the isolated mouse phrenic nerve diaphragm, nicardipine (50 microM), but not nifedipine (100 microM), induced neuromuscular block, fade of tetanic contraction, and dropout or all-or-none block of end-plate potentials. Nicardipine had no significant effect on the resting membrane potential and the amplitude of miniature end-plate potentials but increased the frequency and caused the appearance of large size miniature potentials. The quantal contents of evoked end-plate potentials were increased. In the presence of tubocurarine, however, nicardipine depressed the amplitude of end-plate potentials. The compound nerve action potential was also decreased. It is concluded that nicardipine blocks neuromuscular transmission by acting on Na+ channels and inhibits axonal conduction. Nicardipine appeared to affect the evoked release of acetylcholine by dual mechanisms, i.e., an enhancement presumably by an agonist action on Ca2+ channels, like Bay K 8644 and nifedipine, and inhibition by an effect on Na+ channels, like verapamil and diltiazem. In contrast with its inactivity on the amplitude of miniature end-plate potentials, depolarization of the end plate in response to succinylcholine was greatly depressed. The contractile response of baby chick biventer cervicis muscle to exogenous acetylcholine was noncompetitively antagonized by nicardipine (10 microM), but was unaffected by nifedipine (30 microM). These results may implicate that nicardipine blocks the postsynaptic acetylcholine receptor channel by enhancing receptor desensitization or by a use-dependent effect.  相似文献   

7.
Fluorescent ryanodine revealed the distribution of ryanodine receptors in the submembrane cytoplasm (less than a few micrometers) of cultured bullfrog sympathetic ganglion cells. Rises in cytosolic Ca(2+) ([Ca(2+)](i)) elicited by single or repetitive action potentials (APs) propagated at a high speed (150 microm/s) in constant amplitude and rate of rise in the cytoplasm bearing ryanodine receptors, and then in the slower, waning manner in the deeper region. Ryanodine (10 microM), a ryanodine receptor blocker (and/or a half opener), or thapsigargin (1-2 microM), a Ca(2+)-pump blocker, or omega-conotoxin GVIA (omega-CgTx, 1 microM), a N-type Ca(2+) channel blocker, blocked the fast propagation, but did not affect the slower spread. Ca(2+) entry thus triggered the regenerative activation of Ca(2+)-induced Ca(2+) release (CICR) in the submembrane region, followed by buffered Ca(2+) diffusion in the deeper cytoplasm. Computer simulation assuming Ca(2+) release in the submembrane region reproduced the Ca(2+) dynamics. Ryanodine or thapsigargin decreased the rate of spike repolarization of an AP to 80%, but not in the presence of iberiotoxin (IbTx, 100 nM), a BK-type Ca(2+)-activated K(+) channel blocker, or omega-CgTx, both of which decreased the rate to 50%. The spike repolarization rate and the amplitude of a single AP-induced rise in [Ca(2+)](i) gradually decreased to a plateau during repetition of APs at 50 Hz, but reduced less in the presence of ryanodine or thapsigargin. The amplitude of each of the [Ca(2+)](i) rise correlated well with the reduction in the IbTx-sensitive component of spike repolarization. The apamin-sensitive SK-type Ca(2+)-activated K(+) current, underlying the afterhyperpolarization of APs, increased during repetitive APs, decayed faster than the accompanying rise in [Ca(2+)](i), and was suppressed by CICR blockers. Thus, ryanodine receptors form a functional triad with N-type Ca(2+) channels and BK channels, and a loose coupling with SK channels in bullfrog sympathetic neurons, plastically modulating AP.  相似文献   

8.
Action potentials were examined using intracellular recording techniques to study the ionic mechanisms of excitability in oocytes and embryos of the mouse from the 1-cell through to the 16-cell stages of development. At all stages examined, action potentials dependent on monovalent cations (Na+ or Li+) were observed under Ca2+-free conditions, and the maximum rate of rise (MRR) of the Na action potential was larger than that of the Li action potential at a given concentration of monovalent cations. Both the Na and Li action potentials were insensitive to tetrodotoxin, and they were blocked by inorganic (Co2+, Cd2+, Mn2+, La3+) and organic (diltiazem) Ca antagonists. These properties were exactly the same as those of the Ca channels present in the membranes of the mouse embryos. In addition, competition was observed between permeant monovalent and divalent cations: the overshoot and MRR of the Na or Li action potentials were reduced in the presence of Ca2+. These results suggest that Na+ or Li+ go through the Ca channels when the external Ca2+ concentration was very low, and that the Ca channels are more permeable to Na+ than to Li+. Separate Na channels could not be detected or induced at any stages of development.  相似文献   

9.
The activation of small-conductance calcium-activated potassium channels (SK) has a profound effect on membrane excitability. In hippocampal pyramidal neurons, SK channel activation by Ca2+ entry from a preceding burst of action potentials generates the slow afterhyperpolarization (AHP). Stimulation of a number of receptor types suppresses the slow AHP, inhibiting spike frequency adaptation and causing these neurons to fire tonically. Little is known of the gating properties of native SK channels in CNS neurons. By using excised inside-out patches, a small-amplitude channel has been resolved that was half-activated by approximately 0.6 microM Ca2+ in a voltage-independent manner. The channel possessed a slope conductance of 10 pS and exhibited nonstationary gating. These properties are in accord with those of cloned SK channels. The measured Ca2+ sensitivity of hippocampal SK channels suggests that the slow AHP is generated by activation of SK channels from a local rise of intracellular Ca2+.  相似文献   

10.
T-type Ca2+ channels play a number of different and pivotal roles in almost every type of neuronal oscillation expressed by thalamic neurones during non-rapid eye movement (NREM) sleep, including those underlying sleep theta waves, the K-complex and the slow (<1 Hz) sleep rhythm, sleep spindles and delta waves. In particular, the transient opening of T channels not only gives rise to the 'classical' low threshold Ca2+ potentials, and associated high frequency burst of action potentials, that are characteristically present during sleep spindles and delta waves, but also contributes to the high threshold bursts that underlie the thalamic generation of sleep theta rhythms. The persistent opening of a small fraction of T channels, i.e. I(Twindow), is responsible for the large amplitude and long lasting depolarization, or UP state, of the slow (<1 Hz) sleep oscillation in thalamic neurones. These cellular findings are in part matched by the wake-sleep phenotype of global and thalamic-selective CaV3.1 knockout mice that show a decreased amount of total NREM sleep time. T-type Ca2+ channels, therefore, constitute the single most crucial voltage-dependent conductance that permeates all activities of thalamic neurones during NREM sleep. Since I(Twindow) and high threshold bursts are not restricted to thalamic neurones, the cellular neurophysiology of T channels should now move away from the simplistic, though historically significant, view of these channels as being responsible only for low threshold Ca2+ potentials.  相似文献   

11.
Sato T  Okada Y  Toda K 《Chemical senses》2004,29(8):651-657
Electrical stimulation of the frog glossopharyngeal (GP) nerve evoked slow hyperpolarizing potentials (HPs) in taste cells. This study aimed to clarify whether slow HPs were postsynaptically induced in taste cells. The slow HPs were recorded intracellularly with a microelectrode. When Ca2+ concentration in the blood plasma was decreased to approximately 0.5 mM, the amplitude of slow HPs reduced and their latency lengthened. When the Ca2+ concentration was increased to approximately 20 mM, the amplitude of slow HPs increased and their latency shortened. Addition of Cd2+ to the plasma greatly reduced the amplitude of slow HPs and lengthened their latency. These data suggest that the slow HPs are dependent on presynaptic activities in the GP nerve terminals in the taste disk. Of various antagonists injected intravenously for blocking receptors of neurotransmitter biogenic amines and peptides, only antagonists for substance P blocked the slow HPs at 2-4 mg/kg body wt. Application of substance P of 2 mg/kg to the plasma induced hyperpolarizing responses in taste cells, whose amplitude was the same as that of the slow HPs induced by GP nerve stimulation. Application of a nonselective cation channel antagonist, flufenamic acid, to the plasma blocked the slow HPs. These results suggest that the slow HPs are generated by closing the nonselective cation channels in the postsynaptic membrane of taste cells following possible release of substance P from the GP nerve terminals in the taste disk.  相似文献   

12.
The possible contribution of Ca2+-activated Cl- channel [I(Cl(Ca))] and myosin light-chain kinase (MLCK) to nonadrenergic, noncholinergic slow inhibitory junction potentials (sIJP) was studied using conventional intracellular microelectrode recordings in circular smooth muscle of opossum esophageal body and guinea pig ileum perfused with Krebs solution containing atropine (3 microM), guanethidine (3 microM), and substance P (1 microM). In opossum esophageal circular smooth muscle, resting membrane potential (MP) was -51.9 +/- 0.7 mV (n = 89) with MP fluctuations of 1-3 mV. A single square-wave nerve stimulation of 0.5 ms duration and 80 V induced a sIJP with amplitude of 6.3 +/- 0.2 mV, half-amplitude duration of 635 +/- 19 ms, and rebound depolarization amplitude of 2.4 +/- 0.1 mV (n = 89). 9-Anthroic acid (A-9-C), niflumic acid (NFA), wortmannin, and 1-(5-chloronaphthalene-1-sulfonyl)-1H-hexahydro-1,4-diazepine (ML-9) abolished MP fluctuations, sIJP, and rebound depolarization in a concentration-dependent manner. A-9-C and NFA but not wortmannin and ML-9 hyperpolarized MP. In guinea pig ileal circular smooth muscle, nerve stimulation elicited an IJP composed of both fast (fIJP) and slow (sIJP) components, followed by rebound depolarization. NFA (200 microM) abolished sIJP and rebound depolarization but left the fIJP intact. These data suggest that in the tissues studied, activation of I(Cl(Ca)), which requires MLCK, contributes to resting MP, and that closing of I(Cl(Ca)) is responsible for sIJP.  相似文献   

13.
Focal activation of glutamate receptors in distal dendrites of hippocampal pyramidal cells triggers voltage-dependent Ca(2+) channel-mediated plateau potentials that are confined to the stimulated dendrite. We examined the role of dendritic K(+) conductances in determining the amplitude, duration, and spatial compartmentalization of plateau potentials. Manipulations that blocked SK-type Ca(2+)-activated K(+) channels, including apamin and BAPTA dialysis, increased the duration of plateau potentials without affecting their amplitude or compartmentalization. Manipulations that blocked Kv4.2 A-type K(+) channels, including a dominant-negative Kv4.2 construct and 4-aminopyridine, increased the amplitude of plateau potentials by allowing them to recruit neighboring dendrites. Prolongation of plateau potentials or block of Kv4.2 channels at branch points facilitated the ability of dendritic excitation to trigger fast action potentials. SK channels thus underlie repolarization of dendritic plateau potentials, whereas Kv4.2 channels confine these potentials to single dendritic branches, and both act in concert to regulate synaptic integration.  相似文献   

14.
Efonidipine is a dihydropyridine Ca2+ antagonist with inhibitory effects on both L-type and T-type Ca2+ channels and potent bradycardiac activity especially in patients with high heart rate. In the present study, we examined the frequency dependence of efonidipine action on the T-type Ca2+ channel in isolated guinea-pig ventricular myocytes. The potency of efonidipine to inhibit the T-type Ca2+ current was higher under higher stimulation frequencies. The IC50 values were 1.3 x 10(-8), 2.0 x 10(-6) and 6.3 x 10(-6) M under stimulation frequencies of 1, 0.2 and 0.05 Hz, respectively. The reduction of T-type Ca2+ current amplitude was not accompanied by change in the time course of current decay. Efonidipine (10 microM) inhibited T-type Ca2+ current elicited by depolarization from holding potentials ranging from -90 to -30 mV by about 30%; the voltage-dependence of steady-state inactivation was not changed by the drug. Efonidipine slowed the recovery from inactivation following an inactivating prepulse. In conclusion, efonidipine was shown to have frequency-dependent inhibitory effects on the T-type Ca2+ channel, which could be explained by slow dissociation of the drug from the inactivated state of the channel.  相似文献   

15.
The present investigation was carried out to know the effect of Ca2+ on different peaks of compound action potential (CAP) representing the fibers having different conduction velocity. CAP was recorded from a thin bundle of nerve fibers obtained from desheathed frog sciatic nerve. Suction electrodes were used for stimulating and recording purposes. In Ca2+ -free amphibian Ringer, two distinct peaks (Peak-I and Peak-II) were observed. The threshold, conduction velocity (CV), amplitude and duration of Peak-I were 0.32 +/- 0.02 V, 56 +/- 3.0 m/sec, 2.1 +/- 0.2 mV and 0.75 +/- 0.1 ms, respectively. The Peak-II exhibited ten times greater threshold, eight times slower CV, three times lower amplitude and four times greater duration as compared to Peak-I. Addition of 2 mM Ca2+ in the bathing medium did not alter CAP parameters of Peak-I excepting 25% reduction in CV. But, in Peak-II there was 70-75% reduction in area and amplitude. The concentration-attenuation relation of Peak-II to various concentrations of Ca2+ was nonlinear and 50% depression occurred at 0.35 mM of Ca2+. Washing with Ca2+ -free solution with or without Mg2+ (2 mM)/verapamil (10 microM) could not reverse the Ca2+ -induced changes in Peak-II. Washing with Ca2+ -free solution containing EDTA restored 70% of the response. The results indicate that Ca2+ differentially influence fast and slow conducting fibers as the activity of slow conducting fibers is greatly suppressed by external calcium.  相似文献   

16.
Verapamil at 200 microM, prevented the respiratory stimulation, K+ loss, transmitter release, and 45Ca2+ entry into incubated synaptosomes evoked by veratrine (25 to 75 microM) or by high K+ (56 mM). Verapamil (100 microM) also blocked gamma-aminobutyric acid homoexchange, whilst tetrodotoxin was ineffective. Much lower concentrations of verapamil (less than 1 microM) blocked the 45Ca2+ entry caused by veratrine, but not its action in releasing neurotransmitter or K+. It is concluded that verapamil, at 30 to 200 microM, blocks active Na+ channels, thereby preventing depolarization. At greater than 1 microM, verapamil blocks Ca+ channels selectively.  相似文献   

17.
Properties of squid giant fiber lobe (GFL) Ca2+ channel deactivation (closing) were studied using whole-cell voltage clamp. Tail currents displayed biexponential decay, and fast and slow components of these tails exhibited similar external Ca(2+)- and voltage-dependence. Both components also shared similar inactivation properties. Increasing duration pulses to strongly depolarizing potentials caused a substantial slowing of the rate of deactivation for the fast component, and also led to an apparent conversion of fast tail currents to slow without an increase in total tail amplitude. A five-state kinetic model that computed the closing of channels differentially populating two open states could simulate the kinetic characteristics of GFL Ca2+ pulse and tail currents over a wide voltage range. The kinetics of the proposed state transition was very similar to the time course of relief of omega-Agatoxin IVA Ca2+ channel block with long pulses. A similar model predicted that the relief of block could occur via faster toxin dissociation from the second open state. Thus, GFL Ca2+ channels possess a unique form of voltage-dependent gating modification, in which maintained prior depolarization leads to a significant delay to channel closure at negative potentials. At the nerve terminal, amplified Ca2+ signals generated by such a mechanism might alter synaptic responses to repetitive stimulation.  相似文献   

18.
Recent studies have highlighted the role of the sarcoplasmic reticulum (SR) in controlling excitability, Ca2+ signalling and contractility in smooth muscle. Caffeine, an agonist of ryanodine receptors (RyRs) on the SR has been previously shown to effect Ca2+ signalling but its effects on excitability and contractility are not so clear. We have studied the effects of low concentration of caffeine (1 mM) on Ca2+ signalling, action potential and contractility of guinea pig ureteric smooth muscle. Caffeine produced reversible inhibition of the action potentials, Ca2+ transients and phasic contractions evoked by electrical stimulation. It had no effect on the inward Ca2+ current or Ca2+ transient but increased the amplitude and the frequency of spontaneous transient outward currents (STOCs) in voltage clamped ureteric myocytes, suggesting Ca2+-activated K+ channels (BK) are affected by it. In isolated cells and cells in situ caffeine produced an increase in the frequency and the amplitude of Ca2+ sparks as well the number of spark discharging sites per cell. Inhibition of Ca2+ sparks by ryanodine (50 microM) or SR Ca2+-ATPase (SERCA) cyclopiazonic acid (CPA, 20 microM) or BKCa channels by iberiotoxin (200 nM) or TEA (1 mM), fully reversed the inhibitory effect of caffeine on Ca2+ transients and force evoked by electrical field stimulation (EFS). These data suggest that the inhibitory effect of caffeine on the action potential, Ca2+ transients and force in ureteric smooth muscle is caused by activation of Ca2+ sparks/STOCs coupling mechanism.  相似文献   

19.
The specificity of action of Xestospongin C (XeC) towards the inositol 1,4,5-trisphosphate (IP3) receptor has been studied using the frog neuromuscular junction. In perisynaptic Schwann cells (PSCs), glial cells at this synapse, Ca2+ stores are dependent upon IP3 activation. Bath application of XeC (700 nM) caused a transient calcium elevation and blocked Ca2+ responses evoked in PSCs by synaptic activity or various agonists (ATP, muscarine, adenosine) only when Ca2+ stores had previously been challenged with local application of agonists. Moreover, XeC occluded the effects of thapsigargin (tg; 2 microM), a blocker of the Ca2+ ATPase pump of internal stores, which failed to evoke Ca2+ transients following 20 min of exposure to XeC. In nerve terminals, where the Ca2+ stores are ryanodine-sensitive, application of XeC (700 nM) prolonged the recovery phase of Ca2+ transients evoked by single action potentials, due to a prolonged Ca2+ clearance in the nerve terminal. No effects of tg (2 microM) were observed on Ca2+ response evoked by nerve stimulation when applied on the preparation after XeC (700 nM). Conversely, XeC (700 nM) had no effect on the shape and duration of Ca2+ entry in nerve terminals when tg was applied before XeC. These results indicate that XeC acts as an inhibitor of the sarcoplasmic/endoplasmic reticulum Ca2+ ATPase (SERCA) pump of internal stores.  相似文献   

20.
Strong electrical stimulation (ES) of the frog glossopharyngeal (GP) efferent nerve induced slow depolarizing potentials (DPs) in taste cells under hypoxia. This study aimed to elucidate whether the slow DPs were postsynaptically induced in taste cells. After a block of parasympathetic nerve (PSN) ganglia by tubocurarine, ES of GP nerve never induced slow DPs in the taste cells, so slow DPs were induced by PSN. When Ca(2+) in the blood plasma under hypoxia was decreased to approximately 0.5 mM, the slow DPs reduced in amplitude and lengthened in latency. Increasing the normal Ca(2+) to approximately 20 mM increased the amplitude of slow DPs and shortened the latency. Addition of Cd(2+) to the plasma greatly reduced the amplitude of slow DPs and lengthened the latency. These data suggest that the slow DPs depend on Ca(2+) and Cd(2+) concentration at the presynaptic PSN terminals of taste disk. Antagonists, [D-Arg(1), D-Trp(7,9), Leu(11)]-substance P and L-703 606, of neurotransmitter substance P neurokinin(1) receptor completely blocked the slow DPs. Intravenous application of substance P induced a DP of approximately 7 mV and a reduction of membrane resistance of approximately 48% in taste cells. A nonselective cation channel antagonist, flufenamic acid, completely blocked the slow DPs. These findings suggest that the slow DPs are postsynaptically initiated in frog taste cells under hypoxia by opening nonselective cation channels on the postsynaptic membrane after substance P is probably released from the presynaptic PSN axon terminals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号